
Hardware Acceleration of Monte-Carlo Sampling
for Energy Efficient Robust Robot Manipulation

Yanqi Liu
Dept.of Computer Science

Brown University
Providence, RI, USA

yanqi liu@brown.edu

Giuseppe Calderoni
Dept.of Automation and Informatics

Politecnico di Torino
Torino, Italy

giuseppe.calderoni@studenti.polito.it

R. Iris Bahar
School of Engineering

Dept. of Computer Science
Brown University

Providence, RI USA

iris bahar@brown.edu

Abstract—Algorithms based on Monte-Carlo sampling have
been widely adapted in robotics and other areas of engineering
due to their performance robustness. However, these sampling-
based approaches have high computational requirements, making
them unsuitable for real-time applications with tight energy
constraints. In this paper, we investigate 6 degree-of-freedom
(6DoF) pose estimation for robot manipulation using this method,
which uses rendering combined with sequential Monte-Carlo
sampling. While potentially very accurate, the significant com-
putational complexity of the algorithm makes it less attractive
for mobile robots, where runtime and energy consumption are
tightly constrained. To address these challenges, we develop a
novel hardware implementation of Monte-Carlo sampling on an
FPGA with lower computational complexity and memory usage,
while achieving high parallelism and modularization. Our results
show 12X–21X improvements in energy efficiency over low-power
and high-end GPU implementations, respectively. Moreover, we
achieve real time performance without compromising accuracy.

Index Terms—Robotics, Monte-Carlo sampling, Low-power

I. INTRODUCTION

Robot manipulation tasks generally involve three stages:

object recognition, pose estimation, and object manipulation.

Convolutional Neural Networks (CNNs) have shown high ac-

curacy and fast inference speed in object recognition, making

their use widely popular for robotic applications, such as

picking up and manipulating objects. However, CNNs also

have several shortcomings, including extensive training effort,

opacity in decision making and inability to recover from

incorrect decisions. Moreover, CNNs tend to overfit to the

training data due to their high non-linearity and parameter

counts [1]. Overfitting also makes the CNN vulnerable to

adversarial attack (e.g., via small image perturbations [2], [3]),

and can also lead to poor predictions when faced with unfa-

miliar scenarios. In particular, when the robot operates in the

real world, it is subject to complex and changing environments

that often have not been captured by training data.

Alternatively, discriminative-generative algorithms [4], [5],

[6] offer a promising solution to achieve robust performance.

Such methods combine the discriminative power of infer-

ence (using deep neural networks) with generative Monte-

Carlo sampling to achieve robust and adaptive perception.

This work is supported by equipment grants from Nvidia and Xilinx
Corporations, and a grant through the Brown University Office of Research
Development.

In particular, the Monte-Carlo sampling stage can recover

from the false negatives obtained from neural network outputs

and offers an explainable final decision. For instance, the

discriminative-generative approach of [6] demonstrated over

a 50% improvement in pose estimation accuracy compared

to end-to-end neural network approaches, which enables ro-

bust robot manipulation under various environmental changes.

However, while neural network inference can be completed

within a second on modern general purpose graphic processing

units (GPUs), the iterative process of Monte-Carlo sampling

does not map well to GPU acceleration, making the algorithm

less amenable to meeting the energy and real-time constraints

required of mobile applications. In particular, the run time and

energy consumption is determined by the range of sampling,

the number of iterations, and the computational complexity of

the likelihood function. Instead, some other means of hardware

acceleration is required to make Monte-Carlo sampling fast as

well as energy efficient.

Custom hardware implementations (using FPGAs or ASICs)

can operate with reduced energy consumption, even while run-

ning at a lower clock frequency, since they have better dataflow

flexibility than GPUs or CPUs. However, a direct translation

from the software implementation to hardware often is hardly

able to yield any improvements. This paper describes a novel

FPGA implementation of Monte-Carlo sampling that provides

the same accuracy as GPU-CPU approaches such as [7], but

with significantly improved runtime and energy consumption.

This paper makes the following contributions:

• We develop a complete Monte-Carlo generative inference

flow suitable for hardware acceleration on an FPGA.

• We demonstrate how pipelining, numerical quantization,

partial rasterization, and image storage optimizations can

be used to significantly reduce computational complexity

and memory utilization of the generative algorithm.

