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ABSTRACT

Hybrid machine learning algorithms that combine deep learning

with probabilistic inference techniques provide highly accurate

scene perception for robot manipulation. In particular, a 2-stage

approach that combines object detection using convolutional neural

networks with Monte-Carlo sampling for pose estimation has been

shown to perform particularly well under adversarial scenarios. Un-

fortunately, this accuracy comes at the cost of high computational

complexity, which affects runtime, resource utilization, and energy

consumption. This paper describes various challenges in develop-

ing complexity-aware techniques for robust robot perception and

presents a novel hardware accelerator that addresses these chal-

lenge. Experimental results show our design is at least 30% faster

and consumes 97% less energy compared to an implementation on

a high-end GPU. Compared to a low-power GPU implementation,

our design is 95% faster while consuming 96% less energy, demon-

strating that accurate, energy-efficient scene perception is possible

in real time with targeted hardware acceleration.

CCS CONCEPTS

•Hardware→Hardware accelerators; • Computing method-

ologies → Rasterization; • Computer systems organization

→ Real-time system architecture.
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1 INTRODUCTION

Scientists are working towards making robots and autonomous

systems “taskable”[10] such that they function properly, meet hu-

man expectations, and generalize across tasks in various operating

environments. The effectiveness of robots to carry out human-

requested tasks relies upon their ability to perceive the current

state of its world. As robots maneuver around objects and dex-

terously manipulate them, they must know what objects are in

their environment. Robust methods for understanding of objects, as

well as their pose and geometry, are essential for robots to reason

properly. For standard operating environments, such perceptual

understanding remains an open problem that is especially challeng-

ing for robustness to complex and dynamic clutter and exacerbated

by adversarial obfuscation.

Technological advancements have led to a proliferation of robots

using machine learning systems to assist humans in a wide range of

tasks. However, we are still far from accurate, reliable, and resource-

efficient operations of these systems. Despite the strengths of con-

volutional neural networks (CNNs) for object recognition, these

discriminative techniques have several shortcomings that leave

them vulnerable to exploitation from adversaries, such as their

need for extremely large training sets, their “black box” decision

making, and their inability to recover from incorrect inferences.

In addition, the computational, financial, and environmental cost

incurred to train these discriminative models can be quite immense,

as they often require weeks or even months to adequately train.

One recent report estimated that the amount of power required for

training and searching a certain neural network architecture used

for natural language processing involves the emissions of roughly

626,000 pounds of carbon dioxide [23].

In contrast, generative probabilistic inference techniques are

inherently explainable, general, and resilient through the process



ICCAD ’20, November 2–5, 2020, Virtual Event, USA Yanqi Liu, Can Eren Derman, Giuseppe Calderoni, and R. Iris Bahar

of generating, evaluating, and maintaining a distribution of many

hypotheses representing possible decisions. Unfortunately, this

robustness comes at the cost of computational efficiency. Alterna-

tively, our prior work using discriminative-generative approaches

(e.g., [12], [2]) offers a promising avenue for robust perception and

action. Such methods combine inference by deep learning with

sampling and probabilistic inference models, and the ability to rep-

resent actual and counterfactual experiments to achieve robust and

adaptive understanding. This hybrid approach allows intelligent

systems to reason about, interact with, and manipulate objects in

complex (and even adversarial) environments.

While our approach does not eliminate the neural network, it

does take the burden off the need to massively train a large and com-

plex neural network that may obtain high accuracy, but may still

fail under adversarial conditions. Instead, the focus is now on im-

plementing a computationally efficient generative inference stage

that can achieve real-time results in an energy efficient manner.

In particular, the run time and energy consumption of the genera-

tive stage is determined by the range of sampling, the number of

iterations, and the computational complexity of the likelihood func-

tion. Fortunately, this generative stage turns out to be amenable to

various forms of hardware acceleration.

