Int J Parallel Prog (2018) 46:1304-1328 @ CrossMark
https://doi.org/10.1007/s10766-018-0569-7

Hardware Transactional Memory Exploration in
Coherence-Free Many-Core Architectures

Dimitra Papagiannopoulou! - Andrea Marongiu?3 - Tali Moreshet* -
Luca Benini?3 - Maurice Herlihy! - R. Iris Bahar!

Received: 5 May 2015 / Accepted: 1 April 2018 / Published online: 4 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract High-end embedded systems, like their general-purpose counterparts, are
turning to many-core cluster-based shared-memory architectures that provide a shared
memory abstraction subject to non-uniform memory access costs. In order to keep the
cores and memory hierarchy simple, many-core embedded systems tend to employ
simple, scratchpad-like memories, rather than hardware managed caches that require
some form of cache coherence management. These “coherence-free” systems still

This work is supported in part by the United States National Science Foundation under Grants
CNS-1319495, CNS-1319095, and CNS-1301924. Additional support was provided by European Union
projects FP7 P-SOCRATES (g.a. 611016) and ERC MULTITHERMAN (g.a. 291125). A preliminary
version of this work appeared in [20].

B R. Iris Bahar
iris_bahar@brown.edu

Dimitra Papagiannopoulou
dimitra_papagiannopoulou @alumni.brown.edu

Andrea Marongiu
a.marongiu@iis.ee.ethz.ch; a.marongiu@unibo.it

Tali Moreshet
talim@bu.edu

Luca Benini
Ibenini @iis.ee.ethz.ch; luca.benini @unibo.it

Maurice Herlihy
mph@cs.brown.edu

I Brown University, Providence, R1 02912, USA

2 ETH Zurich, 8092 Zurich, Switzerland

3 DEI— University of Bologna, 40136 Bologna, Italy
4 Boston University, Boston, MA 02215, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0569-7&domain=pdf

Int J Parallel Prog (2018) 46:1304—-1328 1305

require some means to synchronize memory accesses and guarantee memory con-
sistency. Conventional lock-based approaches may be employed to accomplish the
synchronization, but may lead to both usability and performance issues. Instead,
speculative synchronization, such as hardware transactional memory, may be a more
attractive approach. However, hardware speculative techniques traditionally rely on
the underlying cache-coherence protocol to synchronize memory accesses among the
cores. The lack of a cache-coherence protocol adds new challenges in the design of
hardware speculative support. In this article, we present a new scheme for hardware
transactional memory (HTM) support within a cluster-based, many-core embedded
system that lacks an underlying cache-coherence protocol. We propose two alternative
data versioning implementations for the HTM support, Full-Mirroring and Distributed
Logging and we conduct a performance comparison between them. To the best of our
knowledge, these are the first designs for speculative synchronization for this type of
architecture. Through a set of benchmark experiments using our simulation platform,
we show that our designs can achieve significant performance improvements over
traditional lock-based schemes.

Keywords Transactional memory - Embedded systems - Parallel processing -
Coherence-free memory architectures

1 Introduction

High-end embedded systems, like their general-purpose counterparts, are turning to
many-core cluster-based shared-memory architectures that are subject to non-uniform
memory access (NUMA) costs. Memory organization is the single, most far-reaching
design decision for such architectures, both in terms of raw performance, and (more
importantly) in terms of programmer productivity.

For many-core embedded systems, in order to meet stringent area and power con-
straints, the cores and memory hierarchy must be kept simple. In particular, scratchpad
memories (SPM) are typically preferred to hardware-managed data caches, which are
far more area- (40%) and power-hungry (34%) [1]. Several many-core embedded sys-
tems have been designed without the use of caches and cache-coherence (the Epiphany
IV Processor from Adapteva [1] and ST Microelectronics p2012/STHORM [13] are
two examples). These kind of platforms are becoming increasingly common.

Shared-memory multi-core and many-core systems require a way to synchronize
memory accesses and guarantee memory consistency. The conventional approach to
shared-memory synchronization is to use locks, but locks suffer from well-known
performance and usability limitations. Speculative approaches such as Transactional
Memory [7] and Speculative Lock Elision [21] are attractive alternatives to locking,
improving both performance and energy consumption. We are interested here in spec-
ulative synchronization mechanisms supported by hardware. In particular, we focus
on Hardware Transactional Memory (HTM).

As embedded systems move to many-core and cluster-based architectures, the
design of high-performance, energy-efficient synchronization mechanisms becomes
more and more important. Yet, speculative synchronization for such embedded sys-

@ Springer

1306 Int J Parallel Prog (2018) 46:1304—-1328

tems has received little attention. Moreover, implementing speculative synchronization
in embedded systems that lack cache-coherence support is particularly challenging,
since hardware speculative techniques traditionally rely on the underlying cache-
coherence protocol to synchronize memory accesses among the cores. For these
cacheless systems, a completely new approach is necessary for handling speculative
synchronization. Therefore, the goal of our work is to present the first ever imple-
mentation of hardware transactional memory (HTM) support within a cluster-based
system that lacks an underlying cache-coherence protocol. As we shall describe later,
this implementation requires explicit data management and implies a fully-custom
design of the transactional memory support.
Speculation for embedded devices raises two challenges:

— How to keep the underlying hardware and software interfaces simple enough to
use.

— How to scale to cluster-based architectures that do not provide cache coherence,
but do provide memory hierarchies encompassing scratchpad memories (SPM),
which can be thought of as software-maintained caches.

The lack of cache-coherence brings major challenges in the design of HTM support,
which needs to be designed from scratch. At the same time though, the lack of cache
coherence provides a significant benefit: A more lightweight and simple environment
to build upon, that could be more appropriate for the embedded systems domain.
Building on such an environment, we create a novel hardware transactional memory
design that is self-contained, and does not rely on an underlying cache coherence
protocol to provide synchronization and safety guarantees.

To sum up, the main contributions of this work are the following:

1. We design from scratch a Hardware Transactional Memory (HTM) scheme within
acluster-based, many-core embedded architecture, that does not rely on an underly-
ing cache coherence protocol to manage read/write memory conflicts. We propose
novel hardware support to keep track of read/write memory accesses and guaran-
tee execution correctness. To the best of our knowledge, this is the first design for
speculative synchronization in this type of architecture.

2. We provide full speculative synchronization support for multiple transactions
accessing data within a single cluster. While our current implementation is limited
to single-cluster accesses, our proposed scheme is designed such that it is scalable
and can be extended to multiple clusters. We introduce the idea of distributing the
synchronization management, which makes it inherently scalable.

3. We provide two alternative implementations of the Transactional Memory scheme,
proposing a Full-Mirroring and a Distributed Logging scheme for data versioning
management. We perform an overhead analysis of the proposed designs and a
performance comparison based on simulations.

4. We investigate how our proposed HTM support scheme can improve the perfor-
mance of multi-threaded applications on a simulation platform for a coherence-
free, many-core embedded system. Through a set of simulations on data structure
applications, benchmarks from the STAMP benchmark suite [15] and on the
Eigenbench application [8], we show that our scheme can achieve significant per-
formance improvements over traditional lock-based schemes.

