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ABSTRACT

In a traditional DRAM-based main memory architecture, a memory
access operation requires much more time and energy than a simple
logic operation. This fact is exploited to build time-consuming and
power-hungry memory-hard cryptographic functions that serve
the purpose of hindering brute-force security attacks.

The security of such memory-hard functions depends entirely on
the non-trivial costs of memory access. However, various compute-
capable memory technologies have recently emerged as promising
ways to reduce the memory access bottleneck, yet no one has
looked into how they may impact the security of memory-hard
cryptographic functions. In this preliminary work, we investigate
the impact of near-data-processing (NDP) on scrypt, a widely used
memory-hard password-based key-derivation function, and discuss
the opportunities to further undermine scrypt using compute-
capable memory.

CCS CONCEPTS

« Hardware — Memory and dense storage; « Security and pri-
vacy — Hash functions and message authentication codes.
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1 INTRODUCTION

In a traditional DRAM-based main memory architecture, a memory
access operation requires much more time and energy than a simple
logic operation. This fact is exploited to build time-consuming
and power-hungry memory-hard cryptographic functions, which
serve the purpose of hindering brute-force security attacks. The
computation cost of the memory-hard function is negligible for an
honest user, who would compute it only once, but the cumulative
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computation cost is significant and therefore prohibitive for a brute-
force attacker, who would need to compute the function a large
number of times.

To this end, Colin Percival [34] defined the memory-hard algo-
rithm: an algorithm that requires amount of memory approximately
proportional to the number of operations to be performed. If suf-
ficiently large amount of memory is required, not only would the
compute time and power be bounded by memory access, but the
algorithms would also be resistant to brute-force attacks using cus-
tomized hardware. Memory is expensive and takes up large chip
area, and therefore requiring large amounts of memory for a single
function computation limits the amount of customized hardware
that can be built to execute large-scale parallel attacks.

The security of memory-hard functions depends entirely on the
non-trivial costs of memory access. However, various compute-
capable memory technologies have recently emerged as promising
ways to address the problems of slow and energy-intensive memory
access [18, 44]. Compute-capable memory supplements memory
devices with compute units, so that simple data-intensive computa-
tions can be done near memory (near-data-processing) or even in
memory (processing-in-memory). There has been extensive research
in improving application performance and reducing energy con-
sumption using compute-capable memory [1-4, 11-13, 15-17, 21-
23, 25-33, 37-39, 45-47], but to the best of our knowledge, no one
has looked into how compute-capable memory may impact the
security of memory-hard cryptographic functions.

In this preliminary work, we investigate the impact of near-
data-processing (NDP) on scrypt [34, 35], a widely used maximally
memory-hard password-based key derivation function. We show
that the scrypt algorithm can be accelerated with a simple NDP
architecture and provide realistic evaluations with a cycle-accurate,
full-system NDP architecture framework. We also suggest how
scrypt can be further accelerated with various compute-capable
memory technologies.

2 SCRYPT OVERVIEW

Scrypt is a sequential memory-hard [34] password-based key deriva-
tion function, meaning that the fastest sequential algorithm to solve
the function is memory-hard, and it is impossible for a parellel al-
gorithm to asymptotically achieve a significantly lower cost. The
algorithm was first proposed in 2009 [34] and was published as RFC
7914 [35] in 2016.

Algorithm 1 shows the scrypt algorithm as described in [34,
35]. Lines 1-4 give the high-level flow of scrypt. Inputs P and S
are password and salt phrases, respectively, and dkLen is the de-
sired key length. The password and salt are first passed through
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Algorithm 1 scrypt algorithm

1: function ScryprT(P, S, p, N, r,dkLen)
2: (BOHBIH-“”BP—I) «— PBKDF2514256(P, S, 1, 128rp)
3 fori=0top—1do
4: B; <« SM1x,(Bj, N)
return PBKDF2g 7 4256 (P, Bo||B1]| ...||BP_1, 1,dkLen)
5. function SMix,(B, N)
6 X« B
7: fori=0toN —1do
8 Vie— X
9 X BLOCKMIXSalsaZO/S,r(X)

10: fori=0toN —1do

11 j < INTEGERIFY(X) mod N
12: X « BLOCKMIXg4/5420/8,r (X © Vj)
return X
13: function BLoCKMIXg4/5420/8, r(Bol|B1ll...||B2r-1)
14: » each B; must be 64-bytes (enforced by Salsa20/8 definition)
15: X « Bzrfl
16: fori=0to2r—-1do
17: X « SALsa20/8(X @ B;)
18:

Yi « X
return Yo|Yzl|...||Y2r—2|[Y1][Y3]]...|| Y2r—1

PBKDF25p 4256 to generate a 128rp-byte string. The generated
string is divided into p equal-length blocks, and the SMix func-
tion is called on each of them. The results from the SMix function
are concatenated back together to be used as the salt in a final
PBKDF 25y 4256 call, which takes the original password and new salt
to generate a final dkLen-byte output key.

p, N, and r are scrypt-specific parameters. p determines the
number of times SMix is called in scrypt (lines 3-4). It is referred to
as the parallelization parameter, for the p SMix calls are independent
of one another and can be computed in parallel. N is a cost parameter
passed to the SMix function; it controls the CPU and memory usage
of scrypt by requiring the SMix function to compute, store, and
pseudorandomly access N different BlockMix hashes (lines 5-12).
r is the block size parameter that determines the size of a block that
the BlockMix function operates on (lines 13-14).