• We show how to partition the algorithm using multiple

parallel customized processing cores to increase through-

put and memory access efficiency.

• We show that our FPGA Monte-Carlo sampling design

achieves a 12X–21X improvement in energy efficiency

compared to GPU-CPU implementations, while providing

real time performance with no accuracy loss.

II. BACKGROUND

Robot perception is an important step for robot manipulation

in unstructured environments. In particular, object pose esti-

mation is the key step for robot manipulation. Learning-based

methods have been used based on end-to-end neural networks.

For instance, PoseCNN [8] proposes an network that learns

the object segmentation with 3D translation and rotation.

DOPE [9] focuses on performance in dark environments by

training on synthetic data from domain randomization and

photo-realistic simulation. DenseFusion [10] concatenates fea-

tures extracted from object segmentation and point clouds to

estimate the pose from this hybrid RGB-depth representation

of the object. While the end-to-end network based methods can

achieve real time performance on GPUs, they require relatively

large training sets for 6 DoF object poses. Moreover, the

network accuracy may be severely affected under challenging

natural environments (e.g. change of lighting conditions and

objects occlusion) as evaluated in [6].

In this paper, we focus on discriminative-generative meth-

ods, where neural network output is followed with a proba-

bilistic inference in a two-stage paradigm. This approach is

fundamentally different from the end-to-end learning network

approaches proposed in [8], [9], [10], where the performance

largely depends on network accuracy, so there is no way to

recover once it has made a false decision. Techniques based

on discriminative-generative methods include the work of [7],

which proposed to use a pyramidCNN to generate a probability

heatmap of the object, followed by a bootstrap filter to find

the optimal object pose from the object distribution. GRIP [6]

further improves the performance of [7] in dark, occluded

scenes by exploiting point cloud features.

Pose estimation is an important step for real-time systems,

yet there is little work that considers how it may be accelerated

in hardware, and these approaches are either not accurate

enough for such tasks as robot manipulation [11], provide only

partial solutions (e.g., [12], [13]), or cannot be integrated with

a discriminative-generate approach [14], which is especially

useful for reasoning in unstructured environments.

A generative Monte-Carlo approach provides a greater

search space and explainable reasoning, which improves accu-

racy and robustness, but at the expense of computational com-

plexity. Particle filtering (an application of Monte-Carlo sam-

pling) has been implemented on FPGAs for accelerating object

tracking and robot mapping and localization [15], [16], [17],

though not for pose estimation. Our goal is to develop a

novel FPGA design for 6 DoF object pose estimation based

on Monte-Carlo sampling that achieves real time performance

with significantly reduced energy consumption.

III. ALGORITHM

The two-stage paradigm for the discriminative-generative

algorithm proposed in [7] is shown in Fig. 1. Our goal is to

design an efficient hardware implementation of Monte-Carlo

sampling used in the second stage of the algorithm for 6

DoF object pose estimation. The input to this Monte-Carlo

generative sampling algorithm is a series of bounding boxes

Fig. 1: Two-stage paradigm. 1st stage uses CNN for object detection,
2nd stage uses Monte-Carlo sampling to estimate object 6 DoF pose.

around objects, with confidence scores and object class labels

produced from any state-of-art object detection convolutional

neural network (CNN). This input represents the object proba-

bility distribution over the observed scene. The CNN itself can

be implemented by various network architectures such as VGG

[18], ResNet [19] and Squeezenet [20] as discussed in [21].

However, the specific CNN architecture is not the focus of this

paper. Below we describe the generative sampling algorithm

in detail, generally following the design presented in [7].
Given an RGB-D observation (Zr, Zd) from a robot sensor

Zr for RGB image and Zd for depth image, our goal is to

maximize the conditional joint distribution P(q,b|o,Zr,Zd) for

each object where q is the 6 DoF pose for the object and o,

b are the class label and bounding box respectively from the

CNN output. The problem can be formulated as:

P(q,b|o,Zr,Zd) (1)

= P(q|b,o,Zr,Zd)P(b|o,Zr,Zd) (2)

= P(q|b,o,Zd)︸ ︷︷ ︸
pose estimation

P(b|o,Zr)︸ ︷︷ ︸
detection

(3)