In this paper we offer the GRIP algorithm, introduced in [2] as a

discriminative-generative approach for pose estimation, as a robot

scene perception approach that can be effectively accelerated in

hardware. The generative stage of GRIP takes depth images and per-

forms sample-based generative inference to estimate the pose for

each object in a scene. While the GRIP algorithm has been shown

to provide high pose estimation accuracy, especially in adversarial

environments, it is expensive in terms of runtime, power dissipa-

tion, and energy consumption. To address these limitations, in this

paper we present a novel, highly parallelized implementation in

hardware of the generative stage of the GRIP algorithm. Our ap-

proach achieves significant speedup and over 1-order of magnitude

energy savings compared to a GPU-based implementation of GRIP.

In addition, the algorithm achieves up to 40% improvement in pose

estimation accuracy compared to end-to-end neural network ap-

proaches, which enables robust performance especially in dark or

occluded environments.

The rest of this paper is organized as follows. Section 2 summa-

rizes related work in scene perception, deep learning techniques

for object detection and their vulnerabilities, and hardware ac-

celeration techniques for robotics. Section 3 outlines the 2-stage

discriminative-generative approach wewill be using for robust pose

estimation. In Section 4 we describe in detail the novel optimiza-

tions we implemented to accelerate the 2𝑛𝑑 stage of the algorithm

in hardware. Section 5 reports on our experimental results for our

FPGA design compared to both a high performance and low-power

GPU implementation. Finally, Section 6 contains concluding re-

marks and suggestions for future work.

2 BACKGROUND

Discriminative-generative algorithms [25], [24], [12] offer a promis-

ing avenue for robust perception and action. Such methods combine

inference by deep learning with sampling and probabilistic infer-

ence models, and the ability to represent actual and counterfactual

experiments to achieve robust and adaptive understanding. This

hybrid approach allows intelligent systems to reason about, inter-

act with, and manipulate objects in complex (and even adversarial)

environments. The value proposition for discriminative-generative

inference is to get the best out of existing approaches to compu-

tational inference and manipulation while avoiding their short-

comings. Indeed, our prior works using discriminative-generative

algorithms have shown promise in terms of improved accuracy and

run time [12], [2].

Deep learning methods have been explored in the context of

robot manipulation (e.g., [4], [28], [26], [29], [27]). However, there

are concerns about the vulnerability of deep networks to adversarial

attacks. In the context of robot manipulation, an adversary may

not be able to directly alter images observed by a robot, but it can

alter the environment from which the robot is capturing its image

observations. Similar to adversarial image manipulation, natural

clutter could also be slightly and maliciously altered to deceive a

CNN used for robot perception. In order to deal with adversarial

scenarios, it is advantageous to not rely on adversarial training,

which inherently relies on guessing the type of attack beforehand.

Rather, we propose a technique that is inherently more robust to

unknown attacks during the inference stage since it has somemeans

of recovering from misleading information [12].

Much of the research effort in explainable AI (XAI) has gone

into exploring how deep neural networks systems perform when

they are operating at their boundary conditions as a means of

understanding how they learn (e.g., [16], [22], [30], [1], [13]). For

instance, adversarial examples can be used as a tool to answer

questions that lead to explanations on how it is making decisions;

a user may select an image and then submit it to selected filters

to generate foils to see if the classification changes. In this way,

the demonstrations of how deep nets can be fooled allow users to

understand why it is making certain decisions. Again, while this

has led to interesting and useful techniques, it relies on massive

training and development of extensive spoofing scenarios to gain an

understanding of how the deep neural network is making decisions.

Generative adversarial networks (GANs) [3] have also been pro-

posed to provide additional robustness to attack by trying to deceive

the detection network in order to strengthen it. However, the out-

put of such a system still comes from the detection network, which

could cause overfitting if the GAN does not sample diversely. In

addition, it is still an open problem for how GANs provide inter-

pretability or explainability in results of the detection network. In

our approach, it is the generative method that makes the final deci-

sion based on input from the discriminative network. This design

choice is more amenable to providing greater robustness if we have

a suitable model in our likelihood.