The SMix function is central to the scrypt algorithm and makes
up the memory-hard component of scrypt. The scrypt RFC [35]
recommends the block size parameter to be r = 8. With this param-
eter, the initial input block to SMix is only 1kB in size and can easily
fit in cache. However, the SMix function expands this 1kB block
into an array of N blocks, and the blocks are iteratively accessed
in a pseudorandom order, based on the contents of the previously-
accessed block. Assuming a sufficiently large N, the SMix function
is bound by memory access and makes up the non-trivial cost of
running scrypt.

IPBKDF?2 iteratively applies a designated pseudorandom function on the password and
salt a specified number of times to generate a cryptographic key. In scrypt, SHA256
is used as the pseudorandom function and is iterated only once. SHA256 is easy to
compute and is not memory-hard.
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Figure 1: Generic near-data-processing architecture. Our in-
vestigations of scrypt with NDP are based on this generic
architecture.

3 SCRYPT ACCELERATED WITH
NEAR-DATA-PROCESSING

Asapreliminary investigation into scrypt’s vulnerability to compute-
capable memory, we implement and evaluate the scrypt algorithm
on a generic near-data-processing architecture.

3.1 Generic NDP Architecture

Figure 1 describes the generic NDP architecture that our work is
based on. NDP architectures are implemented via 3D die-stacked
memory, in which a logic die is stacked together with multiple
DRAM dies. The memory is divided into vertical sections, referred
to as NDP vaults, and each NDP vault has a tightly coupled compute
unit, referred to as the NDP core, placed in the stacked logic die. The
NDP core’s low-latency memory access is enabled by its physical
proximity to the NDP vault and the high-performance through-
silicon via (TSV) interconnect. NDP cores are generally assumed
to have minimal functionality with exclusive access to data in its
coupled NDP vault. Data-intensive parts of computation can be
offloaded to the NDP cores to exploit the low-latency memory
access.

We assume that the NDP core is a simple, lightweight processor
without cache. Instead, each NDP core is equipped with a small
scratchpad memory to which data in the NDP vault can be read
in via DMA. The scratchpad memory also stores the NDP core’s
program memory, and a reserved portion of the scratchpad memory
is memory-mapped into host address space for the NDP core’s
communication with host processors.

3.2 NDP-Aware scrypt Implementation

As described in Section 2, SMix makes up the memory-hard com-
ponent of scrypt, and therefore we offload it to the NDP core.
PBKDF 25 4256 computations are not memory-hard and are run on
the host processor.

An SMix call runs entirely on a single NDP core-vault pair. The
host processor communicates the 128r-byte input block B and pa-
rameters r and N for SMix through the memory-mapped portion of
the NDP core’s scratchpad memory. The output of SMix is also com-
municated back to the host via the memory-mapped region. The
128rN-byte array V generated in SMix (lines 7-9 of Algorithm 1)
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Figure 2: The host-NDP interaction and data placement for
the SMix function in the NDP-aware scrypt implementation.

Table 1: Evaluation framework details.

Host Configuration
processor | 8 in-order processors (ARMv7 Cortex-A15)

L1 cache | 32kB icache, 64kB dcache, private, 2-way set-associative
0.8 ns dcache access latency, 256B/block
L2 cache 2MB, shared, 8-way set associative

1.8ns access latency, 256B/block
memory | 2GB

NDP configuration

NDP core | 1in-order processor/vault (ARMv7 Cortex-A15)
scratchpad | 40kB/NDP core, stores program memory

memory | 8kB reserved for memory-map
DMA capability between scratchpad and NDP vault
NDP vault | 128MB/vault

