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ABSTRACT
Convolutional neural networks (CNNs) are of increasing widespread

use in robotics, especially for object recognition. However, such

CNNs still lack several critical properties necessary for robots to

properly perceive and function autonomously in uncertain, and po-

tentially adversarial, environments. In this paper, we investigate

factors for accurate, reliable, and resource-efficient object and pose

recognition suitable for robotic manipulation in adversarial clutter.

Our exploration is in the context of a three-stage pipeline of discrim-

inative CNN-based recognition, generative probabilistic estimation,

and robot manipulation. This pipeline proposes using a SAmpling

Network Density filter, or SAND filter, to recover from potentially

erroneous decisions produced by a CNN through generative proba-

bilistic inference. We present experimental results from SAND filter

perception for robotic manipulation in tabletop scenes with both

benign and adversarial clutter. These experiments vary CNN model

complexity for object recognition and evaluate levels of inaccuracy

that can be recovered by generative pose inference. This scenario is

extended to consider adversarial environmental modifications with

varied lighting, occlusions, and surface modifications.
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1 INTRODUCTION
Even for common human environments, we are still far from ac-

curate, reliable, and resource-efficient object and pose recognition

suitable for dexterous robotic manipulation. Convolutional neural

networks (CNNs) for object recognition have recently gained wide-

spread use in robotics for scene understanding [42], dexterous object

manipulation [13], autonomous driving [1], and a plethora of com-

pelling applications. While demonstrating high accuracy, such CNNs

incur the cost of vastly complex parametric models with high energy

consumption profiles. Highly parallel and GPU computing meth-

ods have been proposed to meet the needs of CNNs computation

given the relatively unbounded resources of desktop workstations

and cloud computing.

Unfortunately, for efficiency, CNN computation has proven less

amenable to the resource budgets available to embedded platforms

and onboard processing for autonomous robots. The high computa-

tional and energy cost of CNNs is assumed to be due to complexity

of their network architectures. In particular, this complexity grows

with the number of layers and weight parameters in the network, as

well as computational operations used in training and inference.

The reliability problems robots face for object and pose recog-

nition become that much more challenging when an adversary can

modify the environment to exploit the vulnerabilities of a CNN. A

possible malicious attack has the potential to drastically alter (and

perhaps manipulate) the final behavior of a robotic system. In com-

puter vision, Szegedy et al. [37] have shown that there are many

malicious techniques that create adversarial examples. Slight modifi-

cations of an original image, often not perceptible to the human eye,

can be detrimental to neural network performance. Continued work

in computer vision [2, 3, 17, 19, 28] has further shown such mali-

cious modifications to be relatively easy to realize with the capacity

to drastically change the recognition result.

In the context of robot manipulation, an adversary may not be

able to directly alter images observed by a robot, but can alter the en-

vironment from which the robot is capturing its image observations.

The clutter that naturally occurs in common human environments

can be enough to defeat the recognition abilities of a CNN. Similar to

adversarial image manipulation, natural clutter could also be slightly

and maliciously altered to deceive a CNN used for robot perception.

Examples of such alterations include moving an object to create

an occlusion, modifying the appearance of an objects surface, or

dimming the room lights.

In this paper, we investigate factors for accurate, reliable, and

resource-efficient object and pose recognition suitable for robotic
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manipulation in adversarial clutter. Our exploration is in the context

of a three-stage pipeline of discriminative CNN-based recognition,

generative probabilistic estimation, and robot manipulation.

Within this three-stage pipeline, we posit that accurate, reli-

able, and resource-efficient robot perception could be met through

generative-discriminative approach to inference. This idea more

specifically performs generative probabilistic inference for second-

stage estimation using CNN results from first-stage estimation. The

central principle of this pipeline is to filter decisions produced by the

CNN through probabilistic inference before making hard, and poten-

tially erroneous, decisions. Embodied by our previously proposed

SAmpling Network Density filter, or SAND filter [36], this form of

inference should provide robustness to CNN errors and adversarial

alterations, explainability over probable interpretations of a scene,

and greater ability to tune for computational efficiency. Second-stage

generative inference in the SAND filter essentially serves as a recov-

ery mechanism from first-stage CNN errors that could occur, both

as false positives and false negatives. For efficiency, this ability to

recover offers the prospect of using smaller and more lightweight

CNN architectures that trade-off accuracy, for a significant reduction

in computation and energy consumption. For malicious alterations,

the ability to recover could also improve recognition robustness to

CNN errors due to deception.

