
Object Detection

Yali Amit, University of Chicago
Pedro Felzenszwalb, Brown University
Ross Girshick, Facebook AI Research

Related Concepts

– Object Recognition
– Image Classification

Definition

Object detection involves detecting instances of objects from one or several
classes in an image.

Background

The goal of object detection is to detect all instances of objects from one or
several known classes, such as people, cars or faces in an image. Typically only
a small number of objects are present in the image, but there is a very large
number of possible locations and scales at which they can occur and that need
to somehow be explored.

Each detection is reported with some form of pose information. This could
be as simple as the location of the object, a location and scale, a bounding
box, or a segmentation mask. In other situations the pose information is more
detailed and contains the parameters of a linear or non-linear transformation.
For example a face detector may compute the locations of the eyes, nose and
mouth, in addition to the bounding box of the face. An example of a bicycle
detection that specifies the locations of certain parts is shown in Figure 1. The
pose could also be defined by a three-dimensional transformation specifying the
location of the object relative to the camera.

Object detection systems construct a model for an object class from a set
of training examples. In the case of a fixed rigid object only one example may
be needed, but more generally multiple training examples (often hundreds or
thousands) are necessary to capture certain aspects of class variability. Broadly
speaking, less training data is needed when more information about class vari-
ability can be explicitly built into the model. However, it may be difficult to
specify models that capture the vast variability found in images. An alternative
approach is to use methods such as convolutional neural networks [1] that learn
about class variability from large datasets.

Object detection approaches typically fall into one of two major categories,
generative methods (see, e.g., [2,3,4,5,6]) and discriminative methods (see, e.g.,
[7,8,9,10,11]). A generative method consists of a probability model for the pose
variability of the objects together with an appearance model: a probability model
for the image appearance conditional on a given pose, together with a model for
background, i.e. non-object images. The model parameters can be estimated



from training data and the decisions are based on ratios of posterior probabili-
ties. A discriminative method typically builds a classifier that can discriminate
between images (or sub-images) containing instances of the target object classes
and those not containing them. The parameters of the classifier are selected to
minimize mistakes on the training data, often with a regularization bias to avoid
overfitting.

Fig. 1. A bicycle detection specified in terms of the locations of certain parts.

Other distinctions among detection algorithms have to do with the computa-
tional tools used to scan the entire image or search over possible poses, the type
of image representation with which the models are constructed, and what type
and how much training data is required to build a model.

Theory

Images of objects from a particular class are highly variable. One source
of variation is the actual imaging process. Changes in illumination, changes in
camera position as well as digitization artifacts, all produce significant variations
in image appearance, even in a static scene. The second source of variation is due
to the intrinsic appearance variability of objects within a class, even assuming
no variation in the imaging process. For example, people have different shapes
and wear a variety of clothes, while the handwritten digit 7 can be written with
or without a line through the middle, with different slants, stroke widths, etc.
The challenge is to develop detection algorithms that are invariant with respect
to these variations and are computationally efficient.

Invariance

The brute force approach to invariance assumes training data is plentiful and
represents the entire range of object variability. Invariance is implicitly learned
from the data while training the models. In recent years, with the increase in
annotated dataset size and computational acceleration using GPUs, this has
been the approach of choice in the context of the multi-layer convolutional neural
network paradigm, as discussed later in this article.



When training data is limited it is necessary to build invariance into the
models. There are two complementary methods to achieve this. One involves
computing invariant functions and features, the other involves searching over
latent variables. Most algorithms contain a combination of these approaches.
For example many algorithms choose to apply local transformations to pixel in-
tensities in such a way that the transformed values are invariant to a range of
illumination conditions and small geometric variations. These local transforma-
tions lead to features and the array of feature values is the feature map. More
significant transformations are often handled through explicit search of latent
variables or by learning the remaining variability from training data.

Invariant functions and features This method constructs functions of the data
that are invariant with respect to the types of variability described above and
can still distinguish between object and background images. This may prove
difficult if object variability is extensive. Invariant functions that produce the
same output no matter the pose and appearance of the object necessarily have
less discriminative power.