@ Springer

Int J Parallel Prog (2018) 46:1304—-1328 1307

The rest of this article is organized as follows. In Sect. 2 we provide background
on shared memory synchronization techniques, including speculative techniques
designed on top of cluster-based architectures. In Sect. 3, we describe our under-
lying simulation platform used to model a cluster-based embedded architecture with
no cache coherence. Next, we describe in Sect. 4 our proposed hardware implemen-
tation that supports hardware transactional memory within our simulation platform.
Simulation results showing the viability and potential benefits of our proposed scheme
are reported in Sect. 5, followed by conclusions in Sect. 6.

2 Background

As the demand for more compute-intensive capabilities for embedded systems
increases, multi-core embedded systems are evolving into many-core systems in order
to achieve improved performance and energy efficiency, similar to what has happened
in the high-performance computing (HPC) domain. The memory is then shared across
these multiple cores; however, the specific memory organization of these many-core
systems has a significant impact on their potential performance. For small-scale sys-
tems, shared-bus architectures are attractive for their simplicity, but they do not scale.
For large-scale systems, architects have embraced hierarchical structures, where pro-
cessing elements are grouped into clusters, interconnected by a scalable medium such
as a network-on-chip (NoC). In such systems [11, 17], cores within a cluster communi-
cate efficiently through common on-chip memory structures, while cores in different
clusters communicate less efficiently through bandwidth-limited higher-latency links.
Architectures that provide the programmer with a shared-memory abstraction, but
where memory references across clusters are significantly slower than references
within the clusters, are commonly referred to as non-uniform memory access (NUMA)
architectures.

With a shared memory structure, multiple cores may try to modify the same block
of memory. Therefore, it is important to employ some means to guarantee memory
consistency. Locks are typically used to guarantee memory consistency in shared mem-
ory systems. Locks, however, can slow performance and consume excessive energy,
as they typically require energy-expensive read-modify-write operations that traverse
the memory hierarchy. In addition, locks must be deployed conservatively when-
ever conflicts are possible, even if they are very unlikely. By contrast, speculative
synchronization mechanisms detect conflicts dynamically, rolling back and retrying
computations when conflicts actually occur, instead of delaying computations that
might encounter them. Speculative synchronization mechanisms have been the sub-
ject of much prior work, but such work has tended to focus on throughput and ease
of use. While we share these goals, we feel that embedded systems demand an equal
focus on architectural simplicity and scalability.

Transactional memory [7,16], Lock Elision [21], and Transactional Lock Removal
(TLR) [22] are hardware speculation techniques that allow critical sections without
run-time conflicts to execute in parallel. If a data conflict does take place, it is detected,
and one or more of the conflicting threads is rolled back and restarted.

@ Springer

1308 Int J Parallel Prog (2018) 46:1304—-1328

When designing speculative synchronization mechanisms for embedded devices,
it is essential to keep both the underlying hardware and the software interface simple
and scalable. Prior transactional memory proposals restrict speculative computations
to the L1 (or sometimes L.2) caches, relying on native cache-coherence protocols to
detect conflicts. Some prior proposals for speculative synchronization in embedded
devices considered only shared-bus single-cluster architectures [5, 18]. While popular
for their simplicity, such bus-based architectures are inherently not scalable, because
the bus becomes overloaded when shared by more than a handful of processors. As
a result, it is necessary to rethink the design of speculative mechanisms for scalable,
cluster-based embedded systems where inter-cluster communication is restricted.

Recently, Intel [10] and IBM [2] announced new processors with direct hardware
support for speculative transactions, and it seems likely that others will follow suit.
The IBM transactional memory mechanism, like ours, is intended for a clustered
architecture.

Prior designs for hardware transactional memory based on network-on-chip (NoC)
communication include Kunz et. al [12], who describe a LogTM [16] implementation
on a NoC architecture, and Meunier and Petrot [14], who describe a novel embed-
ded HTM implementation based on a write-through cache coherence policy. Like us,
these researchers propose speculation mechanisms for many-core embedded NoC sys-
tems, but unlike us, they build on top of an underlying cache coherence protocol. We
eschew such an approach from the belief that cache coherence will become more and
more unwieldy as cluster sizes grow, so we think it is time to consider speculative
synchronization mechanisms that do not rest on inherently unscalable foundations.

3 Target Architecture

Our work is based on a virtual platform environment called VSoC, which simulates a
cluster-based many-core architecture at a cycle-accurate level [3]. Like recent many-
core chips such as Kalray MPPA256 [11], ST Microelectronics p2012/STHORM [13],
and even GPGPUs such as NVIDIA Fermi [17], the VSoC platform encompasses
multiple computing clusters, and is highly modular. These systems achieve scalabil-
ity through a hierarchical design. Simple processing elements (PE) are grouped into
small-to-medium sized subsystems (clusters) sharing a high-performance local inter-
connect and memory. In turn, clusters are replicated and interconnected with a scalable
network-on-chip (NoC) medium, as depicted in Fig. 1.

Figure 2 shows the basic cluster architecture. Each cluster consists of a configurable
number, N, of 32-bit ARMv6 RISC processors,1 one L1 private instruction cache for
each of the N processors, and a shared multi-ported and multi-banked tightly coupled
data memory (TCDM). Note that the TCDM is not a cache, but a first level Scratchpad
Memory (SPM) structure. As such, it is not managed by hardware but with software
and it lacks cache coherence support. The TCDM is partitioned into M banks, where
all banks have the same memory capacity. For the ARMv6 processor models we use

! The original simulator was designed with ARMv6 processors. Using a later version would not change
our expected observations.

@ Springer

Int J Parallel Prog (2018) 46:1304—-1328 1309

Fig. 1 Hierarchical design of
our cluster-based embedded
system

the Instruction Set Simulator in [6] wrapped in a SystemC module. A logarithmic
interconnect supports communication between the processors and the TCDM banks.
The TCDM can handle simultaneous requests from each processor in the cluster. If all
requests are to different banks, those requests are serviced simultaneously. Otherwise
requests to the same bank are serialized. An off-chip Main Memory is also available.
Note that this is not part of the cluster, but each cluster’s cores can access it through
an off-cluster Main Memory bus (see Fig. 2).

The logarithmic interconnect is a mesh-of-trees (Fig. 3) and provides fine-grained
address interleaving on the memory banks to reduce banking conflicts. The latency of
traversing the interconnect is normally one clock cycle. If multiple processor cores are
requesting data that reside within different TCDM banks, then the data routing is done
in parallel. This allows the cluster to maintain full bandwidth for the communication
between the processors and the memories. In addition, when multiple processors are
reading the same data address simultaneously, the network can broadcast the requested
data to all readers within a single cycle.

However, if multiple processor cores are requesting different data that reside within
the same TCDM bank, conflicting requests will occur, which will trigger a round-robin
scheduler to arbitrate access for fairness. In this case, additional cycles will be needed
to service all data requests. Specifically, the conflicting requests will be serialized, but
with no additional latency between consecutive requests. In order to reduce banking
conflicts, the number of banks M should be an integral multiple of the number of cores
N. In our case, we chose M to be equal to the maximum number of cores that the
cluster can accommodate, that is 16.

Regardless of whether the processors within the cluster requested conflicting
requests or not, when a memory access request arrives at a bank interface, the data
is available on the negative edge of the same clock cycle. Hence the latency for a
TCDM access that has not experienced conflicts is two clock cycles [3]: one cycle for
traversing the interconnect in each direction.

