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Overview

• Super-resolution: reconstruct high-resolution image from one or more
low-resolution images.

• Focus on imaging constraints, low-level priors and sensor/camera motion.

• Connection between super-resolution and box filters.

• We recover high-resolution images using motion blur.
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Imaging Model

Camera with a translating sensor (or equivalent).

Sensor integrates brightness g(x , y) over square pixels.

Static exposure

I [i , j] =

∫ ∆

0

∫ ∆

0
g(x0 + i∆+ x , y0 + j∆+ y)dxdy .

Moving exposure

I [i , j] =

∫ T

0

∫ ∆

0

∫ ∆

0
g(x0(t) + i∆+ x , y0(t) + j∆+ y)dxdydt.



Box Convolution

Increase 
resolution by 

factor  :
sum over   x _ 

values in _

∆

∆/_ 

I = (J ⊗ B) ↓f
f : resolution increase factor
J: high-resolution image
I : low-resolution image
B: f × f box filter

Capturing a super-resolution image

1) f × f subpixel shifts → collection of images {Ik,l}.
2) Interlacing {Ik,l} → H.

H = J ⊗ B

3) Recovering J involves a deconvolution.
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Box Filter

H = J ⊗ B

• Luckily, a box filter is a bad low-pass filter.

• H determines most of the Fourier coefficients of J.

• In this setting sparse signals can be be recovered with convex optimization
[Donoho 89] [Candes, Romberg, Tao 06] [F 25].
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Revisiting the Limits of Super-Resolution [Baker and Kanade]

[Baker and Kanade]
The Limits of Super-Resolution and How to Break them, 2002.

Two (particular) solutions J with H = (J ⊗ B)

H Quadratic prior [BK] TV prior

Sparse images can be recovered via convex optimization:

J∗ = argmin
J

||H − (J ⊗ B)||22 + λTV (J)

TV (J) =
∑
i,j

|J[i , j ]− J[i + 1, j ]|+ |J[i , j ]− J[i , j + 1]|
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Motion Blur Can Help

Localizing a point source in one dimension

0 Δ 2Δ 3Δ 4Δ 5Δ 6Δ
t

0 Δ 2Δ 3Δ 4Δ 5Δ 6Δ
t

0 0 a 0 0 0

x(t) ⊗ BΔ(t)

t0 t0

0 b c 0 0 0

a = b + c,

t0 = (k + 0.5)∆ + c/(b + c)).



Motion Blur for Super-Resolution

We can use large motions to superimpose multiple low-res images.

Target Static Image Trajectory Image Reconstruction

I = (J ⊗ Q ⊗ B) ↓f
Q: occupancy mask (blur kernel)

Reconstruction:

J∗ = argmin
J

||I − (J ⊗ Q ⊗ B) ↓f ||22 + λ||J||1

Blind deconvolution (solving for Q/J simultaneously) can increase resolution
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Experimental Setup



Multiple Shifts

Static image (1 of 64) TV reconstruction
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Scanning Motion

Static image TV reconstruction



Summary and Future Work

• Sparse image priors resolve the ambiguity of super-resolution under
translation.

• We can recover high-resolution images using motion blur.

• Other implementations: pixel-shift camera, nano-positioning stage,
satellite/drone, etc.

• Multiple pixel sizes (magnifications) can remove all ambiguities.

|DFT(B4)| |DFT(B7)| |DFT(B4)|+ |DFT(B7)|