There are two common types of operations leading to invariant functions.
The first involves computing local features that are invariant to certain image
transformations. The second operation involves computing geometric quantities
that are invariant to some or all three-dimensional pose variation. For example
the cross-ratio among distinguished points is a projective invariant that has been
used to recognize rigid objects (see, e.g., [12]).

An example of a local feature, invariant to certain photometric variations
and changes in illumination, is the direction of the image gradient, from which
a variety of edge features can be computed. More complex features capture the
appearance of small image patches and are often computed from edge features.
An example would be the histogram of gradient (HOG) features [10]. Local
features are usually computed at a dense grid of locations in the image, leading to
a dense feature map. Features such as HOG were designed by practitioners based
on a variety of considerations involving the desired invariance, and at times were
motivated by certain analogies to biological processing in the visual system. An
alternative approach, implemented in multi-layer convolutional neural networks,
learns the local features as well as intermediate and higher-level features as
part of the training process. Interestingly, the low-level features learned by such
networks often resemble oriented edge detectors, like the designed features.

Local pooling of features is commonly used to introduce some degree of in-
variance to small geometric variations. A typical example is the max or sum
operation [13,2]. In this case a quantity that is to be computed at a pixel is
replaced by the maximum or sum of the quantity in a neighborhood of the pixel.
When the region is extended over the entire window the result is a bag of features
model [14], which counts the number of binary features of different types that
occur within a window. In this case all spatial information is lost, leading to
models that are invariant to fairly large geometric transformations.

For computational reasons it is often useful to sparsify the feature map by
applying local decisions to find a small set of interest points. The assumption



is that only certain features are useful (or necessary) for object detection. The
approach yields sparse feature maps that can be processed much more efficiently.
Examples of commonly used sparse features are SIFT descriptors [15], corner
detectors and edge conjunctions [2]. One drawback of sparse features is that
hard decisions are being made on their presence, and if some are missed an
algorithm may fail to detect an instance of the object.

Note that it is possible to predefine a very large family of features that is
never fully computed, rather, in training an informative subset is selected that
can produce the required classification for a particular object class. One example
are the Haar features that compute differences of intensity averages in adjacent
rectangles of varying sizes and locations [8]. Another example are geometric edge
arrangements of increasing complexity.

Latent variables An explicit parameterization of the object variability can be
defined via latent variables that are not directly observable from the image data.
These are not necessarily needed for the final report on the object detections,
but their values simplify the solution of the detection problem. For example to
detect faces at a range of orientations, at each candidate region one could decide,
for each possible orientation, whether or not the region contains a face at that
orientation. In general a set Θ defines latent parameters that could capture
global illumination parameters, a linear or non-linear map from a model domain
into the image domain, or specify the locations of a finite set of object parts.
The last case is common in part-based models where latent part placements are
used to decide if the object might be present at a particular location in the
image [11]. The set of possible latent values, Θ, can be quite large or infinite.
This leads to computational challenges that have been addressed by a variety
of methods including coarse-to-fine computation, dynamic programming and
geometric alignment.

Detection via Classification

The most common approach to object detection reduces the problem to one
of classification. Consider the problem of detecting instances from one object
class of fixed size but varying positions in the image. Let W denote a reference
window size that an instance of the object would occupy. Let L denote a grid
of locations in the image. Let Xs+W denote the image features in a window
(sub-image) with top-left corner at s ∈ L. One can reduce the object detection
problem to binary classification as follows. For each location s ∈ L classify
Xs+W into two possible classes corresponding to windows that contain an object
and windows that do not contain an object. The sliding-window approach to
object detection involves explicitly considering and classifying every possible
window. Note that the same approach can be used to detect objects of different
sizes by considering different window sizes or alternatively windows of fixed size
at different levels of resolutions in an image pyramid. Clearly the number of
windows where the classifier needs to be computed can be prohibitive. Many



computational approaches find ways to narrow down the number of windows
where the classifier is implemented.