A stage of demultiplexers between the logarithmic interconnect and the cores selects
whether the memory access requests coming from the processors are for the main mem-
ory or for the TCDM. Accesses to memory external to a cluster go through a peripheral

@ Springer

1310 Int J Parallel Prog (2018) 46:1304—-1328

B B .

PEO PE 1 PE N-1

MASTER PORT MASTER PORT MASTER PORT

Seealie -

LOGARITHMIC INTERCONNECT (MoT)

| | 1
SLAVE SLAVE SLAVE SLAVE
PORT PORT PORT PORT

SHARED Level 1 Memory (TCDM)

7
2
@
z
=]
£
]
=
c
‘T
2

PERIPHERAL INTERCONNECT

Fig. 2 Single cluster architecture of target platform

EEO® -

LEV 1
P
(@)
C
[
>
LEV 2 @
o
(0]
LEV 3
IS NN IS\ INGLAN
>
LEV1 o
LEV 2 §
| 1 | 1 1 | 1 1
Mem mMB{|mB|{™MB || MB || MB || MB || MB || MB
banks 0 1 2 3 4 5 6 7

Fig. 3 A 4 x 8 Mesh of Trees. Circles represent routing and arbitration switches. Taken from [3]

interconnection. The off-cluster (main memory) bus coordinates the accesses and ser-
vices requests in round-robin fashion.

The basic mechanism for processors to synchronize is standard read/write opera-
tions to a dedicated memory space, which provides fest-and-set semantics (a single
atomic operation returns the content of the target memory location and updates it). We
use this memory for locking, the baseline against which we compare our transactional
memory design.

Note that cores within the cluster do not have private data caches or memories
(just private per-core instruction caches). Instead, all data accesses go through the
TCDM. The absence of coherent data caches implies a completely custom design of the

@ Springer

Int J Parallel Prog (2018) 46:1304—-1328 1311

transactional memory support. Indeed, speculative synchronization through hardware
transactional memory generally relies on the underlying cache coherency protocol to
manage conflict detection. Instead, we will have to employ a different mechanism to
achieve this. This mechanism will be explained in more detail in Sect. 4.

4 Implementation

Designing a hardware transactional memory system for the cluster-based VSoC system
presents novel challenges. Prior HTM proposals relied on the cache hierarchy to buffer
intermediate results, and on a native, bus-based cache-coherence protocol for conflict
detection. Neither of these options are available on VSoC, so we must rethink the
HTM design from scratch.

Instead of buffering tentative updates in an L1 cache like prior designs, we chose
to integrate the HTM mechanism with the TCDM memory, implying that the TCDM
memory holds both speculative and non-speculative data. In prior designs for small-
scale embedded devices [4], a centralized unit would snoop on bus transactions, detect
data conflicts, and resolve them (i.e., decide which of the conflicting transactions
should be aborted). Monitoring all ongoing traffic in a shared bus environment is
fairly easy, since only one transaction can traverse the shared bus medium at each cycle.
However, in the VSoC system, the logical interconnect permits multiple transactions
to traverse the interconnect in the same cycle. Since interconnect access is concurrent,
not serial, snooping on the cluster interconnect is not feasible. Serializing and routing
transactional memory traffic through a centralized module would create a substantial
sequential bottleneck and drastically limit scalability.

For these reasons, we concluded that transactional management must be distributed
to be scalable. Thus, we divide conflict detection and resolution responsibilities across
the TCDM memory banks, into multiple Transaction Support Modules (TSM). By
placing a transactional support module at each bank of the TCDM, we allow conflict
detection and resolution mechanisms to be decentralized. In this way, transactional
management bandwidth should scale naturally with the number of banks. Our design
consists of three parts, Transactional Bookkeeping, Data Versioning and Control Flow.
We will describe each of these in more detail next.

4.1 Transactional Bookkeeping

Each bank’s TSM intercepts all memory traffic to that bank and is aware of which cores
are executing transactions. When a TSM detects a conflict, it decides which transaction
to abort, and notifies the appropriate processor. This transactional bookkeeping keeps
track of transactional readers and writers. For each data line, there can be multiple
transactions reading that line, or a single transaction writing it, which we call the line’s
owner. Each bank keeps track of which processors have transactionally accessed each
data line through a per-bank array of k r-bit vectors, where k is the number of data
lines at that bank, and r = 1 + N + logao N, where N is the number of cores in the
cluster. The first bit indicates whether the line has been written transactionally, and if
so, the next logy N bits identify the owner. The next N bits indicate which processors

@ Springer

1312 Int J Parallel Prog (2018) 46:1304—-1328

Address A
Owner Bit Writer ID Readers (1 bit per core)
Timetl: o 0000 0000000000000000
Time t2: | o 0000 0010000110000010
Time t3:
1101 0010000110000010

Bit #: 20 19 18 17 16 15 14 13 12 11 10 9 87 6 5 4 3 2 1 0

Fig.4 Bookkeeping example. At time t1 address location A had not been read or written. By time t2, cores
1,7, 8, and 13 have read the address. At time 3 core 13 writes the address and generates a conflict. So, core
13 will be aborted and its read flag will be cleared. Since core 13 was also the writer of address location A,
the Writer ID bits and the Owner bit will be cleared as well

are transactionally reading that line. For example, for N = 16 cores, a 21-bit vector is
needed, as shown in Fig. 4. The transactional support mechanism is integrated within
each bank of the TCDM memory.

When a transaction accesses a bank, the bank’s TSM checks the corresponding
vector to determine whether there is a conflict. A transactional write to a memory
location that is currently being read by another core will trigger a conflict (and vice
versa). A transactional read to a memory location concurrently being read by other
cores does not trigger a conflict.

4.2 Data Versioning

Any transactional memory design must manage Data Versioning, keeping track of
speculative and non-speculative versions of data. Previous designs relied on data
caches to buffer speculative data changes. Each core would keep track of its modifica-
tions using either a dedicated transactional cache or its private L1 cache. However, our
target architecture does not have private L1 data caches, but a single shared TCDM
memory structure that is distributed in multiple banks. Hence, we must rethink how
speculative data should be saved. Using the main memory to buffer transactional data
would not be a good choice, since that would require multiple off-cluster main memory
accesses and could cause substantial delays. Thus, transactional data must be saved
in on-cluster memory. Another option would be to add dedicated per-core memory
structures on the cluster to store speculative data. However, since cores can access
data located in different TCDM banks, redirecting and buffering these data to dedi-
cated per-core structures could create a substantial bottleneck. Instead, we opt to store
speculative data directly in the TCDM. Since the non-speculative data is distributed
between the banks, we similarly distribute the speculative data.

Like conflict detection and resolution, data versioning can be eager or lazy. Lazy
versioning leaves the old data in place and buffers speculative updates in different
locations, while eager versioning makes speculative updates in place and stores back-

@ Springer

Int J Parallel Prog (2018) 46:1304—-1328 1313

up copies of the old data elsewhere. Keeping the original data in place makes the abort
scenario very fast, but it delays commits, since extra time is necessary to write the
speculative data back to memory during commits. Eager data versioning on the other
hand, makes commits faster but increases the abort recovery time, since the original
data need to be fetched back to memory. For applications with low contention, hence
low abort rates, eager data versioning is more attractive. However, care must be taken
to make sure that the abort recovery time does not become a major bottleneck, even
with lower abort rates.