The second-stage takes the object detection results from the

CNN and performs Monte-Carlo sampling via iterative like-

lihood weighting. In the initial stage, the algorithm generates

a set of weighted samples {q(i),w(i),b(i),z(i)}M
i=1 to represent

the belief of the object pose over the entire image. The value

q(i) represents the 6 DoF pose of the sample object and w(i),

b(i) and z(i) are associated with the probability, the bounding

box of the object from the first stage, and the observed point

cloud within the bounding box region, respectively. For each

sample, given its object class o, pose q(i) and corresponding

geometric model, the algorithm renders a 3D point cloud r(i)

Fig. 2: FPGA diagram: Depth and transformation distributor sends a new pose and depth region associated with each sample to each raster
core. Object vertex distributor transfers each triangle of the geometric model to raster. Each raster core works in parallel to calculate inlier
score of samples at different poses.

of the sample using z-buffering of a 3D graphics engine. The

weight w(i) of each sample is updated to estimate how close

the sample matches the observation. We use a pixel-wise inlier
function defined in Eqn. 4 to measure the matching between

sample and observation:

Inlier(p, p
′
) = I

(
||p− p

′ ||2 < ε
)
, (4)

where p, p
′

refers to a point in an observation point cloud z(i)

and a point in a rendered point cloud r(i) from the sample pose,

respectively. I is the indicator function. An inlier is defined if

a rendered point is within a certain distance threshold range ε
from an observed point. The number of inliers is defined as:

N(i) = ∑
a∈z(i)

Inlier(r(i)(a),z(i)(a)), (5)

where a is an index of a point within zi. We can use this

value to obtain two raw-pixel inlier ratios: N(i)/Nb, where Nb
is the number of observation points within the bounding box

b(i), and N(i)/Nr, where Nr is the number of rendered points

within the bounding box.

Next, using these ratios and probability c from the CNN,

the weight wi for each sample is computed as:

w(i) = α ∗ N(i)

Nb
+β ∗ N(i)

Nr
+ γ ∗ c, (6)

where α , β , γ are the coefficients that are empirically deter-

mined and sum up to 1.

To get the the optimal pose q∗, we follow the procedure

of importance sampling [22] to assign a new weight to each

sample. During this process, each sample pose, q(i), is diffused

with a Gaussian distribution in the space of 6 DoF poses with

a small δ to increase sample variance:

q(i) = (x,y,z,roll, pitch,yaw)+N (0,δ). (7)

Once the average sample weight is above a threshold, τ , we

consider the algorithm converged and q∗ will be selected as

the sample with the highest weight w∗.

The most computationally expensive step in this process is

the rendering and sample weight computation, which includes

a pixel-wise inlier calculation. The amount of computation

and memory grows linearly with the number of samples we

choose for the design. Even though modern GPUs can achieve

high parallelism, the high energy consumption makes them

less suitable for mobile platforms such as autonomous robots.

In addition, their runtimes may still not allow for real-time

operation. Our goal is to design various optimizations that can

be implemented directly in hardware in order to achieve both

faster runtime and reduced energy consumption.

IV. METHODOLOGY

Our FPGA implementation of Monte-Carlo sampling is il-

lustrated in Fig. 2. The CNN object detection output consisting

of probability and bounding box information is stored on off-

chip memory and transferred to the second stage Monte-Carlo

sampling module. The sample initializer generates N samples

(sample list in Fig. 2) and the information for each sample (i.e.,

the 6DoF pose, bounding box region, and geometric model)

is distributed to a raster core through a transformation matrix
distributor, depth distributor and object vertex distributor.

Each raster core performs rasterization and inlier comparison

on a single sample at a time. The weight merger step will

fetch the inlier scores from each raster core, calculate the

weights for each sample, and send them to the resampler.

After all the samples are processed, the resampler generates

a new sample list of 6 DoF poses based on the weight of

each sample. Finally, the diffuser stage adds Gaussian noise

to each sample’s 6 DoF pose. We then start a new Monte-
Carlo iteration for the new sample list. We will next describe

each of these steps in more detail in the following subsections.

A. Rasterizing
Rasterization is a process in computer graphics that converts

a geometric model defined by vertices and faces to a raster im-

age, defined by a series of pixels each with a depth value. The

result of rasterization is an image of what a 3D object would

look like at a certain view point. To implement rasterization

in hardware, we designed a specialized raster core processing

unit that pipelines the rasterization and inlier comparison steps

for a given sample. The processing unit is illustrated in Fig. 3.