Generative Models

A general framework for object detection using generative models involves mod-
eling two distributions. A distribution p(θ; ηp) is defined on the possible latent
pose parameters θ ∈ Θ. This distribution captures assumptions on which poses
are more or less likely. An appearance model defines the distribution of the im-
age features in a window conditional on the pose, p(Xs+W |object, θ; ηa). The
appearance model might be defined by a template specifying the probability
of observing certain features at each location in the detection window under a
canonical choice for the object pose, while θ specifies a transformation of the
template. Warping the template according to θ leads to probabilities for observ-
ing certain features at each location in Xs+W [2,3,5].

Training data with images of the object are used to estimate the parame-
ters ηp and ηa. Note that the images do not normally come with information
about the latent pose variables θ, unless annotation is provided. Estimation
thus requires inference methods that handle unobserved variables, for example
the different variants of the expectation maximization algorithm [5,4]. In some
cases a probability model for background images is estimated as well using large
numbers of training examples of images not containing the object.

The basic detection algorithm then scans each candidate window in the im-
age, computes the most likely pose under the object model and obtains the
‘posterior odds’, i.e. the ratio between the conditional probability of the window
under the object hypothesis at the optimal pose, and the conditional probability
of the window under the background hypothesis. This ratio is then compared to
a threshold τ to decide if the window contains an instance of the object

p(Xs+W |object, θ; ηa)p(θ; ηp)

p(Xs+W |background)
> τ.

When no background model has been trained offline, a simple adaptive back-
ground model can be estimated online for each window being tested. In this
case no background training data is needed [5]. Alternative background models
involve sub-collections of parts of the object model [16].

Discriminative Models

If no explicit latent pose variables are used the underlying assumption is that
the training data is sufficiently rich to provide a sample of the entire variation of
object appearance. The discriminative approach trains a standard classifier to
discriminate between image windows containing the target object classes and a
broad background class. This is done using large amounts of data from the object
classes and from background. Many classifier types have been used, including
neural networks, SVMs, boosted decision trees and radial basis functions.



Cascades Because of the large size of the background population and its com-
plexity discriminative methods are often organized in cascades [8]. An initial
classifier is trained to distinguish between the object and a manageable amount
of background data. The classifier is designed to have very few false negatives
at the price of a larger number of false positives. Then a large number of back-
ground examples are evaluated and the misclassified ones are collected to form
a new background data set. Once a sufficient number of such false positives is
accumulated a new classifier is trained to discriminate between the original ob-
ject data and the new ‘harder’ background data. Again this classifier is designed
to have no false negatives. This process can be continued several times.

At detection time the classifiers in the cascade are applied sequentially. Once
a window is classified as background the testing terminates with the background
label. If the object label is chosen, the next classifier in the cascade is applied.
Only windows that are classified as object by all classifiers in the cascade are
labelled as object by the cascade.

Pose variables Certain discriminative models can also be implemented with la-
tent pose parameters [11]. Assume a generic classifier defined in terms of a space
of classifier functions f(x;u) parameterized by u. Usual training of a discrimi-
native model consists of solving an equation of the form

min
u

n∑
i=1

D(yi, f(xi;u)) + C(u),

for some regularization term C(u) which prevents overfitting and a loss function
D measuring the distance between the classifier output f(xi;u) and the ground
truth label yi = 1 for object and yi = 0 for background.

The minimization above can be replaced by

min
u

∑
yi=1

min
θ∈Θ

D(1, f(θ(xi);u)) +
∑
yi=0

max
θ∈Θ

D(0, f(θ(xi);u)) + C(u).

Here θ(x) defines a transformation of the example x. Intuitively for a positive
example one would like there to be some transformation under which xi is clas-
sified as object, while for a negative example one would like it to be the case
that there is no transformation under which xi is classified as object.