Pose estimation is an important step for real-time systems, yet

there is little work that considers how it may be accelerated in

hardware. Of the proposed approaches found in the literature, they

are either not accurate enough for such tasks as robot manipulation

(e.g., [19]), provide only partial solutions (e.g.,[17]), or cannot be

integratedwith a discriminative-generative approach, which is espe-

cially useful for reasoning in unstructured environments (e.g., [8]).

Particle filtering has been implemented on FPGAs for accelerating

object tracking and robot mapping and localization [14], [18], [20],

but not for pose estimation.
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Recent work proposed a novel FPGA design for 6 degree-of-

freedom (6 DoF) object pose estimation based on Monte-Carlo sam-

pling that achieves real time performancewith significantly reduced

energy consumption [11]. However, this work did not include a crit-

ical feature extraction step in the algorithm that takes into account

contextual geometric information from 3D point clouds, and there-

fore cannot obtain high accuracy for certain challenging scenes.

This paper extends some of the contributions of [11] by adding

a step to exploit point cloud features, streamlining the hardware

parallelization, and providing a more comprehensive comparison

of performance and energy consumption against prior works.

3 ALGORITHM

Figure 1 shows the two-stage paradigm for the discriminative-

generative algorithm proposed in [2]. In the first stage, a CNN

takes an RGB image and generates object bounding boxes with

confidence scores. In the second stage, the algorithm takes a depth

image and the bounding boxes from stage 1 and performs iterated

likelihood weighting through generative Monte Carlo sampling

to estimate the 6 DoF pose for each object. From this pose estima-

tion, a robot is able to manipulate the object using an appropriate

motion planner. Note that the algorithm does not apply any thresh-

old of the confidence scores from the neural network in order to

avoid false negative detections generated by the first stage. This is

a key takeaway and main advantage of our 2-stage approach; as

demonstrated in [12], the 2-stage paradigm increases the possibility

of finding the correct pose of the desired object, especially under

adversarial conditions such as high occlusion, limited lighting, or

altered surfaces that may confuse a CNN. Experimental results

reported in [2] showed 25–40% improvement in pose estimation

accuracy compared to end-to-end neural network approaches.

While the first stage inference for object detection is quite fast,

the second stage is relatively slow and power hungry due to the

iterative nature of the sampling process. In particular, the run time

and energy consumption of the generative stage is determined by

the range of sampling, the number of iterations, and the compu-

tational complexity of the likelihood function. Thus, our focus for

this paper is on implementing in hardware a computationally ef-

ficient generative inference in the second stage that can achieve

real-time results in an energy efficient manner. The optimizations

we implement to achieve this are described in Section 4; the rest of

this section describes the algorithm itself in more detail.

The first stage uses an object detection CNN to generate predic-

tions of object bounding boxes, confidence scores, and class labels.

The object confidence score can be represented as the object proba-

bility distribution over the observed scene. As the robustness of our

approach comes from the generative sampling in the second stage,

the network architecture of the CNN itself is not critical. Various

network architectures such as VGG [21], ResNet [5], AlexNet [9],

and Squeezenet [6] could be used. Our generative sampling algo-

rithm follows the design presented in [24].

Starting the second stage, we use an RGB-D observation that

contains an RGB image, 𝑍𝑟 , and a depth image, 𝑍𝑑 . For each ob-

ject, we define the conditional joint distribution as 𝑃 (𝑞,𝑏 |𝑜, 𝑍𝑟 , 𝑍𝑑 ),
where 𝑞 is the 6 DoF pose for the object, 𝑜 is the class label and

𝑏 is the bounding box coming from the first stage output. We can

formulate the problem as follows:

𝑃 (𝑞,𝑏 |𝑜, 𝑍𝑟 , 𝑍𝑑 ) (1)

= 𝑃 (𝑞 |𝑏, 𝑜, 𝑍𝑟 , 𝑍𝑑 )𝑃 (𝑏 |𝑜, 𝑍𝑟 , 𝑍𝑑 ) (2)