Towards this end, we present experimental results from SAND

filter perception for robotic manipulation in tabletop scenes with both

benign and adversarial clutter. These experiments vary CNN model

complexity for first-stage object recognition and evaluate levels of

inaccuracy that can be recovered by second-stage pose inference.

These results compare the SAND filter approach with a baseline

using Faster-RCNN object detection followed by Iterative Closest

Point (ICP) pose estimation, as a simple pose estimation algorithm.

This scenario is extended to consider environmental modifications

by an adversary. These results provide initial insights into robot

perception and manipulation for malicious scenes with varied light

conditions, increased the level of occlusion, and alteration of the

face of an object.

2 RELATED WORK
2.1 Object detection
Recent studies have shown that convolutional neural networks are

powerful tools for vision based object detection. The classical ob-

ject detection framework, Regional Convolutional Neural Network

(RCNN) [10], is a two stage model, combining convolutional lay-

ers to extract the features of proposed bounding boxes and a linear

classifier to classify the object. Fast RCNN [9] improves the runtime

of the object detector by creating a single-stage end-to-end training

model. Faster RCNN [30] improves the performance even further by

adding two extra convolutional layers as a Region Proposal Network

(RPN) that shares convolutional layers with the object detection

network and reduces the cost of computing regional proposals. The

YOLO approach [29] gets rid of the regional proposal pipeline in

all RCNN works and presents a single pass network that generates

bounding boxes and object prediction for each feature. However, it

fails to achieve comparable accuracy as faster RCNN. The most re-

cent detection network, Mask-RCNN [43], is an extension of Faster

RCNN that adds pixel-to-pixel alignment and a binary mask to rep-

resent object spacial layout, which greatly improves the detection

accuracy. However, Mask-RCNN requires that the training images

be segmented labels. There has been other research concerning the

datasets used to train the CNN for object detection. The works of

Lai et al. [20, 21] and Silberman et al. [25] use RGBD datasets that

contain fairly small amounts of training data comparing to ImageNet.

These representative datasets resemble of the scale of training as-

sumed in this paper. These works show that we do not necessarily

need a large dataset to achieve high accuracy. Given the small size

of our current training dataset and the relatively high accuracy of

its object detector, we choose to use faster-RCNN in our baseline

approach.

Long et al. [22] propose fully convolutional networks (FCN)

for semantic segmentation by replacing fully connected layers in

traditional CNN with 1 × 1 convolutional layers. FCNs take images

of arbitrary size and provide per-pixel classification labels. However,

FCNs are not able to separate neighboring objects within the same

category to obtain instance-level labels; hence we cannot directly

re-task FCN for object detection purposes. Nonetheless, most unified

approaches are based on FCN to localize and classify objects using

the same networks. Recently, there has been a trend to utilize FCN

to perform both object localization and classification [31], [30] [29],

[16]. Sermanet et al. propose an integrated CNN framework for

classification, localization and detection in a multiscale and sliding

window fashion [31]. Morris et al. [23] propose a fully-convolutional

Pyramid Network in operate at successive resolutions as information

flows up the pyramid to the lowest resolution. In our work, the

input to our SAND filter’s CNN stage is a pyramid of images with

different scales in order to generate a heatmap for the second stage.

To perform object detection we replace fully connected layers with

convolutional layers.

2.2 Robot object manipulation
Reliable operation of autonomous mobile manipulators remains an

open challenge for robotics, where perception remains a critical

bottleneck. Within the well-known sense-plan-act paradigm, truly

autonomous robot manipulators need the ability to perceive the

world, reason over manipulation actions afforded by objects towards

a given goal, and carry out these actions in terms of physical motion.