Convolutional neural networks Due to the limitations of low-level local features
and the difficulty of manually specifying higher-level features, neural networks
have become increasingly popular as a method to learn effective feature repre-
sentations, from low-level to high-level, using large annotated datasets. These
networks are composed of a hierarchy of layers indexed by grids of decreasing
resolution. The input layer is the raw pixels of the input image. Each subse-
quent layer computes a vector output at each grid point using a list of local
filters applied to the data in the preceding layer. This linear operation is typi-
cally followed by a non-linear operation applied coordinate-wise and at certain



layers the grid resolution is reduced by subsampling following a local max or
averaging operation. The network terminates in one or more output layers that
make predictions according to the design of the model (e.g . an object category
classifier and a pose estimator, if the model outputs pose information).

All of the filter coefficients and the parameters of the output layers are train-
able. Training is done through stochastic gradient descent on a loss function de-
fined in terms of the output layers and the labels in the dataset. Thus the network
jointly learns linear classifiers and a complex hierarchy of non-linear features that
yield the final feature representation. Such networks were demonstrated to work
for large-scale image classification tasks [17] and then subsequently for the more
complex task of object detection [18].

Networks for image classification have a relatively straightforward design
since they terminate with a single classification output for the entire image.
Networks for object detection involve additional components that are designed
to address the more complex nature of object detection. There are two dominant
designs: one stage (e.g ., [19]) and two stage (e.g ., [20]), both of which are based
on a sliding-window approach, described next.

In both of these designs, two convolutional sub-networks are applied in paral-
lel. At each location on a relatively coarse feature grid, one of these sub-networks
acts as a classifier and the other as a pose predictor (see Figure 2 left ‘cls layer’
and ‘reg layer’, for classification and box regression, respectively). The pose es-
timator predicts a relative shift and scaling of a detection window, while the
classifier predicts if it is an object or background. By creating multiple pairs
of such layers, with each pair specializing to a window of a specific size and
aspect ratio, the set of predefined sliding windows can better approximate the
set of all possible image windows. The pose estimator is tasked with predicting
the residual error between the quantized windows and the ground-truth object
bounding boxes. In the first design paradigm, often termed “one-stage” methods,
the sliding window classifier makes a multi-class prediction over the set of all
object categories and background. These predictions, together with the refined
windows, comprise the output of the model.

In the second design paradigm, the sliding-window classifier performs two-
class classification between object (of any category) vs. background. The refined
windows, are then used as candidate object locations, often called regions of
interest (RoIs), for a subsequent classification and window refinement stage.
This second stage, as is typical in cascaded processing, only receives high-scoring
RoIs from the object vs. background classifier. The input features to the second
stage are typically computed by extracting features within each RoI from a
feature map. The RoI feature extraction process may involve quantizing the RoI
coordinates and using max pooling [20] or bilinear interpolation of the feature
map without performing quantization [21]. The output of the second stage is a
multi-class classification prediction and window refinement (shift and scaling)
for each RoI. See Figure 2 right. Two-stage methods can also be extended in
a straightforward manner to predict a binary segmentation mask for each RoI
[21]. In either case, all parameters of these networks are trained jointly using



stochastic gradient descent on a multi-task loss function that includes terms for
classification and pose estimation.
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Fig. 2. Left: A sliding-window Region Proposal Network (RPN) that performs
classification (‘cls layer’) and window shift and scaling regression (‘reg layer’)
for a set of reference windows (‘anchor boxes’) at each grid position. Right: The
Faster R-CNN system that uses RPN to generate candidate object proposals for
processing in a second stage as a part of an overall convolutional neural network
for object detection. (The figure is reproduced with permission from [20].)

Computational methods

The basic detection process consists of searching over pose parameters to classify
each hypothesis. At a minimum this usually involves searching over locations and
sizes and is clearly a very intensive computation. There are a number of methods
to make it more efficient.