= 𝑃 (𝑞 |𝑏, 𝑜, 𝑍𝑑 )︸���������︷︷���������︸
pose estimation

𝑃 (𝑏 |𝑜, 𝑍𝑟 ).︸������︷︷������︸
detection

(3)

We apply iterative likelihood weighting on top of the object

detection distribution to perform object pose estimation. Initially,

a set of weighted samples {𝑞 (𝑖) ,𝑤 (𝑖) , 𝑏 (𝑖) , 𝑧 (𝑖) }𝑀𝑖=1 are generated,

where 𝑞 (𝑖) represents the 6 DoF pose of the sample object, 𝑤 (𝑖)

the probability, 𝑏 (𝑖) the bounding box, and 𝑧 (𝑖) the region of the

bounding box. Each sample represents a belief of the object pose

over the entire image. A 3D point cloud 𝑟 (𝑖) is rendered for each

sample given the samples’ object class 𝑜 , pose 𝑞 (𝑖) and correspond-

ing geometric model. For each rendered sample, the weight𝑤 (𝑖) is

updated to estimate how close the samples’ geometry matches to its

corresponding observation. The weight of the sample is computed

by a likelihood function that takes into account the probability from

the CNN output, the raw pixel-wise inlier ratio, and the feature

inlier ratio. We define the inlier function using Equation 4:

Inlier(𝑝, 𝑝
′

) = I

(
| |𝑝 − 𝑝

′

| |2 < 𝜖
)
, (4)

where I is the indicator function and 𝑝, 𝑝
′
represents a point in an

observation point cloud z
(𝑖) and a point in a rendered point cloud

𝑟 (𝑖) . If a rendered point is within a certain distance threshold range

𝜖 from an observed point, it is defined as an inlier. The ratio of

inliers is defined as:

𝐼 =
1

|𝑟 |

∑
𝑎∈𝑧 (𝑖 )

Inlier(𝑟 (𝑖) (𝑎), 𝑧 (𝑖) (𝑎)), (5)

where 𝑎 represents the index of a point within observed point cloud

𝑧 (𝑖) and rendered point cloud 𝑟 (𝑖) and |r| is the size of the point

cloud. We use the same inlier ratio to calculate edge and planar

feature inlier ratios.

To better estimate the alignment between sample and observa-

tion, we extract geometric features from both the rendered 3D point

cloud and the observation point cloud. We use the approach de-

scribed in [2] where the local surface smoothness can be calculated

using Equation 6:

𝑐 (𝑎) =
| |
∑

(𝑎′) ∈N(𝑎)

(
p(𝑎′) − p(𝑎)

)
| |

|N(𝑎) | · | |p(𝑎) | |
, (6)

where 𝑐 (𝑎) is calculated by adding all displacement vectors from

p(𝑎) to each of its neighbor points N(𝑎). The value is then normal-

ized by the size of N(𝑎) and the length of vector p(𝑎) .

The weight 𝑤 (𝑖) of the sample is a linear combination of the

confidence score of the bounding box and inlier ratios for raw point

cloud 𝐼𝑟 , edge features 𝐼𝑒 , and planar feature 𝐼𝑝 :

𝑤𝑖 = 𝛼𝑏𝑜𝑥𝑐 + 𝛼𝑟 𝐼𝑟 + 𝛼𝑒 𝐼𝑒 + 𝛼𝑝 𝐼𝑝 , (7)

where coefficients 𝛼𝑏𝑜𝑥 , 𝛼𝑟 , 𝛼𝑒 and 𝛼𝑝 are empirically determined

and add up to 1.

Importance sampling [7] is used to generate a new set of samples

based on the current samples’ weight distribution. Sample variance
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Figure 1: The 2-stage paradigm: The 1𝑠𝑡 stage uses a CNN for object detection, and the 2𝑛𝑑 stage uses the geometric model of

the object to perform Monte-Carlo generative sampling.

is increased after sampling by diffusing each new sample pose, 𝑞 (𝑖) ,
with a Gaussian noise in the space of 6 DoF poses with a small 𝛿 :

𝑞 (𝑖) = (𝑥,𝑦, 𝑧, 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ,𝑦𝑎𝑤) + N (0, 𝛿). (8)

An average sample weight threshold 𝜏 is defined to check if the

samples have converged. If the weight is above the threshold 𝑞∗,
corresponding to the highest weight, 𝑤∗ will be accepted as the

sample pose.