However, performing manipulation in unstructured and cluttered

environments is particularly challenging due to many factors. Par-

ticularly, to execute a task with specific grasp points demands first

recognizing object and estimating its precise pose.

For object and pose estimation, PR2 interactive manipulation [4]

segments non-touching objects from a flat surface by clustering of

surface normals. This work uses RGBD data from cameras that

provide both color and depth values at every pixel. Similarly, Collet

et al.presented a discriminative approach, MOPED, to detect object

and estimate object pose using iterative clustering-estimation (ICE)

using multiple color cameras [5]. Narayanan et al. [24] integrate A*

global search with the heuristics neural networks to perform scene

estimation from RGBD, assuming known identification of objects.

Papazov et al. [27] used a bottom-up approach of matching the 3D

object geometries using RANSAC and retrieval by hashing methods.

Deep learning on RGBD has also been applied to robotic grasp

detection through deep reinforcement learning, such as work by
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Gualtier et al. [12], and supervised shape completion, such as by

Varley et al. [41]. For manipulation in cluttered environments, Ten

Pas et al. have shown success detecting viable grasp poses in RGBD

point clouds using geometric inference [39] and estimation by deep

neural networks [38]. Sui et al. [35] built on these methods to recog-

nize objects as well as graspable poses, in order to perform purpose-

ful goal-directed manipulation. This work combines the output of

discriminative inference methods, such as CNNs, with probabilistic

generative inference to improve robustness. While demonstrating

effectiveness, the methods above use neural network architectures,

such as VGG16, that is expensive in both computation and energy.

These models also assume improved recognition accuracy directly

implies improvement in robot manipulation, which needs greater

validation experimentally.

2.3 Adversarial attacks
Szegedy et al.[37] demonstrated that adversarial examples are mis-

classified by different classifiers both in the case of different archi-

tectures or different subsets of the training data[17] [2][40]. These

results are confirmed also in cases where the differences between

these examples were indistinguishable to the human eye. Kurakin et
al. [19] confirmed the results in a simple physical scenario. Papernot

et al. [28] showed a case of a black-box attack against a neural

network, where adversaries have no knowledge about the model.

Others works proposed a possible solution during the training phase:

Panda et al. [26] proposed to inject random noise on the training

data and Zheng et al. [44] presented a stability training method to

avoid mis-prediction due small input distortion.

Defending against adversarial examples is hard because it requires

neural network models to produce good outputs for every possible

input; however, in a physical scenario neural networks must work

well only on a very small number of all the many possible inputs.

In this work, in order to deal with adversarial scenarios, we chose

to not modify the initial training set, thereby avoiding an excessive

human effort during the data collection phase.

3 PROBLEM DESCRIPTION
Our casting of the robotic manipulation problem takes as input

RGBD observations from the robot’s camera and outputs a motion

trajectory for robot execution of a manipulation action. The resulting

motion trajectory is assumed to be executed by a low-level motion

controller. This execution is considered successful if the object acted

upon ends up in a desired position and orientation, within some

given tolerance. The robot manipulation problem has three stages:

detection of relevant objects, pose estimation for these objects, and

generation of the manipulation motion trajectory. For object detec-

tion, inputs are given as an RGB observation z that views a scene

of k∗ relevant objects. The first stage of the process will estimate

this scene as a collection of k objects. Each object i will have an

estimated object label oi and 2D image-space bounding box bi . Ob-

ject labels are strings containing a semantic identifier of the object’s

class, assumed to be a human-intuitive reference. In the second stage,

a six degree-of-freedom object pose qi will be estimated for each

object in the frame relative to the robot’s camera. We assume that

every object is independent of all other objects. Thus, the state of

an individual object i in the scene is represented as xi = {qi ,bi ,oi }.

Figure 1: Framework overview of baseline approach and SAND
filter approach. Both approaches aim to recognize objects and
their poses from a robot’s color and depth sensing. The flow in
the grey background is the baseline approach which performs
the hard thresholding in the first stage and uses the ICP al-
gorithm for the second stage. In contrast, the SAND filter ap-
proach avoids making a hard threshold in the object detection
stage so that the generative sampling method can explore over
a larger state space.