At every raster iteration, a triangle from the geometric model

is transformed with a sample’s 6 DoF pose and rasterized,

after which a depth value at each pixel within the triangle is

Fig. 3: Raster core flow: Memory unit stores a region in the observa-
tion depth defined by sample bounding box. Raster core operates on a
single triangle at a time. The raster core pipelines the transformation,
rasterization, and pixel-wise depth comparison between rasterized
pixel and observation depth and outputs an inlier score.

calculated and compared to the observed depth region stored

in the raster core. The comparison results are accumulated

and output as an inlier score after all the triangles within the

geometric model are processed. By pipelining these two steps,

there is no need to store the rasterization result, and instead

we only keep track of the inlier score from each sample.

We further reduce computational complexity and mem-

ory utilization by using partial rasterization. Note that since

Eqn. (6) only pertains to the region within the bounding box,

we only need to rasterize within this region. This partial ras-

terization is illustrated in Fig. 4. Backface culling is a standard

algorithm inside a 3D graphic pipeline that removes the faces

of the object model occluded by some other triangle [23].

For our purposes, we apply backface culling to reduce the

total number of rasterized triangles by using the dot product

between the surface normal and the camera point of view

direction to judge if a face is occluded. On average, we

found that we can reduce the number of rendered triangles

by approximately 50% using this technique.

(a) full raster (b) partial raster 1 (c) partial raster 2

Fig. 4: Partial rendering: (a) full rasterization of the object, (b) and
(c) partial rasterizations within the sample bounding boxes.

B. Inlier

In the original algorithm described in [7], a 3D point cloud

is used to represent the rasterized sample and observation. In

order to reduce the computation and memory overhead, we

wanted to modify the inlier comparison to a 1D depth repre-

sentation. Given a point (x,y,z) in an observation pointcloud

and a point(x′,y′,z′) in a rendered point cloud the 3D Euclidean

distance between two points can be computed noting that:

d =
√

(x− x′)2 +(y− y′)2 +(z− z′)2. (8)

Given a depth z at pixel (px,py), the x and y values can be

calculated as:
x = (px −Cx) · z/ fx

y = (py −Cy) · z/ fy
(9)

where Cx, Cy, fx. fy are camera intrinsic parameters (i.e., center

offset and focal length). By substituting the x, y values in

Eqn. (8) with the formulation in Eqn. (9), we see that for the

same pixel (px, py) the distance differences in the x and y
directions are proportional to the distance differences in the z
direction. That is:

x− x′ = (px −Cx) · z/ fx − (px −Cx)× z′/ fx

= (px −Cx) · (z− z′)/ fx

∝ (z− z′)
y− y′ = (py −Cy) · z/ fy − (py −Cy) · z′/ fy

= (py −Cy) · (z− z′)/ fy

∝ (z− z′)

(10)

Therefore, we can approximate the 3D Euclidean distance

computation with a much simpler 1D depth comparison with-

out affecting the pose estimation accuracy.

C. Depth Distributor

In the inlier calculation step, each rendered sample is

compared with its corresponding observation depth region

defined by a bounding box generated from the CNN output in

the first stage. Therefore, each raster core must read a depth

region from the entire depth image stored in on-board memory.

Naively, if we distribute each region to each raster core in

series, we need to repeatedly access the same memory location

multiple times for the overlapping areas. Instead, we designed

a depth distributor, as illustrated in Fig. 5, to reduce the amount

of redundant memory accesses for overlapping depth regions.

Our algorithm first divides the depth image into multiple sub-

regions and identifies each region with a corresponding raster

core number. The data from the overlapping regions are then

read from memory once and distributed to multiple raster cores

in parallel. In this way, the more overlapping areas we have

among different regions, the faster the depth distribution can

be completed. In particular, assuming that as more Monte-
Carlo iterations are completed more samples will converge to

the same bounding box, the runtime and power consumption

of the depth distributor for later iterations will decrease.

D. Sorting and Resampling

To execute the resampling stage, we sort the samples

by their corresponding weight. While sorting is not strictly

required for importance sampling, we can sort the samples

by their weights and only resample from the top x% to

Fig. 5: Illustration of depth distribution. Each region shown within
dotted lines is distributed to a raster core and overlapping regions
(highlighted by the different colored boxes) will be distributed in
parallel to multiple raster cores.