The computational bottleneck of the second stage comes from

the rendering, point cloud feature extraction, and inlier comparison

steps. While each of these steps is amenable to acceleration on a

GPU through CUDA programming, together these steps are per-

formed sequentially. In addition, the iterative nature of generative

inference and the large amount of samples make the bottleneck

more pronounced in its affect on the runtime of the application.

To solve the problem, we utilize customized hardware on an FPGA

to create a novel implementation that runs feature extraction and

inlier calculation simultaneously with rasterization of the object

models. Our approach decreases the compute time significantly and

introduces a cheap, efficient way of implementing object feature

extraction. In addition, the optimized flow drastically reduces the

total energy consumption compared to a GPU implementation. The

next section describes our novel implementation in more detail.

4 IMPLEMENTATION

Our FPGA implementation aims to speed up the most computation-

ally intensive step in the generative inference algorithm, which is

the likelihood evaluation that involves rendering, feature extraction

and inlier computation for a large number of samples. Our FPGA

implementation consists of 3 main steps:

(1) Rasterize the rendered object using triangles from the ob-

ject’s geometric model

(2) Create a binary bitmap of the edges of the rendered object

in parallel with the rasterization process.

(3) Calculate the inlier ratio with rendered depth and extracted

edges.

All computation is done in fixed point and we simplify 3D point

cloud representation with a 1-D depth representation to further

reduce memory and computation resources.

4.1 Rasterization with Feature Extraction

As described in [11], rasterization can be optimized in hardware

using multiple customized raster core processing units to process

samples in parallel. A raster core contains a per-triangle pipeline

for rasterization and inlier computation to process all triangles in

the object’s geometric model. In this work, we extend the raster

core unit to include feature extraction of the rendered geometric

model. Our new raster core unit is shown in Fig. 2.

For each triangle in the geometric model, we first perform a

transformation with the sample’s 6 DoF pose. We then perform

rasterization for each pixel within the triangle. Given a triangle with

three vertices𝑉0,𝑉1 and𝑉2, we first calculate the edge function [15]

as given in Equation 9:

𝐸𝑎,𝑏 (𝑃) = (𝑃 .𝑥−𝑉𝑎 .𝑥)·(𝑉𝑏 .𝑦−𝑉𝑎 .𝑦)−(𝑃 .𝑦−𝑉𝑎 .𝑦)·(𝑉𝑏 .𝑥−𝑉𝑎 .𝑥), (9)

where (a,b) ∈ [(0,1),(1,2) (2,0)]. To determine if a pixel 𝑃 is within a

triangle, we evaluate 𝐸 as follows:

• if 𝐸0,1 > 0 and 𝐸1,2 > 0 and 𝐸2,0 > 0, then 𝑃 is in the triangle

• if 𝐸0,1 = 0 or 𝐸1,2 = 0 or 𝐸2,0 = 0, then 𝑃 is on a triangle edge

• else, 𝑃 is outside the triangle

If a pixel is within the triangle, we rasterize it. If a pixel is on the

edge of the triangle, we mark it as a temporary edge on the edge

map, as shown on the left image of Figure 3(a). The general idea is

to combine the rasterized triangles with adjacent edges to create
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Figure 2: The raster core design. Triangle raterization is in parallel with edge feature extraction. The raster core implements

a pipeline for transformation, feature extraction and edge map construction. Multiple raster core units can run in parallel to

process different samples.

a new polygon until all triangles within the geometric model are

rasterized. Then, the edges of the polygon are used to represent the

contour edges of the object. This idea is visualized in the series of

images in Figure 3(a) and (b). Examples of rasterization and edge

extraction for various objects are shown in Figure 4. Each sample

is rasterized within a 200 × 200 frame. Different from [11], we

don’t keep the partial observation depth in the raster core memory.