is stored in the NDP vault. However, the pseudorandomly chosen
128r-byte block V; (lines 11-12) is always read into the scratchpad
memory prior to the bitwise-xor operation in line 12. Figure 2 de-
scribes the host-NDP interaction and the data placement for the
SMix function in the NDP-aware scrypt implementation.
Reading the random blocks into scratchpad memory is necessary
in order to reduce redundant DRAM activity that causes delays
and power consumption that cannot be reduced by NDP, as was
identified in [15]. Because the NDP core is simple and does not
have any sophisticated functionality, the bitwise-xor is expected to
be executed as a sequence of simple xor instructions that operate
on word-length data. Since the NDP core also does not have cache,
every one of these xor instructions would incur DRAM operations
to access the small portion of the block being xor-ed. Reading a
word-length portion of interest from V; in memory goes through
the following process: the DRAM row containing the portion is
activated, the corresponding columns are selected, and then the
bits are transferred to the NDP core. Each of these steps with non-
negligible delays would all be repeated for every word in Vj, even
though the DRAM row contains several contiguous words of V;.
Therefore, the entire block V; must be read into scratchpad memory
using DMA in order to eliminate redundant DRAM row activations.

4 EVALUATION

Our evaluations are made on Brown-SMCSim?, a gem5 [8]-based
cycle-accurate, full-system NDP architecture simulator with real

2QOriginally SMCSim [6], extensively modified to conform to the NDP architecture
design described in 3.1. Brown-SMCSim had been used for evaluations in [15].
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hardware constraints. Table 1 summarizes the details of the evalua-
tion framework.

We referred to code in the scrypt git repository [40] to imple-
ment the scrypt algorithm on Brown-SMCSim. Our host-based
and NDP-based scrypt implementations and the Brown-SMCSim
framework are available as open-source at https://github.com/jiwon-
choe/Brown-SMCSim/tree/scrypt.

We compare the total execution time of scrypt with the SMix
function executed on the host processor and on the NDP core. We
varied the scrypt parameters for these measurements — Table 2
shows the execution times with varying values of N; table 3 shows
the execution times with varying values of r. For all experiements,
p was set to 1, and the desired key length was set to 64 bytes. We
used the password and salt “pleaseletmein” and “SodiumChloride”
that were used to generate some of the test vectors provided in the
RFC [35].

Table 2: Scrypt execution times on host and NDP with vary-
ing values of N (r = 8,p = 1).

execution time (seconds)
host NDP
N = 16384 || 2.223813 | 1.507814
N =32768 || 4.455462 | 3.014112
N = 65536 || 8.910643 | 6.026549

Table 3: Scrypt execution times on host and NDP with vary-
ing values of r (N = 16384, p = 1).

execution time (seconds)

host NDP
r=328 2.223813 | 1.507814
r =16 || 4.434392 | 3.002565
r =32 || 8.848431 | 5.986616

From the evaluation, we see that offloading the SMix function
to the NDP core yields a 1.5x speedup in scrypt execution time,
regardless of the N and r values. Note that this speedup would not
be affected much by varying p either, for an increased p would only
require more NDP core-vault pairs to run in parallel.

5 OPEN PROBLEMS & DISCUSSION

Parts of the scrypt algorithm have the potential to be further accel-
erated with compute-capable memory. For example, the Salsa20/8
stream cipher [7] used in BlockMix (line 17 of Algorithm 1) is sim-
ply bitwise add-rotate-xor operations repeated over several rounds
on a 64-byte block, and the BlockMix function output is just a
reordering of the 64-byte output blocks from Salsa2@/8. These
functions have the potential to be accelerated with specialized near-
memory accelerators or even with processing-in-memory (PIM). In
fact, computing bitwise operations in memory has been frequently
explored in PIM research [1, 16, 21, 30, 39], but extending the prior
PIM work to accelerate scrypt computation is still an open prob-
lem.

Scrypt is only one of many memory-hard cryptographic hash
functions. Argon2 [9], Catena [20], Lyra2 [5], and yescrypt [36]
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are all memory-hard password hashing algorithms that received
recognition in the Password Hashing Competition>. In particular,
Argon2 was the winner of this competition, and its implementations
using compute-capable memory would be interesting to look into.
More recently, memory-hard algorithms are being explored not
only as password hashing algorithms, but also as proof-of-work
(PoW) puzzles for blockchain mining. Ethash [19] (used in Ethereum
[42]), Equihash [10] (used in Zcash [24]), and Cuckoo Cycle [41]
(used in Cortex [14]) are some examples of memory-hard algorithms
being used as Blockchain PoW puzzles. Building accelerators for
these memory-hard PoW puzzles can undermine the tamper-proof
quality of blockchains, making this an interesting area of future
work. Wu et al. [43] have proposed a memory architecture-aware
accelerator design for Ethash, but further work remains in applying
compute-capable memory to accelerate memory-hard puzzles.

6 CONCLUSION

Our results show that even the simplest NDP hardware can yield a
stable 1.5x speedup in evaluating the scrypt function. Although
the 1.5x speedup may not be a great threat to the security of scrypt,
we pose an important research question: how much can scrypt
be accelerated with compute-capable memory, and at what point
would scrypt be considered insecure?
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