Fig. 6: Sorting and resampling. Starting with our N-entry sample list
in Memory 0, we sort the entries by weight in ascending order. In
this example, W65 >W24 >W76, etc. Memory 0 and Memory 1 will
be read and written alternatively across each iteration.

further reduce resampling memory accesses. Sorting a sample

generally requires moving all its object pose information (i.e.,

x, y, z, roll, pitch, yaw). However, to reduce data movement, we

sort the index of the sample based only on the sample weight.

Once the sorting step is complete, we conduct sampling to

generate new sample indices.

Recall from Section III that resampling uses importance

sampling to generate new samples from the sample weight

distribution. We store the cumulative density function (CDF)

of the normalized sample weight x in an array, Φ(x). A

random number r ∈ U(0,1) is generated and compared with

values in the CDF array until we find the first sample i
where r < Φ(x(i)). The number of memory reads to the CDF

array increases as r → 1, since the memory locations must be

analyzed starting from the zero cell up to the desired one. To

reduce memory accesses, we use a separate memory to store

a set of threshold values {t0, t1, ..., tn} with a constant step,

where ti ∈ [0,1] such that we first execute a coarse-grained

search to find region [tk, tk+1] where r falls, and then do a

fine-grained search for i where Φ(x(i)) ∈ [tk, tk+1]. From our

experiments, we found that this technique greatly reduces the

average number of memory accesses from 410 to 10.

To further speed up execution time, we implemented a ping-

pong buffer for the diffusion stage, as illustrated in Fig. 6. We

alternate fetching sample information from either Memory 0

or Memory 1 using the new sample indices generated from

the resampler, add Gaussian noise to the 6 DoF pose, and

save the new samples in the opposite memory buffer.

V. EXPERIMENTAL RESULTS

We implemented our Monte-Carlo sampling algorithm on

a Xilinx® Virtex UltraScale FPGA ZCU102 board using the

Vivado HLS high-level synthesis tool. Given the memory and

computational resources of this board, we can fit a total of

20 raster cores in our design. In general, the more samples

we use, the better we can approximate sample distribution. In

our case, we chose to process a total of 620 samples because

it is sufficient to describe our algorithm search space, so 31

sample iterations are needed to render all the samples.

We compared runtime, power, energy consumption, and

accuracy of our FPGA implementation to a CPU-GPU hybrid

reference design implemented on two platforms: 1) an Nvidia®

Titan Xp with and Intel Xeon E5, and 2) an Nivida® Jetson

TX2 with a quad-core ARM A57. We note that both GPU

platforms are more powerful than our FPGA in terms of

memory capacity, compute resources, and clock frequency.

Sample initialization, resampling, and diffusion are done on

the CPU since their operations are sequential in nature, while

sample rendering and inlier computation is done on the GPU.

We use OpenGL to render all the samples and program the

CUDA cores to perform the inlier computation. We create a

kernel where every pixel distance comparison is assigned to a

CUDA thread and processed concurrently. Since the GPU has

high memory bandwidth, we keep one copy of the observation

depth in the GPU memory such that each sample accesses the

observation depth to compute the inlier.

The dataset used in the experiments contains scenes col-

lected by a Kinect RGBD camera with objects from the YCB

dataset [8]. Each scene captures a depth image of size 640 X

480. In each scene, 5–7 different objects are placed on a table.

An example scene is shown in Fig. 7. We choose to test these

5 different objects for their different sizes and symmetries.

(a) RGB image (b) Depth image without table.

Fig. 7: A test scene containing objects from the YCB dataset.

A. Runtime

Table I reports the average runtime for the rendering and

inlier stages on both FPGA and GPU platforms. Note that the

FPGA implementation has a faster runtime than the Jetson

version and slightly slower runtime compared with Titan.

banana
cracker

box
potted

meat can
mustard
bottle

tomato
soup can

FPGA 17.08ms 24.70ms 18.67ms 18.01ms 19.32ms
Titan 10.24ms 15.78ms 11.29ms 12.52ms 11.66 ms
Jetson 188.81ms 244.61ms 192.45ms 205.53ms 193.66ms

TABLE I: Average runtimes for render+inlier process: FPGA

at 200MHz, Titan Xp at 1.4GHz and Jetson TX2 at 1.3GHz
.