We chose to use eager versioning for our design. Existing eager versioning designs
such as LogTM [16], store original values in a software log that has a stack struc-
ture. In LogTM, a per-thread transaction log is created in cacheable virtual memory,
which holds original data values and their virtual addresses, for all data modified by
a transaction. In our platform, keeping per-thread transaction logs would have some
significant drawbacks. First, the transaction log could reside anywhere in the mem-
ory, across multiple banks. This would imply that during every transactional memory
access, the log would first need to be located and then traversed in order to find out
whether the memory location has been accessed by that transaction. Moreover, the
abort process would require traversing the log once more and restoring data back to
their original locations, which would create data exchanges across different banks
through the interconnect and hence significant delays. For these reasons, we propose
two alternative data versioning designs that avoid this costly cross-bank data exchange:
a Full-Mirroring and a Distributed Logging design. Both designs utilize the local per-
bank TSMs for performing the transactional data saving and restoration processes.
Next, we describe each of these designs in detail.

4.2.1 Full-Mirroring

This design is based on the idea that, for every address in the memory space, we create
a mirror address in the same TCDM bank that holds the original data, to be recovered
in case of abort. In this way, the restore process does not involve any exchange of data
between different banks. Instead, the data saving and restoring process is triggered
internally by the TSM of each bank, and it is completed by simply performing an
internal bank check in the mirroring address without requiring interaction with other
banks’ TSMs. Although this solution consumes more space than keeping a dedicated
per-transaction log, it yields a very simple and fast design.

When a transaction first writes an address, the TSM sends a request to the log space
to record that address’s original data. As shown in Fig. 5, the log space is designed
so that each address’s mirrored address is in the same bank. When a log needs to be
saved, the TSM will trigger a write to the corresponding mirroring address in the bank.
Note that only the first time that an address is written within a specific transaction, we
need to log its original value. Hence, we pay the cost of writing to the log space only
once for each address that is written during a transaction. If a transaction aborts, the
data it overwrote is restored from the log.

Because each address and its mirror reside at the same bank, the latency overhead
of recording the address’s original value and restoring it on a transaction abort is quite
modest (two extra cycles). No additional cost will be paid to search for the location

@ Springer

1314 Int J Parallel Prog (2018) 46:1304—-1328

PE 0 PE 1 PE N-1

MASTER PORT MASTER PORT MASTER PORT

g
3 z
@ 2 1 1
z 8
MAIN E [LOGARITHMIC INTERCONNECT (MoT)
MEMORY g £
< 2 | | | |
£ I
& 4 1 I I [
= i SLAVE SLAVE SLAVE SLAVE
a PORT PORT PORT PORT
=
& DATA DATA DATA
g BANK 0 BANK 1 g BANK M-1
106 9 106 Lo6
BANKO BANK1 BANK M-1
SHARED Level 1 Memory (TCDM)

Fig. 5 Modified single cluster architecture

where the address is logged, since each address’s mirror lies at a certain location that
can be found by a simple calculation and does not require traversing a log. Moreover,
the use of an eager versioning scheme makes commits fast, since no data need to be
moved. Thus, while full-mirroring has a significant area overhead (i.e., we need to
utilize half of the TCDM memory to accommodate the log space), it has an advantage
when it comes to simplicity. However, the fact that it uses memory less efficiently may
require extra delay overhead to move data to/from the TCDM. In Sect. 5.1 we perform a
detailed overhead comparison of full-mirroring with the alternative distributed logging
scheme in terms of space and time.

4.2.2 Distributed Logging

As just noted in the previous section, half of the available on-chip TCDM must be
reserved for the mirror in our full-mirroring scheme, yet the amount of this memory
space that will actually be used to save log data depends on the write footprint of
the transactions and these typically cover only a small subset of the available mem-
ory space. Our second proposed data versioning design, Distributed Logging, offers
a solution to the space inefficiency of the Full-Mirroring design, by using distributed
per-address logs instead of mirrors. A preliminary version of this design was pre-
sented in [19], but no details were given on how it can be used for the purposes of
traditional Transactional Memory and no simulation analysis was done on how it
actually compares against the Full-Mirroring design.

Figure 6 depicts how the Distributed Logging design works. In this design, dis-
tributed per-address logs are used to save backups of the original values of data that
are written during transactions, so that they can be recovered in case of aborts. Again,
as in Full-Mirroring the transactional handling and log managing responsibilities
are divided across the TSMs of the banks. Each bank’s TSM monitors transactional
accesses to the bank and manages the cores’ logs that reside in that bank. It is also
responsible for restoring the log data of the cores that abort their transactions and

@ Springer

Int J Parallel Prog (2018) 46:1304-1328

BANK 0 BANK 1 BANK M-1
DATA DATA DATA
________________________ |
(Core’s 0 Log) 0 (Core’s 0 Log) 1 (Core’s 0 Log) M-1 |

(Core’s N-1 Log) 1

Tightly Coupled Data Memory (TCDM)

Fig. 6 Distributed per-address log scheme for M banks and N cores

cleaning the logs of the cores that commit their transactions. Again, all banks’ TSMs
work in parallel and independently of one another.

At every bank of the TCDM, we keep a fixed-size log space for each core in the
system. Each core’s log holds the addresses that belong to that bank and are written
transactionally by that core. In this way, we keep a log space only for the addresses
of the bank that are actually written transactionally and not for all of them as in
Full-Mirroring. At the same time, with this distributed logging design we still avoid
cross-bank data exchange when saving and restoring the log, since each addresses’
log falls within the same bank. Thus the log saving and restoration process is triggered
internally by the TSM of each bank and it does not require interaction with the TSMs
of other banks. This would not be feasible if we used per-thread transaction logs as it
was proposed in [16].

When a core writes transactionally to an address of a bank, its log is traversed to
check whether it already holds an entry for that address. If not, a new log entry is
created to store the original data of the address. Note that the data only need to be
logged the first time the address is written within a specific transaction. Therefore, the
log size depends on the write footprint of each transaction. Since the log of each core
is distributed among all the TCDM banks, we expect that the log writes will also be
divided among the banks. The size of each core’s log space per bank is a parameter in
our design, so it can be easily adjusted to the needs of different applications domains.
In case of an overflow, our technique resorts to software-managed logging into the
main L2 memory. The capability of tuning the log size is intuitively key to reducing
the number of overflows. If a conflict is detected and a transaction must abort, each
bank’s log is traversed to restore the original data back to its proper address. If a
transaction commits, the logs associated with that transaction are all discarded and
the speculative data now becomes non-speculative. In Sect. 5.1, we further detail the
overhead analysis of each of our proposed data versioning schemes in terms of space
and time.

@ Springer

1316 Int J Parallel Prog (2018) 46:1304—-1328

Transactional?

Proceed as Yes No
usual Read?

Found
Conflict

No
Conflict

check_conflict()

Log Data?

No
Conflict

Found
Conflict

Read Log check_conflict()

- update_flags() resolve_conflict() - update_flags()

- perform read

abort_transaction() - read log

l l

- restore_data()
- clean_flags()

- write log

Fig. 7 Transactional control flow

4.3 Transaction Control Flow

Next, we describe the transaction control flow. Before a transaction starts, it reads a
special memory-mapped transactional base register. When this request reaches the
memory, the bit corresponding to the core that made the request is set internally, to
indicate that this processor is executing a transaction. When the transaction starts, its
core saves its internal state (program counter, stack pointer and other internal reg-
isters), to be able to roll back if the transaction aborts. All transactionally executed
memory accesses are marked with a special transactional bit set when the memory
accesses are issued to the system. When a transaction ends, it triggers another access to
a memory-mapped fransactional commit register, which activates a special process at
the memory bank level that cleans all the transactional flags and saved logs associated
with that core’s transactional accesses. Note that the access to these special transac-
tional registers is a read access, hence it is non-blocking, meaning that multiple cores
may access those registers simultaneously without serialization. These special regis-
ters do not impose the serialization and contention costs associated with traditional
semaphores.