Instead, we save the rasterized depth image along with a 1-bit

200 × 200 edge map indicating the edge pixels in the rasterized

image. After rendering is complete, we stream the observation

depth from the depth distributor as described in [11] and compute

the inlier ratio for raw rendering depth and rendering edge features.

The original feature extraction step described in [2] calculates

the local surface smoothness using Eqn. 6. The method requires

memory accesses to neighboring pixels for every pixel and thus

generates repetitive memory reads. Furthermore, feature extraction

is computed in series with the rendering and inlier steps. Our novel

feature extraction implementation in hardware exploits the existing

logic used for the rasterization process such that edge information

can be obtained in parallel with rasterization with minimal addi-

tional computation. In addition, our feature extraction uses Boolean

logic operators exclusively, with no algebraic computation.

4.2 Sorting, Sampling, and Diffusing

Importance sampling described in Section 3 is used to generate a

new set of samples based on the current samples’ weight distri-

bution. We follow the implementation described in [11] to reduce

memory accesses by using a separate memory to store a set of

threshold values to avoid the need to sample all weights explicitly.

In this way, the array storing the cumulative density function of

(a) Filtering coinciding edges among rasterized triangles

(b) End result contour edgemap of a box laying on its side over-
laid with rasterized triangles

Figure 3: Illustration of the edge detection process.The red

box represents the edge pixel

sample weights is first searched using coarse threshold steps until

the desired range is identified, and then one-by-one within the

threshold region until the targeted sample weight is found. Sam-

pling is made more efficient by sorting the samples according to

their weights so only the samples with the larger weights will be

marked for resampling. For the diffusion step, we use the ping-pong
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4: Examples of the drawn edge maps with red and

object maps with green of each of the 15 object classes: (a)

cracker box, (b) tomato soup can, (c) mustard bottle, (d) tuna

fish can, (e) potted meat can, (f) banana, (g) pitcher base, (h)

bleach cleaner, (i) bowl, (j) mug, (k) scissors, (l) largemarker,

(m) large clamp, (n) extra large clamp, (o) foam brick. The

green area is the rasterized pixels and the red line is the edge

feature pixels

buffer as described in [11], reading the new sample indices gener-

ated from the resampler from one memory buffer, adding Gaussian

nose to the 6 DoF pose, and writing this new sample to a second

memory buffer.

With the resampling and diffusion steps efficiently implemented

on the FPGA and a new raster core unit design, we have a full

generative sampling flow on the FPGA that is able to perform

accurate pose estimation in adversarial environments and achieve

fast runtime and efficient power/energy consumption. In the next

section we report on our experimental results.

5 EXPERIMENTS

We implemented our Monte-Carlo generative sampling algorithm

on a Xilinx Virtex UltraScale ZCU102 board using Vivado HLS

high-level synthesis tools. Working within the memory and com-

pute resource constraints of the FPGA, we were able to create a

10-raster core design to process 620 samples clocked at 200MHz.

For evaluation, we compare the performance of our FPGA design

against designs using two GPU-CPU platforms: 1) an Nvidia Titan

Xp (1.4GHz) and Intel Xeon E5 (3.0GHz) platform, and 2) an Nvidia

Jetson TX2 (854MHz) with a quad-core ARMA57 (1.2GHz) platform.

Below we describe the reference GPU design in more detail and

report results in terms of accuracy, run time, resource usage, and

energy consumption.