In the third stage, manipulation actions u are computed to move a

particular object j from its estimated pose qj to a desired goal pose

qG
j

. This third stage forms as a sequence of robot configurations u

that will be used to control the robot’s actuators, assuming low-level

motor control. The formation of these trajectories for u are mostly

considered through the invocation of one of many possible motion

planning algorithms [34]. The perception problem we focus on this

this paper only considers the first two of these three stages.

4 METHODS
In this section, we first discuss the baseline approach composed

of Faster-RCNN plus a simple pose estimation method. Next, we

describe the SAND filter approach composed by a pyramid-CNN

followed by a sampling-based local search method. Both approaches

are two-stage methods where the first stage performs object detection

and the second stage performs pose estimation. However, instead

of making hard decisions in both stages as is done in the baseline

approach, the SAND filter approach avoids the need for hard thresh-

olding in the first stage, which allows for a more robust estimation

process in the second stage. Figure 1 describes the flow of the two

approaches.

4.1 Faster-RCNN and Simple Pose Estimation
We implemented Faster-RCNN detection across a set of CNN ar-

chitectures of varying complexity. The purpose of Faster-RCNN is

to return the evaluation of bounding box regions for all objects in
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a color image from a robot view. Each evaluation returns the con-

fidence the object observed in the bounding box that belongs to a

particular object class.

Faster-RCNN uses the Regional Proposal Network (RPN), a fully

convolutional network that can predict object locations, represented

as bounding boxes. RPN is followed by a classification network that

shares extracted features from the convolutional layers. The classi-

fication network predicts object classes using the softmax function

given the bounding boxes. Between RPN and a classification net-

work, there is a Region of Interest (ROI) pooling operation for feature

extraction from RPN. We adopt the pooling operation (ROIAlign)

from [43] since it preserves exact spatial location.

In our work, we implement Faster-RCNN with a number of vari-

ations across the VGG[33], ResNet[14], and AlexNet[18] network

architectures. The network configuration is shown in Table 1. For

the VGG network, we use all 5 levels of the convolutional layers to

extract image features for RPN and the rest of the fully connected

layers as the classification network to generate object classes from

the proposed region. For ResNet, we use the first 3 residual block

layers that share convolution features with RPN and the last resid-

ual layer as the classification network. For AlexNet, we use all 5

convolutional layers for RPN and all 3 fully connected layers as the

classification layer.

Table 1: Faster RCNN network configuration

Network RPN Classification Network
AlexNet 5 conv layers 3 FC layers

VGG all conv layers 3 FC layers

ResNet first 3 residual layers last residual layers

The purpose of the second stage is to estimate the object pose, qi ,
given a bounding box, bi , and an object label, oi , from the first stage.

By extracting the corresponding point cloud of bi and the object

geometry of oi , Iterative Closest Point (ICP) is then used to estimate

the pose, qi .
ICP is a discriminative method that minimize the energy be-

tween two sets of points sets iteratively. The energy term is defined

as the sum of Euclidean squared error between two point clouds.

During each iteration, ICP will select two subsets of points using

RANSAC [8] from their corresponding point clouds to calculate the

energy. In this work, we adopt the off-the-shelf ICP implementation

from Point Cloud Library (PCL)1. Due the nature of our scene, we

initialize the object pose prior to ICP by computing the centroid posi-

tion of the cropped point cloud. Once the energy between two point

sets is lower than the convergence criterion, we obtain a rotation, R,

and translation, t , that represents the transformation from the initial

pose to the final object pose, qi .

4.2 SAmpling Network Density (SAND) Filter
Sui et al. [36] propose the two-stage SAND filter approach for

robust object detection along with accurate 6DoF pose estimation.

The SAND filter approach builds upon both CNN and generative

sampling-based search methods for sampling the network density.

Unlike the Faster-RCNN used in the baseline approach for the first

1http://pointclouds.org/

stage, the pyramid-CNN is proposed in the SAND filter approach to

avoid hard thresholding in the first stage. In addition, the generative

sampling method for pose estimation in the second stage can take

full advantage of the probability density provided by pyramid-CNN.

