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ABSTRACT
While there have been efforts to build high-performance data struc-
tures with near-data-processing (NDP), prior designs have mostly
failed to consider the data access patterns and impacts of cache.
We propose the hybrid skiplist, a concurrent skiplist algorithm
that takes advantage of both the cache-friendly nature of lock-free
skiplists and low-latency memory access of NDP. We also pro-
pose the hybrid biased skiplist, where frequently-accessed nodes
are dynamically promoted to higher levels of the skiplist for better
performance.

1 BACKGROUND & MOTIVATION
Near-data-processing (NDP) empowered by 3D die-stacking tech-
nology has recently re-emerged as a promising way around the
memory wall problem. As shown in Figure 1, in generic NDP ar-
chitectures, the memory is divided into vertical sections, called
NDP vaults, and each NDP vault is tightly coupled with a compute
unit, called the NDP core. Data-intensive parts of computation can
be offloaded to these NDP cores, where the physical proximity to
coupled NDP vaults allows for low-latency memory access.

Among the prior work on improving general-purpose concur-
rent data structures with NDP [3, 7–9, 11], Liu et al. [9] particu-
larly proposed NDP-based data structures that apply flat-combining
techniques [4] in the NDP cores to take advantage of low-latency
memory access without sacrificing concurrency.

We focus on one useful concurrent data structure, the skiplist,
which is a popular data structure for key-value stores or database in-
dexes. The skiplist [10] is an ordered, pointer-chasing data structure
with multiple levels of pointers at each node. Each node’s height
is randomly assigned according to a particular distribution, and
the skiplist probabilistically achieves logarithmic time operation
execution.

The NDP-based implementation [9] partitions the skiplist across
multiple NDP vaults (Figure 2). Each NDP core flat-combines the
operations made on its coupled partition to handle concurrent
operations from the host threads. Because of the skiplist’s pointer-
chasing nature, it was expected to benefit greatly from the NDP-
based design.

However, our empirical evaluations of the NDP-based data struc-
tures on a cycle-accurate full-system architecture simulator [3]
revealed that the skiplist must be significantly larger than cache for
the NDP-based implementation to outperform the non-NDP state-
of-the-art lock-free skiplist [5]. Because of the skiplist’s hierarchical
structure, every operation begins by traversing through the few

Figure 1: Generic near-data-processing architecture.
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Figure 2: NDP-based skiplist [9].

higher-level nodes, which are then accessed repeatedly over the
course of many operations. In the non-NDP context, these nodes
are likely to remain in cache, causing only a few node accesses to
actually go out to memory.

2 HYBRID SKIPLIST
For a data structure to be useful, its implementation must take
into account the interplay of data access patterns and effects of
the underlying architecture, including cache. We are the first to
propose such an algorithm – the hybrid skiplist, which combines
the best of NDP-based and lock-free skiplists. Figure 3 depicts the
hybrid skiplist design. The frequently-traversed higher levels of the
skiplist are maintained as a lock-free skiplist, taking advantage of
the host cache. The remaining lower levels are implemented as an
NDP-based skiplist to exploit the benefits of near-data-processing.
The hybrid skiplist is linearizable [6], with the linearization point
of add and remove operations always in the NDP-based portion.
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Figure 3: Hybrid skiplist.

Table 1: Evaluation framework details.
Host Configuration

processor 8 in-order processors (ARMv7 Cortex-A15)
L1 cache 32kB icache, 64kB dcache, private, 2-way set-associative

0.8 ns dcache access latency, 256B/block
L2 cache 2MB, shared, 8-way set associative

1.8ns access latency, 256B/block
main memory 1GB

NDP Configuration
NDP core 1 in-order processor/vault (ARMv7 Cortex-A15)
scratchpad 40kB/NDP core, stores instructions and program stack
memory 8 4-byte static registers, 8kB vector register reserved for memory-map
NDP vault 8 NDP vaults, 128MB/vault, open-page row-buffer-management policy

The system’s memory is divided into host-accessible main mem-
ory and NDP-capable memory (i.e., NDP vaults) that is accessed
only by the NDP cores. The NDP cores are simple processors with-
out cache, but each NDP core is equipped with a small scratchpad
memory that stores the NDP core’s program data and stack. Part of
the scratchpad is also memory-mapped into host memory and used
for communication between the host processors and NDP core.

The lock-free portion of the hybrid skiplist is primarily stored in
host-accessible main memory. The number of levels in the lock-free
portion is determined by a software parameter that is set based on
the cache and total skiplist size; this “pins” the high-level nodes in
cache. Implementing the lower levels as the NDP-based skiplist –
accessed only by NDP cores – prevents the frequently-traversed
high-level nodes in cache from being replaced by low-level nodes
that are unlikely to be accessed again soon.

We also extend the hybrid skiplist to the hybrid biased skiplist1,
which is designed to yield higher performance in more realistic
settings, where there is a skew in node accesses. In the hybrid biased
skiplist, popular nodes in the NDP-based portion are promoted one
level at a time, until reaching the lock-free portion. After a node is
promoted, the predecessor node at the promoted level is demoted,
so that the skiplist remains balanced. Popularity is determined by a
short log of operation timestamps on each node.

3 EVALUATION & DISCUSSION
We evaluate the proposed hybrid and hybrid biased skiplists on
Brown-SMCSim, a gem5 [2] cycle-accurate, full-system NDP archi-
tecture simulator used for evaluations in [3]. Table 1 summarizes
the simulator details.

Figure 4 compares the operation throughput of the hybrid, hybrid
biased, host lock-free, and NDP-based skiplists. The initial skiplist
size was set to 0.5GB (222 nodes), and operationswere divided as 90%
contains, 9% add, and 1% remove. For Figure 4a, the operations were

1named after Bagchi et al.’s biased skiplist [1]
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(b) zipfian distribution (100 hot keys,
skew=0.99)

Figure 4: Operation throughput of various skiplist imple-
mentations.
uniformly distributed across all keys; for Figure 4b, the operations
had a zipfian distribution with 100 hot keys.

In either case, the hybrid biased skiplist outperforms the non-
NDP state-of-the-art lock-free skiplist (17% and 2.1x throughput
increase with uniform and zipfian distributions, respectively). With
a uniform distribution, the hybrid biased skiplist has lower through-
put than the hybrid skiplist. This is due to the overhead associated
with determining node popularity, but note that the zipfian distri-
bution reflects a more realistic skiplist usage.
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