Figure 7 depicts the transactional memory control flow. Each TSM has a process
that, in each cycle, checks whether the request received by the corresponding bank
is transactional. If so, and it is a request to read a saved log value, then the process
returns the data from the log.

@ Springer

Int J Parallel Prog (2018) 46:1304—-1328 1317

If the request is a transactional data read but not for the log space, then the function
check_conflict() checks the address’s flag vector to determine whether this request trig-
gers a conflict. If all concurrent transactions are also reading, then there is no conflict,
and the update_flags() function adjusts the location’s read flags before performing the
read.

On the other hand, if some core has written that address, a conflict is triggered. A
resolve_conflict() function decides which of the transactions currently accessing that
address will have to abort. This decision depends on the current conflict resolution
policy. As a starting point, we chose to abort the requester (i.e., the core which issued
the access that triggered the conflict). When the resolve_conflict() function returns,
it calls the abort_transaction() function, which notifies the cores that need to abort.
These cores then restore their internal saved state and respond with an acknowledg-
ment. Control is passed back to the abort_transaction() process that now has to call
the restore_data() and clean_flags() functions. The first function is responsible for
restoring the original saved data from the logs back to their original address locations
and the second function is for cleaning the read/write flags of the aborted core. It
is important to mention that, when an abort occurs in the system, all banks’ TSMs
call restore_data() and clean_flags() simultaneously and the banks stall normal oper-
ation until these functions have been completed, in order to avoid intermediate reads
of invalid data. Once the data restoration process has been completed by all banks’
TSMs, the aborted core’s internal state is restored. Thus, the aborted core is ready to
retry the transaction. This will not happen right away, but after waiting for a random
backoff period, in order to avoid consecutive conflicts with other cores that might
be also retrying their aborted transactions simultaneously. More details on how this
backoff period is implemented follow in Sect. 5.

The control flow for a write is similar, but there is a difference in the conflict
detection criteria: If the memory location is currently being either read or written by
other transactions, then a conflict will be triggered. If no transaction is reading the
location, then the update_flags() function sets the owner flag and the new owner’s ID
for that address. The first time the owner writes, the address’s original data must be
saved to the log.

5 Experimental Results

In this section we evaluate our proposed transactional memory design and compare it
with the use of a conventional locking scheme. Moreover, we evaluate the overhead of
the data versioning schemes we have proposed. To test our design, we chose bench-
marks that required some data synchronization and are representative of real embedded
systems applications. Also, since our simulation platform does not include operating
system support, we eliminated all OS calls within the benchmarks. We start with the
following data structure benchmarks, as well as benchmarks from the STAMP bench-
mark suite. Later in Sect. 5.3 we will report results using the EigenBench exploration
tool.

— Redblack, Skiplist These are applications operating on special data structures.
The workload is composed of a certain number of atomic operations (i.e., inserts,

@ Springer

1318 Int J Parallel Prog (2018) 46:1304—-1328

deletes and lookups) to be performed on these two data structures. Redblack trees
and skip-lists constitute the fundamental blocks of many memory management
schemes found in embedded applications.

— Genome This is a gene sequencing program from the STAMP benchmark suite [15].
A gene is reconstructed by matching DNA segments of a larger gene. The appli-
cation has been parallelized through barriers and large critical sections.

— Vacation This application also comes from the STAMP benchmark suite [15] and
implements a non-distributed travel reservation system. Each thread interacts with
the database via the systems transaction manager. Vacation features large critical
sections.

— Kmeans This is a program from the STAMP benchmark suite [15] that groups
objects into K clusters. It uses barrier-based synchronization and features small
critical sections.

5.1 Overhead Characterization

In this section, we further detail the overhead analysis of our proposed data versioning
scheme in terms of space and time. As we described in Sect. 4.2, the full-mirroring
design requires half of the TCDM memory space to be reserved for the mirroring
addresses, even though not all of them will be actually used. The distributed logging
design on the other hand, employs distributed per-address logs instead of mirrors. We
can fine tune the size of those logs so that it is based on the actual write footprint of the
transactions. As a result, the distributed logging scheme provides a better utilization
of the available memory, since it reserves for the logs only the space necessary by the
transactions, leaving the rest to the application, while full-mirroring reserves half of
the available memory for mirrors that will not be entirely used. For each application
that we ran, we measured the maximum per-core transactional write footprint, ie. the
maximum size of data that is written within a single transaction by a core, when running
our applications with the maximum number of cores that the cluster can accommodate
(16 cores). We report the results in Table 1. In the second column, we see how many
bytes are actually written within a single transaction of a core. In the third column,
we see how many bytes need to be reserved in total for all cores’ transactions, that
is actually the amount of space we need to keep for the logs. We observe that in the
worst case we need 5 KB for all the logs in the system. For a TCDM memory size of
256 KB, that is roughly 2% of the total TCDM memory size, which means that we
can use the remaining 98% of the memory for the actual application data. If we use
full-mirroring, we are able to utilize only 50% of the TCDM memory space for the
application, which is a considerably less space-efficient solution.

The Distributed Logging scheme has its own cost as well. Since we use per-address
logs and not mirrors, the position of each address in the log is not straightforward as
in full-mirroring. As a result, every time that an address is saved in the log, we have to
traverse the log in order to find whether the address already exists in the log and if it is
not there, then add a new entry for that address. In full-mirroring, the location of each
address’s mirror can be computed very simply, by adding to the address the mirrors
offset (ie. the base address of the mirrors). As a result, for full-mirroring, each time

@ Springer

Int J Parallel Prog (2018) 46:1304—-1328 1319

Table 1 Per-core transactional write footprint for each application

Application Per-core trans. write footprint (bytes) Total log space (bytes)
Redblack 256 4096
Skiplist 64 1024
Vacation 320 3072
Genome 192 5120
Kmeans 256 4096

an address is saved, we need to pay two extra cycles for saving that address (one for
reading the original content of the address and one cycle for writing it to the mirroring
address). For the distributed logging, each time an address is saved, we need to traverse
the log first. Based on our benchmarks profiling, a core’s log in a bank can have up to
5 entries at a time, so we need 5 extra cycles to traverse the log in the worst case.

In case of abort, the total restoration time clearly depends on the write footprint of
the target application: the higher the number of writes within a transaction, the bigger
the size of the logs or the number of the saved mirrors, that we need to restore. For
each address that needs to be restored, 2 cycles are spent, one for reading the original
value from the log space and one for writing it back to its original address.

In case of commit, we do not need to restore any data, since both full-mirroring
and distributed logging are eager versioning mechanisms, so the transactional data is
already in place upon commit. This way commits are very fast.

5.2 Performance Characterization

In this section we evaluate our proposed transactional memory design both for the
full-mirroring and the distributed logging scheme and compare it with the use of a
conventional locking scheme.