The output of the pyramid-CNN is a pyramid of heatmaps which

serves as proposals to the second stage. Each pixel in the heatmap

represents a bounding box with a categorical distribution of all object

classes and each heatmap corresponds with a fixed shape of bounding

box. As there are no hard thresholdings in the pyramid-CNN, the

number of proposals for the second stage is much more than the

thresholded detection results from the Faster-RCNN in the baseline

approach. Although more proposals lead to more false positives,

the second stage can be better informed to find objects which are

originally false positives in the baseline approach. In the work by

Sui et al. [36], the fully connected layers in VGG-16 are replaced

with 1 × 1 convolutional layers to perform object detection in each

window location. In this paper, we try the same set of network

architectures in pyramid-CNN and replace the fully connected layers

with convolutional layers.

The generative sampling-based search in the second stage for the

pose estimation of the SAND filter is inspired by sampling methods,

such as the boostrap filter [11]. This method takes a full probability

density from the pyramid-CNN and performs a search over the pose

state space weighted by the density prior. Given an object class, a

collection of samples used to represent pose state hypotheses are

first initialized by importance sampling over the pyramid heatmaps.

The weight of each sample is a linear combination of the object

classification confidence from the first stage and the geometric con-

fidence. The geometric confidence is evaluated by comparing the

cropped observation point cloud with the rendered point cloud given

the pose hypothesis in the sample. The comparing function counts

the number of points in these two point clouds match each other.

After the weights evaluation, a resampling and diffusion process

is performed over the collection of samples. The search process

of evaluation-resampling-diffusion repeats until convergence of the

object pose.

5 ANALYSIS
In this section, we first describe the performance metrics for first

and second stage. We then compare the performance between the

baseline approach and the SAND filter approach. We choose to

analyze AlexNet as well as various versions of VGG, and ResNet

for our network benchmarks. All the networks are pre-trained on

the ImageNet dataset [6] and then fine-tuned on our dataset, which

contains 15 household objects. The object detector is implemented

in PyTorch and trained on an Nvidia Titan Xp.2

5.1 Performance Metrics
To compare the detection results, we adopt the evaluation framework

from the Pascal VOC Challenge [7]. Each detection output, which

consists of 2D coordinates with a confidence score, is assigned to a

ground truth bounding box. If the overlapping area, or intersection

over union (IoU), between the detection and ground truth is over 0.5,

we consider the detection as a match, or true positive (TP), otherwise,

2http://pytorch.org/
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it is a false positive (FP). If no detections satisfy the overlapping

criterion with the ground truth, it becomes a false negative (FN).

We further calculate the average precision for each object class

in our dataset. Average Precision (AP) is the mean precision given

different recall thresholds, which describes the shape of the PR curve.

Precision is defined as T P
T P+F P , and recall is defined as T P

T P+FN . We

can then obtain one AP for each object class, and the mean average

precision (mAP) of all object classes.

For evaluating pose accuracy, we adopt the metric from [15] to

measure the mean of the pairwise point distance from two sets of

point clouds. This metric can also account for symmetric objects,

which is useful in comparing daily household objects.

5.2 Object Detection (First Stage) Accuracy

Table 2: Object detection (first stage) accuracy among different
networks with progress dataset

Network Faster-RCNN(mAP) Pyramid-CNN(mAP)
(baseline) (SAND filter)

AlexNet 0.860 0.327

VGG11 0.885 0.246

VGG13 0.915 0.279

VGG16 0.926 0.296

VGG19 0.896 0.247

ResNet18 0.903 0.225

ResNet34 0.914 0.188

ResNet50 0.919 0.242

ResNet101 0.897 0.236

ResNet152 0.924 0.217

Table 2 reports the accuracy achieved by the object detector im-

plemented with various CNN models from the first stage of Faster-

RCNN and Pyramid-CNN. We can see that for the object detection

stage of Faster-RCNN, more complex networks do not necessarily

generate better results than smaller networks, even though more

complex networks can produce less prediction error on ImageNet.

