Super-resolution with Structured Motion

Gabby Litterio, David Lizarazo-Ferro, Pedro Felzenszwalb, Rashid Zia

Brown University

Overview

• Super-resolution: reconstruct high-resolution image from one or more low-resolution images.

Overview

- Super-resolution: reconstruct high-resolution image from one or more low-resolution images.
- Focus on imaging constraints, low-level priors and sensor/camera motion.
- Connection between super-resolution and box filters.
- We recover high-resolution images using motion blur.

Multiple sub-pixel translations

1 of 64 images

Interlaced data

Deconvolution

Multiple sub-pixel translations

1 of 64 images

Interlaced data

Deconvolution

Multiple sub-pixel translations

Interlaced data

Deconvolution

Multiple sub-pixel translations

1 of 64 images

Interlaced data

Deconvolution

Multiple sub-pixel translations

1 of 64 images

Interlaced data

Deconvolution

Static Image

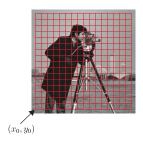
Trajectory

Image

Reconstruction

Imaging Model

Camera with a translating sensor (or equivalent).



Sensor integrates brightness g(x, y) over square pixels.

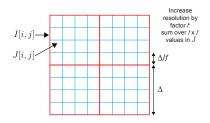
Static exposure

$$I[i,j] = \int_0^\Delta \int_0^\Delta g(x_0 + i\Delta + x, y_0 + j\Delta + y) dx dy.$$

Moving exposure

$$I[i,j] = \int_0^T \int_0^\Delta \int_0^\Delta g(x_0(t) + i\Delta + x, y_0(t) + j\Delta + y) dx dy dt.$$

Box Convolution



$$I = (J \otimes B) \downarrow_f$$

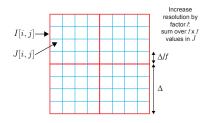
f: resolution increase factor

J: high-resolution image

1: low-resolution image

 $B: f \times f$ box filter

Box Convolution



$$I = (J \otimes B) \downarrow_f$$

f: resolution increase factor

J: high-resolution image

1: low-resolution image

 $B: f \times f$ box filter

Capturing a super-resolution image

- 1) $f \times f$ subpixel shifts \rightarrow collection of images $\{I_{k,l}\}$.
- 2) Interlacing $\{I_{k,l}\} \to H$.

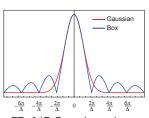
$$H = J \otimes B$$

3) Recovering J involves a deconvolution.

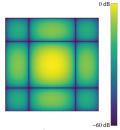
Box Filter

$$H = J \otimes B$$

- Luckily, a box filter is a bad low-pass filter.
- *H* determines most of the Fourier coefficients of *J*.
- In this setting sparse signals can be be recovered with convex optimization [Donoho 89] [Candes, Romberg, Tao 06] [F 25].



FT of 1D Gaussian vs box



DFT of a 4x4 box

Revisiting the Limits of Super-Resolution [Baker and Kanade]

[Baker and Kanade] The Limits of Super-Resolution and How to Break them, 2002.

Revisiting the Limits of Super-Resolution [Baker and Kanade]

[Baker and Kanade]

The Limits of Super-Resolution and How to Break them, 2002.

Two (particular) solutions J with $H = (J \otimes B)$

TV prior

Revisiting the Limits of Super-Resolution [Baker and Kanade]

[Baker and Kanade]

The Limits of Super-Resolution and How to Break them, 2002.

Two (particular) solutions J with $H = (J \otimes B)$

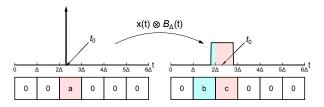
77 Quadratic prior [BIX]

Sparse images can be recovered via convex optimization:

$$J^* = \operatorname*{argmin}_{J} ||H - (J \otimes B)||_2^2 + \lambda TV(J)$$
 $TV(J) = \sum_{i,j} |J[i,j] - J[i+1,j]| + |J[i,j] - J[i,j+1]|$

Motion Blur Can Help

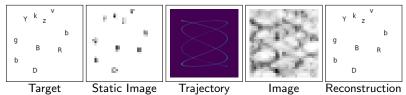
Localizing a point source in one dimension



$$a = b + c,$$
 $t_0 = (k + 0.5)\Delta + c/(b + c)).$

Motion Blur for Super-Resolution

We can use large motions to superimpose multiple low-res images.



$$I = (J \otimes Q \otimes B) \downarrow_f$$

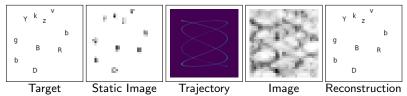
Q: occupancy mask (blur kernel)

Reconstruction:

$$J^* = \underset{I}{\operatorname{argmin}} ||I - (J \otimes Q \otimes B) \downarrow_f ||_2^2 + \lambda ||J||_1$$

Motion Blur for Super-Resolution

We can use large motions to superimpose multiple low-res images.



$$I = (J \otimes Q \otimes B) \downarrow_f$$

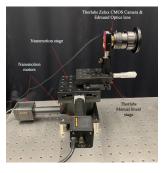
Q: occupancy mask (blur kernel)

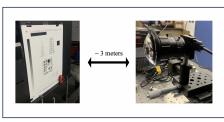
Reconstruction:

$$J^* = \underset{I}{\operatorname{argmin}} ||I - (J \otimes Q \otimes B) \downarrow_f ||_2^2 + \lambda ||J||_1$$

Blind deconvolution (solving for Q/J simultaneously) can increase resolution

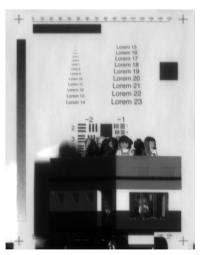
Experimental Setup





Multiple Shifts

Static image (1 of 64)



TV reconstruction

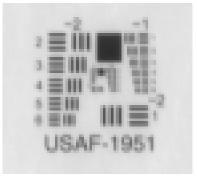
Multiple Shifts

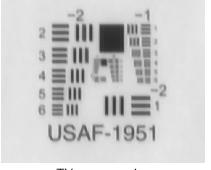


Static image (1 of 64)

TV reconstruction

Scanning Motion





Static image

TV reconstruction

Summary and Future Work

- Sparse image priors resolve the ambiguity of super-resolution under translation.
- We can recover high-resolution images using motion blur.
- Other implementations: pixel-shift camera, nano-positioning stage, satellite/drone, etc.
- Multiple pixel sizes (magnifications) can remove all ambiguities.