5.1 GPU reference design

Following a similar approach outlined in [2], we implemented a

GPU-CPU hybrid design that runs sample initialization, resampling

Table 1: Runtime comparison of complete flows

potted mustard cracker tomato
Implementation meat_can banana bottle box soup_can

Titan𝐶𝑃𝑈 −𝐺𝑃𝑈 124 ms 105 ms 144 ms 188 ms 114 ms
Titan𝑎𝑙𝑙−𝐺𝑃𝑈 95ms 87ms 120ms 150ms 90ms
Jetson𝐶𝑃𝑈 −𝐺𝑃𝑈 1775ms 1539ms 1978ms 2830ms 1734ms
Jetson𝑎𝑙𝑙−𝐺𝑃𝑈 1315ms 1240ms 1478ms 2302ms 1253ms
FPGA (ours) 72 ms 66 ms 72 ms 100 ms 72 ms
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Figure 5: Aveage per-iteration runtime for each object class.

and diffusion on the CPU since these are sequential operations

that map more naturally to a general purpose processor. Sample

rendering, feature extraction, and inlier computation are accelerated

through the GPU. We use OpenGL for rendering of the samples’

geometric model and for programming the CUDA cores to perform

the inlier computation. We create a kernel to process every pixel

distance comparison concurrently. Given the high memory access

bandwidth of the GPU, we keep one copy of observation depth in

GPU main memory for each sample to access. The GPU transfers

the samples’ inlier score to the CPU through the PCIe connection

where it continues with the resampling and diffusion steps. The

data transfer between GPU and CPU is expensive and therefore, we

also created a full-GPU implementation to eliminate the transfer

time. Specifically, we moved the resampling and diffusion steps to

be computed on the GPU and program CUDA kernels to process

resampling and diffusion in parallel for each sample.

5.2 Speed

The runtime comparisons of our FPGA implementation against

CPU-GPU and full-GPU implementations on the two different GPU

platforms are shown in Table. 1. Compared to the CPU-GPU and

full-GPU implementations running on the Titan Xp, our FPGA

implementation achieved on average a 1.76X and 1.42X speedup

respectively. Running GPU-CPU and full-GPU implementations

on a Jetson board, on average we achieved a 26X and 20X speed

respectively. It should be noted that the total runtime for CPU-

GPU implementation includes time spent transferring data to/from

the CPU and GPU. As illustrated in Figure 5, on average, 33% of

CPU-GPU runtime was spent on data transfers on the GPU (as

highlighted by the hashed blue bars). The full-GPU implementation
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eliminates the data transfer inefficiency between CPU and GPU,

but still falls short of the runtime from our FPGA implementation,

despite the fact that the CPU and GPUs have faster clock rates

and larger memory and resource capacities. Objectively, the main

benefits of using an FPGA is the configuration of all the resources in

close proximity on the same fabric and pipelining data processing

across the various steps of the algorithm. This results in less time

spent for data transfers, less need to store intermediate results be-

tween steps, and more opportunity for parallel execution. Indeed, in

our experiments we found that our FPGA implementation achieves

significant runtime advantages over the GPU implmentation.

5.3 Accuracy

(a) Occluded Scene (b) Dark Scene

Figure 6: Examples of Occluded and Dark Scenes

To evaluate the algorithm accuracy, our benchmarking dataset

contains 18 RGB-D images taken from a Kinect camera with objects

from the YCB dataset [29]. Each scene contains 5–7 different objects

that are either placed in close proximity in order to cause object

occlusions or taken with limited lighting. Examples for occluded

and dark scenes are shown on Figure 6. The pose accuracy for

the inferred objects are calculated by average distance difference

between predicted pose and ground truth pose. We use ADD and

ADD-S as defined in [29] for non-symmetric and symmetric objects

respectively.

Figure 7 compares the average accuracy distance-threshold of

the five objects for (a) occluded, and (b) dark scenes for our FPGA

implementation, and the GRIP implementation of [2]. For each

plot, the vertical axes represents the percentage accuracy, while

the horizontal axes reflect the average distance threshold between

the predicted pose to the actual pose. The area under the accuracy-

threshold metric is used for determining the success of a system.