For example, VGG16 has higher mAP accuracy than VGG19 and

similarly ResNet50 has higher mAP than ResNet101. This result is

due in part to the limited size of our training dataset. The dataset we

used to finetune the network is small compared to ImageNet and also

category specific (i.e., 15 household objects). This means a lot of

detectors in more complex models are not learning meaningful fea-

tures of the objects and thus not contributing to the overall detection

accuracy. As mentioned in Section 2.1, we do not necessarily need a

large dataset to acheive high accuracy. However, a small dataset does

not necessarily indicate we should always choose a small network.

For the Pyramid-CNN, we can see that the performance on object

detection is much lower than the Faster-RCNN since Pyramid-CNN

does not perform hard thresholding for the object detection stage.

That is, it generates many more detection outputs that lead to more

false positives. We used offline hard example mining [32] to reduce

some of these false positives. Hard example mining effectively takes

the falsely detected images during the validation phase, explicitly

creates negative examples out of these images, and adds the nega-

tive examples to the training set.3 However, while we still end up

with more false positives (even with hard example mining), by not

thresholding, our approach makes the generative sampling in the

second stage of the SAND filter explore and search more thoroughly

in order to correct false detections. As we will demonstrate in Sec-

tion 6, this also makes our approach less susceptible to mistakes

from conditions that mimic adversarial attacks.

5.3 Pose Estimation (Second Stage) Accuracy

Table 3: Pose estimation (second stage) accuracy among differ-
ent networks using a distance threshold of 0.1m.

Network ICP Acc(%) Particle Filtering Acc(%)
(baseline) (SAND filter)

AlexNet 0.662 0.788

VGG11 0.707 0.742

VGG13 0.687 0.753

VGG16 0.702 0.758

VGG19 0.707 0.783

ResNet18 0.697 0.727

ResNet34 0.697 0.646

ResNet50 0.692 0.727

ResNet101 0.697 0.712

ResNet152 0.697 0.682
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Figure 2: The final pose estimation accuracy of the baseline ap-
proach composed of Faster-RCNN and ICP. The y-axis is the
accuracy percentage based on different distance threshold on
x-axis.

3 Note that this extra hard example mining step does not have any effect on the accuracy
of Faster-R-CNN since it performs thresholding. It is therefore not used for the baseline
experiments.
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Figure 3: The final pose estimation accuracy of the SAND fil-
ter approach composed of Pyramid-CNN and particle filtering.
The y-axis is the accuracy percentage based on different dis-
tance threshold on x-axis.

Figures 2 and 3 show the accuracy vs. distance threshold results

for the pose estimation stage given the first stage results generated

from the various CNN models. Table 3 shows the numerical accuracy

of the second stage using a distance threshold of 0.1m. Note that

direct comparisons between pose estimation accuracy values and

object detection accuracy values are not meaningful since these

values are derived in different ways.

However, for the baseline approach, we can see that lower first

stage accuracy does not necessarily mean that this will lead to lower

second stage accuracy. For example, VGG11 and VGG16 have

significant accuracy differences in the first stage, but achieve the

same pose estimation accuracy in the second stage. These results

demonstrate that the object detection accuracy should not be the sole

predictor of accuracy in the pose estimation stage. Using smaller

CNNs for detection can generate comparable result as using bigger

networks.

The same conclusion can be applied to the pyramid-CNN used

in the SAND filter approach. AlexNet has a simpler network than

VGG; however, its pose estimation performance is better. In general,

we observe that for pyramid-CNN a higher first stage accuracy can

help to reach a higher second stage accuracy, but it is not always

necessary. For example, VGG19 and VGG11 have lower first stage

accuracy than VGG16, but they have same or better second stage

accuracy.

Shown in Figure 4, we compare the pose estimation accuracy of

the baseline and SAND filter approaches using AlexNet, VGG16,

and ResNet50 for the object detection stage. We see that the SAND
filter approach is consistently and significantly better than the base-
line approach within a tighter distance threshold, e.g. 0.02 meter. For

the 0.1 meter threshold, SAND filter approach is still better than the

baseline approach.
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Figure 4: Pose accuracy of the SAND filter approach comparing
with baseline approach.