Fig. 8: Average runtimes for one Monte-Carlo iteration.

In Fig. 8 we show the average runtime per entire Monte-
Carlo iteration, broken down into three stages: 1) render-

ing+inlier computation, 2) data transfer between GPU and

CPU, and 3) resampling and diffusion computation. Since our

FPGA implementation keeps the entire Monte-Carlo sampling

algorithm on board, the total data transfer time is greatly

reduced and thus has advantages for per-iteration runtime.

Note that while Monte-Carlo inference processes each ob-

ject in series, the robot can start object manipulation as

part of a pick-and-place action as soon as the first object

completes. On average, it takes 50 Monte-Carlo iterations for

the algorithm to converge for each object. Given the average

runtimes from Table I, our FPGA implementation can process

a single object in approximately 1 second. Since a robot

movement can take a few seconds to complete, we can start to

pick the next object without stalling the robot action; thus, we

consider 1 second as real time processing for this application.

Finally, the benefit of our depth distribution implementation

is shown in Fig. 9. Here we chose to test average runtime

per iteration for 50 iterations. Note that the average runtime

decreases over the iterations as the objects converge.

B. Resource and Power
The resource utilization for each stage of our algorithm is

shown in Table II and the power and energy consumption of

each implementation is shown in Table III. The FPGA power

is collected from the Vivado® power analyzer, while the Titan

power is estimated through the Nvidia® Management Library,

and Jetson power is measured through an on-board power

monitor. Note that for our FPGA implementation, resampling

and diffusion steps are responsible for less than 13% of total

power/energy. In addition, the Titan and Jetson GPU only

performs rendering and inlier computations and not resampling

and diffusion stages since these are on the CPU. Just focusing

on rendering+inlier power and energy, we see that the FPGA

implementation is 33X more power efficient and 21X more

Fig. 9: FPGA per Monte-Carlo iteration runtime vs. iteration count.

energy efficient than the Titan Xp. Compared against the

low power Jetson, our FPGA implementation is slightly more

power efficient and 12X more energy efficient. Moreover, our

solution is scalable to any FPGA platform by choosing the

number of raster cores to balance the runtime versus resource

and power tradeoff.

BRAM36s DSP48E2 LUT FFs

sample initializer 0 6 2123 2409
20 raster cores 480 920 146000 172780

resample 1 10 926 855
diffuse 0.5 13 3588 1990

TABLE II: Resource utilization for each stage

FPGA FPGA Titan Jetson
whole flow render+inlier render+inlier render+inlier

Pave 3.85W 3.36W 110.34W 3.78W
Eave 75.32mJ 65.70mJ 1357.12mJ 775.62mJ

TABLE III: Average power and energy consumption

C. Accuracy
To evaluate the accuracy of our implementation, we chose

5 objects and 9 different scenes, where each object occurs 5

times in the scene. We ran our algorithm 5 times for each scene

to avoid randomness in the result. We use the average distance

metrics ADD and ADD-S as defined in [8] to calculate the

point distance error between predicted pose and ground truth

pose for symmetric and non-symmetric objects respectively.

Both GPU and FPGA implementations achieve around 52%

pose estimation accuracy under an ADD threshold of 4 cm. We

see that even though we simplified the inlier calculation and

rasterization steps, the FPGA implementation achieves similar

accuracy as the GPU implementation.

VI. CONCLUSIONS

In this paper, we have shown an effective hardware imple-

mentation of a Monte-Carlo sampling algorithm, as part of

the two-stage discriminative-generative method used for pose

estimation for robot manipulation. With our FPGA implemen-

tation, we are able to achieve real time performance with

significantly reduced energy consumption, compared to either

a high-performance or low power GPU implementation. Future

work will consider adding a deep pipelined feature extraction

step, along with rasterization, to provide higher accuracy for

objects pose estimation in more clustered environments.

REFERENCES

[1] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958, January 2014. doi:10.5555/2627435.2670313.

[2] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. CoRR, abs/1412.6572, 2015.

[3] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rah-
mati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song.
Robust physical-world attacks on deep learning visual classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1625–1634, 2018. doi:10.1109/CVPR.2018.00175.