Sparse features When sparse features are used it is possible to focus the com-
putation only in regions around features. The two main approaches that take
advantage of this sparsity are alignment [22] and the generalized Hough trans-
form. Alignment uses information regarding the relative locations of the features
on the object. In this case the locations of some features determine the possible
locations of the other features. Various search methods enable a quick decision
on whether a sufficient number of features were found to declare object, or not.
The Hough transform typically uses information on the location of each feature
type relative to some reference point in the object. Each detected feature votes
with some weight for a set of candidate locations of the reference point. Loca-
tions with a sufficiently large sum of weighted votes determine detections. This
idea can also be generalized to include identification of scale as well. The vot-
ing weights can be obtained either through discriminative training or through
generative training [2].



Cascades As mentioned above the cascade method trains a sequence of clas-
sifiers with successively more difficult background data. Each such classifier is
usually designed to be simple and computationally efficient. When the data in
the window Xs+W is declared background by any classifier of the cascade the
decision is final and the computation proceeds to the next window. Since most
background windows are rejected early in the cascade most of the windows in
the image are processed very quickly.

Coarse to fine The cascade method can be viewed as a coarse to fine decomposi-
tion of background that gradually makes finer and finer discriminations between
object and background images that have significant resemblance to the object.
An alternative is to create a coarse to fine decomposition of object poses [9].
In this case it is possible to train classifiers that can rule out a large subset of
the pose space in a single step. A general setting involves a rooted tree where
the leaves correspond to individual detections and internal nodes store classifiers
that quickly rule out all detections below a particular node. The idea is closely
related to branch-and-bound methods [14] that use admissible lower-bounds to
search a space of transformations or hypotheses.

Dynamic programming There are a number of object detection algorithms that
represent objects by a collection of parts arranged in deformable configurations
or as hierarchies of such arrangements of parts of increasing complexity. When
the hierarchies and the arrangements have the appropriate structure dynamic
programming methods can be used to efficiently search over the spaces of ar-
rangements [2], [3].

Convolutional neural networks Object detection systems based on convolutional
networks make use of many classical techniques for reducing computation, in-
cluding cascades as previously described. Coarse-to-fine approaches are also com-
mon. By progressively reducing spatial resolution, these networks operate on a
coarse grid of object locations. The loss in resolution is compensated by pre-
dicting pose parameters that recover some of the quantization error, resulting
in fine predictions. The progressive reduction in spatial resolution can also be
used to efficiently construct a multi-scale pyramid representation from a single
input image scale [23], which is more efficient than processing multiple input im-
age scales independently. These networks also share nearly all the computation
of the hierarchy of features across all object categories, rather than retraining
a separate hierarchy for each one vs. rest binary classification models, one for
each object category. The shared computation enables such networks to scale to
thousands of object categories; the marginal per category cost grows linearly, but
is small relative to the computation shared between categories. Finally, typical
convolutional networks can be accelerated both algorithmically via fast convolu-
tion methods and with specialized hardware that makes extensive use of parallel
computation (e.g ., GPUs).

Application



Object detection methods have a wide range of applications in a variety of
areas including robotics, medical image analysis, surveillance and human com-
puter interaction. Current methods work reasonably well in constrained domains
but still rely on thousands of training examples per category in order to achieve
reasonable results.

A popular benchmark for object detection is the COCO object detection
challenge [24]. The goal of the challenge is to detect objects from 80 common
categories such as people, cars, horses and tables in photographs. The challenge
has attracted significant attention in the computer vision community over the
last few years and the performance of the best systems has been steadily increas-
ing each year by a significant amount.

Detection methods that segment objects are also steadily improving and are
now deployed for various applications, particularly in augmented and virtual
reality scenarios. Figure 3 shows example output of Mask R-CNN [21]. Models
that additionally predict human joint locations, in addition to bounding boxes
and segmentation masks, are also useful in many applications including video
conferencing systems that can automatically keep participants framed within the
video steam. Mask R-CNN can be extended to predict human pose, as illustrated
in Figure 4.
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Fig. 3. Bounding boxes and segmentation masks produced by Mask R-CNN. The
system is trained to detect and segment 80 object categories from the COCO
dataset. (Reproduced with permission from [21].)
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