6 ROBOTIC EXPERIMENT
In this experiment, we compare the robot grasping results using

Faster-RCNN and our SAND filter method for the object detection

and pose estimation stages to get an initial understanding of how

these two approaches might perform under adversarial attack. The

task for the robot is to recognize the Coke can and then pick and place

it on the black tray. Due to limited time and space, it was possible

to perform the robot experiment with only one architecture, for

either Faster-RCNN or Pyramid-CNN. Hence, our choice was to use

VGG16 because it is the CNN architecture with the highest object

detection accuracy and nearly highest pose estimation accuracy for

Faster-RCNN, giving the baseline the best chance to succeed with

the adversarial example.

Figure 5 shows the results from these two methods. We first make

a basic scene with normal light condition and minimum occlusion of

objects in our dataset ("Coke", "clorox", "downy" and "ranch"). We

then mimic three adversarial scenes by changing the light conditions,

making the Coke can partially occluded and altering the surface of

the Coke. In the basic scene, both Faster-RCNN and our two-stage

method correctly recognize all the objects and the robot successfully

picks and places the Coke on the tray. However, in the adversarial

scenes, the performance of Faster-RCNN is not satisfactory while

the two-stage method remains reliable. In the dark scene, Faster-

RCNN only detects one object, but it is a false positive, while our

SAND filter method finds three objects correctly though missing

the "ranch". When the Coke is partially occluded or wrapped with a

cover, Faster-RCNN fails to detect it, while the SAND filter approach

not only gives the correct label and bounding box but also a good

pose estimation, so that the robot succeeds in picking and placing.
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(a) Basic Scene (b) Faster-RCNN Detection (c) Two-Stage Detection (d) Grasping

(e) Dark Scene (f) Faster-RCNN Detection (g) Two-Stage Detection (h) Grasping

(i) Cluttered Scene (j) Faster-RCNN Detection (k) Two-Stage Detection (l) Grasping

(m) Surface-Change scene (n) Faster-RCNN Detection (o) Two-Stage Detection (p) Grasping

Figure 5: The robot task is to pick the can of Coke and place it on the black tray under various adversarial scenes. One basic scene
(a) and three adversarial scenes (b)(c)(d) are shown above. (b) is a dark scene, (c) is a cluttered scene in which the Coke is partially
occluded, and (d) is a scene in which the Coke is wrapped with a brown cover. Figures (b)(f)(j)(n) show the detection results from the
Faster-RCNN detector with a threshold of 0.5. The Faster-RCNN detector was not able to detect the Coke in those adversarial scenes.
Figures (c)(g)(k)(o) show the detection results from the two-stage SAND filter method. The detector missed the bottle of ranch in the
dark scene, but successfully detected all the Coke cans and other objects in our dataset. Figure (d)(h)(i)(p) show the moment when
the robot successfully picked up the Coke can, given the detection from the SAND filter method.

7 CONCLUSIONS
In this paper, we explore the role of convolutional neural networks

for robust robot manipulation, where the CNN is used for object

detection in the first stage of a three stage process. Furthermore, we

explore how a generative sample approach for pose estimation in the

second stage can improve performance of the robot. In particular,

we show that the accuracy gains of increasing network complexity

of the CNN used in the first stage may not be necessary to obtain
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high accuracy. Furthermore, we show that relying solely on the

CNN to make hard decisions for scene perception tasks leaves open

several challenges and vulnerabilities, especially when dealing with

complex scenes (e.g., with non-ideal lighting or clutter). By using

a two-stage SAND filter process that avoids hard thresholding of

the CNN output and instead performs generative sampling on a heat

map of object proposals, we demonstrate its promise in providing

robust robot manipulation for complex scenes. We posit that these

complex scenes may also have some similarities to scenarios used

for malicious attacks. Future work will include a more thorough

investigation of adversarial attack strategies, how they may alter

scenes, and how generative-descriminative approaches may be used

to more robustly handle these attacks.
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