[4] Zhiqiang Sui, Zheming Zhou, Zhen Zeng, and Odest Chadwicke Jenkins.
SUM: Sequential scene understanding and manipulation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 3281–3288. IEEE, 2017. doi: 10.1109/IROS.2017.8206164.

[5] Venkatraman Narayanan and Maxim Likhachev. Discriminatively-
guided deliberative perception for pose estimation of multiple
3d object instances. In Robotics: Science and Systems, 2016.
doi:10.15607/RSS.2016.XII.023.

[6] Xiaotong Chen, Rui Chen, Zhiqiang Sui, Zhefan Ye, Yanqi Liu, R. Iris
Bahar, and Odest Chadwicke Jenkins. GRIP: Generative robust inference
and perception for semantic robot manipulation in adversarial environ-
ments. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019. doi:10.1145/3240765.3243493.

[7] Zhiqiang Sui, Zhefan Ye, and Odest Chadwicke Jenkins. Never mind
the bounding boxes, here’s the SAND filters. arXiv:1808.04969, 2018.

[8] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
PoseCNN: A convolutional neural network for 6d object pose estima-
tion in cluttered scenes. Robotics: Science and Systems XIV, 2018.
doi:10.15607/RSS.2018.XIV.019.

[9] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang,
Dieter Fox, and Stan Birchfield. Deep object pose estimation for
semantic robotic grasping of household objects. arXiv:1809.10790,
2018.

[10] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-Martı́n, Cewu
Lu, Li Fei-Fei, and Silvio Savarese. Densefusion: 6D object pose
estimation by iterative dense fusion. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3338–3347,
2019. doi:10.1109/CVPR.2019.00346.

[11] László Schäffer, Zoltán Kincses, and Szilveszter Pletl. A real-time pose
estimation algorithm based on FPGA and sensor fusion. In International
Symposium on Intelligent Systems and Informatics (SISY), Sep. 2018.
doi:10.1109/SISY.2018.8524610.

[12] Michael Schaeferling, Ulrich Hornung, and Gundolf Kiefer. Object
recognition and pose estimation on embedded hardware: Surf-based
system designs accelerated by FPGA logic. International Journal of
Reconfigurable Computing, 2012:6, 2012. doi:10.1155/2012/368351.

[13] Ryo Konomura and Koichi Hori. FPGA-based 6-DoF pose estimation
with a monocular camera using non co-planer marker and application
on micro quadcopter. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4250–4257, 2016. doi:
10.1109/IROS.2016.7759626.

[14] Atsutake Kosuge, Keisuke Yamamoto, Yukinori Akamine, Taizo Ya-
mawaki, and Takashi Oshima. A 4.8x faster FPGA-based iterative
closest point accelerator for object pose estimation of picking robot
applications. In IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 331–331,
April 2019. doi:10.1109/FCCM.2019.00072.

[15] Riku Murai, Paul Kelly, Sajad Saeedi, and Andrew Davison. Visual
odometry using a focal-plane sensor-processor. 2019.

[16] Fynn Schwiegelshohn, Eugen Ossovski, and Michael Hübner. A fully
parallel particle filter architecture for FPGAs. In Kentaro Sano, Dimitrios
Soudris, Michael Hübner, and Pedro C. Diniz, editors, Applied Recon-
figurable Computing, pages 91–102, Cham, 2015. Springer International
Publishing.

[17] B. G. Sileshi, J. Oliver, and C. Ferrer. Accelerating particle filter on
FPGA. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 591–594, 2016. doi: 10.1109/ISVLSI.2016.66.

[18] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv:1409.1556, 2014.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[20] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size. arXiv:1602.07360,
2016.

[21] Yanqi Liu, Alessandro Costantini, Zhiqiang Sui, Zhefan Ye, Shiyang Lu,
Odest Chadwicke Jenkins, and R. Iris Bahar. Robust object estimation
using generative-discriminative inference for secure robotics applica-
tions. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–8, 2018. doi:10.1145/3240765.3243493.

[22] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo Methods. Vol. 1:
Basics. Wiley-Interscience, USA, 1986.

[23] Subodh Kumar, Dinesh Manocha, Bill Garrett, and Ming Lin. Hierar-
chical back-face culling. In 7th Eurographics Workshop on Rendering,
pages 231–240, 1996.