For each benchmark, we ran experiments using 1, 2, 4, 8 and 16 cores and measured
the total execution time in cycles. As mentioned in Sect. 4.3, we chose to follow a
requester-abort policy for managing conflicts. This is a basic approach also chosen
in previous works for transactional memory. In the transactional retry process we
incorporated exponential backoff. When a core aborts, it does not retry the transaction
immediately. Instead it halts the execution of the transaction, restores the original
register values and then waits for a random backoff period, after which it begins re-
executing the transaction. The range of the backoff period is tuned according to the
conflictrate. The first time a conflict occurs in a particular transaction, the core waits for
an initial random period (< 100 cycles) before restarting. If the transaction conflicts
again, the backoff period is doubled, and will continue to double each time until the
transaction completes successfully. This way, we avoid the scenario of a sequence of
conflicts happening repeatedly between cores that retry the same aborted transaction.

Table 2 shows the experimental setup of the VSoC platform that we used in our
experiments. As shown in Table 2, the TCDM has 16 banks. The #;,;; and #,,,;5s values

@ Springer

1320 Int J Parallel Prog (2018) 46:1304—-1328

Table 2 Experimental setup for

Parameter Value
VSoC platform
Main memory latency 200ns
Main memory size 128 MB
Core frequency 200 MHz
Cores 1,2,4,8,16
TCDM size 256 KB
TCDM banks 16
1$ size 4KB
1$ thir 1cycle
18 tiss >50cycles
Redblack: Execution Time vs. # Cores
120%
110% —_
100%
2 oo
E 2 %
238
€ = 70%
e g
9
£ $ 60%
c o
§% 50%
f=4
35 a0%
L 30%
w
20%
10%
0% —
1 2 4 8 16
W Locks 100% 68% 63% 65% 66%
O Full Mirroring 108% 62% 39% 28% 23%
W Logging 105% 59% 37% 25% 20%

Fig. 8 Redblack: performance comparison between locks and transactions for different number of cores

represent the instruction cache access times in case of a hit or a miss respectively.
Accesses to the off-cluster main memory take 200 ns, significantly longer than accesses
to the on-cluster TCDM that take only 4ns in total. Access to the off-cluster main
memory is assisted through a DMA with 0.5 GB/s bandwidth.?

We first run experiments for redblack, skiplist, genome, kmeans and vacation. The
results of our experiments are depicted in Figs. 8, 9, 10, 11 and 12. The figures
show the results for running the applications using spin-locks in comparison with
our proposed transactional scheme using the full-mirroring or the distributed logging
scheme respectively, for different number of cores. For each benchmark, we show the
percentage change in execution time relative to a baseline execution time of a single
core with locks. We make the following observations: First, for the locking scheme,

2 Since we are assuming a DMA to assist in the data transfer, access time per word will not take the full
200ns.

@ Springer

Int J Parallel Prog (2018) 46:1304-1328

1321

100%

90%

80%

70%

60%

50%

40%

single-core locks

30%

Execution time norm. to

20%

10%

0%

1

Skiplist: Execution Time vs. # Cores

2

4

8

16

M Locks

100%

73%

67%

68%

68%

O Full Mirroring

106%

59%

36%

25%

19%

M Logging

105%

58%

35%

23%

17%

Fig. 9 Skiplist: performance comparison between locks and transactions for different number of cores

120%
110%
100%
90%
80%
70%
60%
50%

single-core locks

40%
30%

Execution time norm. to

20%
10%
0%

Genome: Execution Time vs. # Cores

1

2

4

8

16

W Locks

100%

94%

95%

98%

104%

O Full Mirroring

98%

51%

29%

19%

21%

W Logging

98%

50%

27%

18%

19%

Fig. 10 Genome: performance comparison between locks and transactions for different number of cores

even though the performance improves as we scale from 1 to 2 cores, it does not
show significant improvement and in most cases it gets worse, as we move above 4
cores. This means that the performance scaling that we hope to achieve using parallel
execution does not follow the scaling of the number of cores. This is expected since in
a standard locking scheme, the cores spend a lot of time spinning on the locks before
entering the critical section. As a result, execution of the critical sections is serialized

and this effect becomes worse as lock contention increases.

The second observation we make from the figures is that the transactional memory
configurations always achieve better performance than the standard locking scheme.

@ Springer

1322

Int J Parallel Prog (2018) 46:1304-1328

120%

Vacation: Execution Time vs. # Cores

110% 128%
100% _
9; 90%
E 2 sox
e 3
€ = 70%
“E’ g
o
£8 60%
é%’n 50%
35 a0%
g 30%
w
20%
10%
0% L
1 2 4 8 16
B Locks 100% 93% 99% 128% 188%
O Full Mirroring 99% 52% 30% 26% 28%
W Logging 106% 56% 31% 25% 28%

Fig. 11 Vacation: performance comparison between locks and transactions for different number of cores

Execution time norm. to
single-core locks

140%
130%
120%
110%
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Kmeans: Execution Time vs. # Cores

1

2

4

8

16

M Locks

100%

86%

102%

123%

250%

O Full Mirroring

97%

83%

88%

107%

173%

W Logging

97%

83%

91%

108%

175%

Fig. 12 Kmeans: performance comparison between locks and transactions for different number of cores

This is because, in the transactional memory scheme, the cores execute critical sections
speculatively assuming a real data conflict will not occur; locks, on the other hand
conservatively assume a conflict will occur and thus effectively serialize all accesses
to critical sections. If the abort rate is not significant, then the overall performance
improves tremendously. However, even in the event of aborts, transactions are restarted
after an exponential backoff period, assuring that the retrying cores will not conflict
repeatedly.

Third, we observe that our proposed transactional scheme, both in the full-mirroring
and the distributed logging configuration, achieves the intended scaling that we expect

@ Springer

Int J Parallel Prog (2018) 46:1304—-1328 1323

from using multiple cores instead of a single core (the only exception to this is krmeans,
which we explain later). In most cases, performance keeps doubling as we continue to
double the number of cores in the cluster. As the number of cores increases beyond 4
cores though, the performance scaling is slightly reduced and in some cases it levels off
(genome, vacation). This is due to the main memory accesses that generate large delays
and end up masking the benefits of running on a larger number of cores. These accesses
exist in all runs, independent of the number of cores we use, but their effect becomes
more pronounced for the 8 and 16 cores configurations since the total execution time
is further reduced as we increase the number of cores. In addition, not all benchmarks
exhibit similar benefit from parallelism. For example, kmeans is a benchmark that
suffers from very large abort rates as the number of cores is increased, which end up
hurting performance. This is a benchmark that seems to benefit from parallelism only
up to 2 cores. Even though some scaling in performance is achieved as we increase the
number of cores beyond 4, this scaling is decreased due to the large number of main
memory accesses. However, in most cases performance is still improved compared
to using fewer cores and in all cases it is better than the performance of the locking
scheme.