We can see from the figures that the proposed approach achieves

approximately the same performance for the dark and occluded

settings. Although the accuracy of GRIP is slightly better for smaller

distance thresholds, we see that the average accuracy reaches the

same level in precision to that of GRIP for higher distance-threshold

values. Note that the randomness of the iterated likelihood eval-

uation results in each flow outputs slightly different results for

the same objects in the same image during different trials. Thus,

this also leads to a slight difference in accuracy between the two

approaches.

5.4 Resource Usage

As mentioned in Section 2, the work of [11] proposed an FPGA

design for pose estimation based on Monte-Carlo sampling, but left

(a) Occluded Scene (b) Dark Scene

Figure 7: Pose estimation accuracy comparison of GRIP [2]

and our FPGA implemenations at various distance thresh-

olds in scenes with (a) occlusions, and (b) limited lighting.

Table 2: Resource utilization of a single raster-core design

compared to [11].

Implementation BRAM DSP FF LUT

MC𝐹𝑃𝐺𝐴 [11] 24 46 8639 7300

GRIP𝐹𝑃𝐺𝐴 (ours) 28 56 11585 10315

% change +16.7% +21% +34.1% +41.3%

Table 3: Average power and energy results.

Implementation Power Energy

Titan𝑎𝑙𝑙−𝐺𝑃𝑈 109 W 11.8 J

Jetson𝑎𝑙𝑙−𝐺𝑃𝑈 3.3 W 6.7 J

FPGA (ours) 3.85 W 0.291 J

out the feature extraction step. In Table 2 we compare the single

raster core resource usage of our proposed approach to the one

implemented in [11], which we refer to as MC𝐹𝑃𝐺𝐴 . The additional

BRAMs in our design are used for the 1-bit edge map and extra DSPs

are added for memory addressing for edge map construction. More

FFs and LUTs are needed for additional data streams and edge map

logic operations. The lack of a feature extraction step leads to lower

pose estimation accuracy, but also allows the FPGA to support 20

raster cores in the Monte-Carlo sampling design of [11] rather than

10 cores in our design. However, as shown in our results above,

our optimized design still achieves impressive runtimes and the

tradeoff of less parallelism for more accuracy may be particularly

appropriate when using this technique for robot scene perception

in adversarial environments.

5.5 Power Consumption

Power and energy comparisons among full-GPU and FPGA imple-

mentations are shown in Table 3. The FPGA power is collected

from the Vivado power analyzer, Titan power is measured through

the Nvidia Management Library, and Jetson power numbers are

measured through an on-board power monitor. Compared to the all-

GPU implementation running on the Titan Xp, our FPGA implemen-

tation achieves a 28X improvement in power and 40X improvement
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in energy. Compared to the low power Jetson, our FPGA imple-

mentation dissipates approximately the same amount of power;

however, because of the significant runtime advantage (as reported

in Table 1) our design achieves a 23X improvement in energy.

6 CONCLUSIONS

Robots have seen widespread proliferation in society. Many of

these robots rely on robust scene perception so that they may op-

erate in varied and complex environments. This has led to the

proposed use of generative-discriminative algorithms, which com-

bine inference by deep learning with sampling and probabilistic

inference models to achieve robust and adaptive perception in ad-

versarial environments. While these algorithms obtain impressive

pose estimation accuracy, their computational complexity makes

real-time execution a challenge, even if run on a high-end GPU

platform. In addition, the computational resources and energy re-

quirements can be quite substantial, which is especially problematic

for mobile robots.

In this paper, we have described a novel hardware implemen-

tation of a Monte-Carlo sampling algorithm that implements ren-

dering, feature extraction, and inlier comparison in parallel on

specialized cores. With our FPGA implementation, we are able to

achieve real-time performance without sacrificing accuracy and

with significantly reduced energy consumption. In particular, our

design runs 30% faster than a high-end GPU implementation with

only 2% of the energy consumption, and 95% faster than a low-

power GPU implementation, dissipating approximately the same

amount of power but with only 4% of the energy consumption.

Future work will consider other accuracy/runtime/energy trade-

offs for improved robot operation. We will also consider hardware

acceleration of other generative algorithms to be combined with

discriminative techniques.
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