Next, we examine how the full-mirroring design compares with the distributed log-
ging design in terms of performance. We observe that for redblack, skiplist and genome,
the distributed logging scheme always outperforms the full mirroring schemes, while
for vacation, it is worse for a small number of cores and it gets better as we increase
the number of cores. The kmeans application is the only one in which the distributed
logging scheme shows worse performance than the full-mirroring configuration. As
we discussed in Sect. 5.1, the distributed logging scheme incurs a slightly bigger over-
head in saving the logs than the full-mirroring design. This would normally result
in the distributed logging scheme being worse in performance compared to the full-
mirroring scheme. At the same time, the distributed logging scheme uses memory
more efficiently, allowing a larger quantity of data to be stored in memory. In con-
trast, for full-mirroring a larger number of main memory accesses may be required for
refilling data. The data refill overhead masks the difference in the log saving overhead.
Applications redblack, skiplist and genome have a large number of refill accesses for
the full-mirroring scheme because of its inefficient use of the TCDM. As a result, in
those benchmarks we see performance being worse for the full-mirroring design. On
the other hand, kmeans and vacation have smaller data footprints, hence only a small
number of refill accesses to the main memory are necessary. As a result the perfor-
mance difference caused by the log saving process in the distributed logging scheme
now becomes visible. Specifically, it is even more pronounced for a smaller number
of cores, since fewer cores mean less but bigger logs, hence bigger log traversing
overhead.

Overall, we see that our transactional memory scheme achieves significant perfor-
mance improvements compared to standard locks. Specifically, we show a maximum
improvement of 80% for redblack, 83% for skiplist, 82% for genome, 17% for kmeans
and 75% for vacation over the baseline single-core lock configuration, depending on
the number of cores. Locks, in comparison, cannot effectively exploit the extra paral-
lelism offered by adding additional cores so performance improvement lags far behind.
We conclude that a transactional memory support scheme, when designed carefully

@ Springer

1324 Int J Parallel Prog (2018) 46:1304—-1328

based on the needs of the target architecture, can achieve significant performance
improvements.

5.3 EigenBench

To further evaluate and compare our two TM implementations, we use in this section
the EigenBench exploration tool. EigenBench [9] is a simple microbenchmark for
evaluating TM systems that allows for exploration of several eigen-characteristics,
i.e., a set of orthogonal characteristics of TM applications that form a basis for all
TM applications (similar to how a basis in linear algebra spans a vector space). The
benchmark allows to decouple the eigen-characteristics from each other and vary them
independently, enabling the evaluation of corners of the application space not easily
reached by real programs.

Specifically, we focus here on three characteristics that are relevant to our TM
designs:

(a) Working-set size This parameter represents the size of the memory accessed within
transactions. Since our design requires explicit DMA transfers for TCDM man-
agement, when the transaction’s memory footprint increases beyond the size of
the TCDM we will experience a performance drop, due to the DMA transfers;

(b) Contention This parameter represents the probability of conflicts for a transaction.
Since the roll-back mechanism that takes place upon conflict is different for the
two TM implementations, we expect this to have an impact on the performance
when the conflict rate is high;

(c) Predominance This parameter represents the fraction of cycles spent in memory
operations within transactions to cycles spent in memory operations outside trans-
actions. It thus represents a measure of the overhead for handling transactional
reads/writes (i.e., for data versioning). When the predominance factor is low, we
expect this overhead to be negligible, while for high predominance this could be
important.

Note that there are no other instructions inside and outside transactions, besides
the memory accesses described above. This is a default setting for the eigenbench
for measuring the worst-case overhead of the TM system being evaluated. Figure 13
shows three plots that report the results for the above described eigen-characteristics.
We measure the execution cycles for four configurations:

(1) FM Transactions are handled with the Full-Mirroring scheme;

(2) LOGGING Transactions are handled with the Logging scheme;

(3) LOCKS Transactions are protected with locks;

(4) UNPROTECTED Transactions are not protected and instead are allowed to run
fully in parallel. While this is functionally not correct, it provides an upper bound
on the achievable performance.

Next, we analyze the results shown in Fig. 13.

(a) Working-set size We show the speedup of the two TM systems versus locks.
On the x-axis we show the transaction’s working-set size (i.e., the footprint of

@ Springer

Int J Parallel Prog (2018) 46:1304-1328

1325

7
6
w
] 5
(o]
)
p 4
>
o 3
3
2 2
S 1
n
0
FM
LOGGING
UNPROTECTED
o 4
o
[e]
- 3
v
>
Q 2
p=}
©
k) 1
Q
n
0
FM
LOGGING
UNPROTECTED
- 10
9]
°
& o8
(]
s
2 o6
)
g 04
a
=
© 0.2
]
8
v 00
FM
LOGGING
LOCKS

(@

S

100 140 180 220 260 300

6.38 6.04 571 5.43 5.16 4.97

6.32 6.32 6.32 6.32 5.99 5.73

6.76 6.74 6.76 6.76 6.55 6.22
—o—FM —e=LOGGING UNPROTECTED

0% 15% 30% 50% 75% 90%

4.27 3.38 2.78 2.00 131 0.11

4.28 331 2.71 1.80 0.44 0.06

4.46 4.43 4.38 4.40 4.43 4.41
—o—FM =e=LOGGING UNPROTECTED

(c)

9% 50% 59% 67% 83% 100%

0.99 0.98 0.98 0.98 0.97 0.97

0.99 0.98 0.97 1.00 0.96 0.96

0.88 0.31 0.28 0.27 0.25 0.23
—o—FM —o—LOGGING LOCKS

Fig. 13 Results for the eigenbench evaluation methodology. The eigen-characteristics considered are a
working-set size (KB), b contention (%) and ¢ predominance (%). Note that the results presented are
normalized with respect to locks for a, b and with respect to unprotected for ¢

transactional accesses) in KB. The first thing to emphasize is that for a transac-
tional data footprint smaller than 128 KB (the size of the TCDM that a program

@ Springer

1326 Int J Parallel Prog (2018) 46:1304—-1328

can use in the FM scheme) both TM systems perform very closely to the ideal
(UNPROTECTED) case. Beyond 128KB the FM system starts suffering from
DMA transfers. The same happens for the LOGGING scheme when the transac-
tional data footprint grows beyond 226 KB.

(b) Contention We show again the speedup of the two TM systems versus locks. On
the x-axis we show the percent transactions conflict rate. Only at 0% conflict
rate, both TM systems perform very closely to the UNPROTECTED case. As
the conflict rate increases their performance starts dropping and at around 30%
conflict rate the LOGGING scheme starts behaving slightly worse than FM. This,
as expected, is due to the slightly costlier rollback. It is also relevant to notice
that around 75% conflict rate both schemes start performing worse than locks.

(c) Predominance We show the slowdown of the two TM systems versus UNPRO-
TECTED, as we assess how the overhead for transactional read/write logging
causes our TM schemes to depart from the ideal performance. On the x-axis
we show the percent predominance. We observe that for both TM schemes, per-
formance is consistently very close to the UNPROTECTED case (where data
versioning is not used). This means that the time overhead for handling logs and
mirrors in our TM schemes is negligible and does not have an impact on the
overall performance potential.

6 Conclusions and Future Work

In this paper we proposed the first HTM design for handling transactions within a
cluster-based, many-core embedded architecture without caches and cache coherence
support. We introduced the idea of distributing conflict detection and resolution to
multiple Transaction Support Modules so that our solution is scalable. As a first step,
we restricted transactions within a single cluster and focused on simple and fast trans-
actional handling schemes. However, the proposed scheme is designed to be scalable
and can be extended to multiple clusters.

We introduced two alternative data versioning designs, full-mirroring and dis-
tributed logging, and compared them in terms of memory overhead and performance
over a range of benchmarks. While full-mirroring is a simpler design, it is wasteful
and rather impractical in terms of memory overhead, using 50% of the TCDM for
mirrors when only about 2% is required in the distributed logging scheme. Further-
more, through simulations we demonstrated that the full-mirroring design requires
more main memory accesses for data refilling that can hurt performance making dis-
tributed logging a better choice in most cases. Performance results showed that both
transactional memory designs achieve a significant improvement over conventional
locks. The maximum performance improvement over the baseline single-core lock
configuration ranges from 17 to 83% depending on the application.

The transactional support scheme designed in this work gives us a good understand-
ing of how speculation can benefit performance on a cache-free many-core embedded
architecture, when transactions are restricted within a single cluster. For future work,
we would like to extend this design to multiple clusters, providing inter-cluster trans-

@ Springer

Int J Parallel Prog (2018) 46:1304—-1328 1327

actional support. Also, we would like to experiment with alternative conflict resolution
policies and bookkeeping designs that may provide better efficiency.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Adapteva: Epiphany-IV 64-core 28nm microprocessor (E64G401). http://www.adapteva.com/

epiphanyiv/ (2013)

. Bit-tech.net: IBM releases “world’s most powerful” 5.5GHz processor. http://www.bit-tech.net/news/

hardware/2012/08/29/ibm-zec12/1, 8 Sept 2012

. Bortolotti, D., Pinto, C., Marongiu, A., Ruggiero, M., Benini, L.: Virtualsoc: A full-system simula-

tion environment for massively parallel heterogeneous system-on-chip. In: 2013 IEEE International
Symposium on Parallel and Distributed Processing, pp. 2182-2187 (2013). https://doi.org/10.1109/
IPDPSW.2013.177

. Ferri, C., Marongiu, A., Lipton, B., Moreshet, T., Bahar, R.I., Herlihy, M., Benini, L.: SoC-TM:

integrated HW/SW support for transactional memory programming on embedded mpsocs. In: CODES,
pp. 39-48. Taipei, Taiwan (2011)

. Ferri, C., Wood, S., Moreshet, T., Bahar, R.I., Herlihy, M.: Embedded-TM: energy and complexity-

effective hardware transactional memory for embedded multicore systems. J. Parallel Distrib. Comput.
70(10), 1042-1052 (2010)

. Helmstetter, C., Joloboff, V.: SimSoC: a systemC TLM integrated ISS for full system simulation. In:

IEEE Asia Pacific Conference, pp. 1759-1762 (2008)

. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures.

In: ISCA, pp. 289-300 (1993). https://doi.org/10.1145/165123.165164

. Hong, S., Oguntebi, T., Casper, J., Bronson, N., Kozyrakis, C., Olukotun, K.: Eigenbench: A simple

exploration tool for orthogonal tm characteristics. In: Proceedings of the IEEE International Sym-
posium on Workload Characterization (IISWC’10), IISWC ’10, pp. 1-11. IEEE Computer Society,
Washington (2010). https://doi.org/10.1109/IISWC.2010.5648812

. Hong, S., Oguntebi, T., Casper, J., Bronson, N., Kozyrakis, C., Olukotun, K.: Eigenbench: a simple

exploration tool for orthogonal TM characteristics. In: IEEE International Symposium on Workload
Characterization (IISWC), 2010, pp. 1-11 (2010). https://doi.org/10.1109/IISWC.2010.5648812
Intel Corporation: Transactional Synchronization in Haswell. http://software.intel.com/en-us/blogs/
2012/02/07/transactional-synchronization-in-haswell/, 8 Sept 2012

Kalray: MPPA 256—Programmable Manycore Processor. www.kalray.eu/products/mppa-manycore/
mppa-256/

Kunz, L., Girdo, G., Wagner, F.: Evaluation of a hardware transactional memory model in an NoC-based
embedded MPSoC. In: SBCCI, pp. 85-90. Sdo Paulo, Brazil (2010)

Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley, T., Haugou, G., Clermidy, F., Dutoit, D.:
Platform 2012, a many-core computing accelerator for embedded SoCs: performance evaluation of
visual analytics applications. In: DAC, pp. 1137-1142. ACM (2012)

Meunier, Q., Petrot, F.: Lightweight transactional memory systems for NoCs based architectures:
design, implementation and comparison of two policies. J. Parallel Distrib. Comput. 70(10), 1024—
1041 (2010)

Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional applications for
multi-processing. In: International Symposium on Workload Characterization (2008)

Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: log-based transactional
memory. In: HPCA, pp. 254-265 (2006)

NVIDIA: NVIDIA’s next generation CUDA compute architecture: Fermi. White paper, NVIDIA (2009)
Papagiannopoulou, D., Capodanno, G., Moreshet, T., Herlihy, M., Bahar, R.: Energy-efficient and
high-performance lock speculation hardware for embedded multicore systems. ACM Trans. Embed.
Comput. Syst. (2015). https://doi.org/10.1145/2700097

Papagiannopoulou, D., Marongiu, A., Moreshet, T., Benini, L., Herlihy, M., Bahar, R.: Playing with fire:
transactional memory revisited for error-resilient and energy-efficient MPSoC execution. In: GLSVLSI
(2015). https://doi.org/10.1145/2742060.2742090

Papagiannopoulou, D., Moreshet, T., Marongiu, A., Benini, L., Herlihy, M., Bahar, R.: Speculative
synchronization for coherence-free embedded NUMA architectures. In: SAMOS, pp. 99-106 (2014).
https://doi.org/10.1109/SAMOS.2014.6893200

@ Springer

http://www.adapteva.com/epiphanyiv/
http://www.adapteva.com/epiphanyiv/
http://www.bit-tech.net/news/hardware/2012/08/29/ibm-zec12/1
http://www.bit-tech.net/news/hardware/2012/08/29/ibm-zec12/1
https://doi.org/10.1109/IPDPSW.2013.177
https://doi.org/10.1109/IPDPSW.2013.177
https://doi.org/10.1145/165123.165164
https://doi.org/10.1109/IISWC.2010.5648812
https://doi.org/10.1109/IISWC.2010.5648812
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
www.kalray.eu/products/mppa-manycore/mppa-256/
www.kalray.eu/products/mppa-manycore/mppa-256/
https://doi.org/10.1145/2700097
https://doi.org/10.1145/2742060.2742090
https://doi.org/10.1109/SAMOS.2014.6893200

1328 Int J Parallel Prog (2018) 46:1304—-1328

21. Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent multithreaded execu-
tion. In: MICRO, pp. 294-305 (2001). http://dl.acm.org/citation.cfm?id=563998.564036

22. Rajwar, R., Goodman, J.R.: Transactional lock-free execution of lock-based programs. In: ASPLOS,
pp. 5-17 (2002). https://doi.org/10.1145/605397.605399

@ Springer

http://dl.acm.org/citation.cfm?id=563998.564036
https://doi.org/10.1145/605397.605399

	Hardware Transactional Memory Exploration in Coherence-Free Many-Core Architectures
	Abstract
	1 Introduction
	2 Background
	3 Target Architecture
	4 Implementation
	4.1 Transactional Bookkeeping
	4.2 Data Versioning
	4.2.1 Full-Mirroring
	4.2.2 Distributed Logging

	4.3 Transaction Control Flow

	5 Experimental Results
	5.1 Overhead Characterization
	5.2 Performance Characterization
	5.3 EigenBench

	6 Conclusions and Future Work
	References

