
Brown University

Doctoral Dissertation

Message Passing Dynamics of Belief

Propagation Algorithms

Author:

Anna Grim

Advisor:

Pedro Felzenszwalb

A dissertation submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Division of Applied Mathematics

May 2022

https://www.brown.edu/
http://www.annamgrim.com
http://cs.brown.edu/people/pfelzens/
https://appliedmath.brown.edu/

© Copyright 2022 by Anna Grim

This dissertation by Anna Grim is accepted in its present

form by the Division of Applied Mathematics as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date___________________	 __

Pedro Felzenszwalb, Ph.D., Advisor

Recommended to the Graduate Council

Date___________________	 __

Johnny Guzman, Ph.D., Reader

Date___________________	 __	 	

Matthew Harrison, Ph.D., Reader

Approved by the Graduate Council

Date___________________	 ___

 Andrew G. Campbell, Dean of the Graduate School

iii

CV

Education

Brown University September 2016 - May 2022

Doctor of Philosophy in Applied Mathematics

Masters in Applied Mathematics

University of St. Thomas September 2012 - May 2016

Bachelor of Science, Mathematics

Minors in Computer Science

Publications

1. Grim, A. and Felzenszwalb, P. Improving Belief Propagation with Numerical Homotopy

Continuation, In preparation.

2. Grim, A. and Felzenszwalb, P. Convex Combination Belief Propagation on Factors Graphs

with Numerical Homotopy Continuation, In preparation.

3. Grim, A. Local Stability of Belief Propagation on the QMR Network, In preparation.

4. Grim, A. and Felzenszwalb, P. Convex Combination Belief Propagation Algorithms. (sub-

mitted, 2021).

Teaching

Brown University

Teaching Assistant, Methods of Applied Mathematics I Fall 2017, Spring 2018

Teaching Assistant, Computational Probability and Statistics Fall 2020

Teaching Assistant, Recent Applications of Prob. and Stat. Spring 2021

Teaching Assistant, Statistical Inference I Fall 2021

Teaching Assistant, Graphs and Networks Spring 2022

iv

Abstract of Message Passing Dynamics of Belief Propagation Algorithms,

by Anna Grim, Ph.D., Brown University, May 2022

Our work is motivated by the classical belief propagation algorithms which are well-known for

obtaining state of the art results in certain settings, but often fail to converge when the underlying

graph has complex topology. The main objective of this thesis is to present a two-part solution

to this classical problem. First, we describe an algorithm referred to as convex combination belief

propagation. This method was developed by modifying the message passing operator in loopy belief

propagation so that it’s more robust to graphs with cycles. The main advantage of this algorithm

is that it’s guaranteed to converge on graphs with arbitrary topology. Although this algorithm has

good theoretical properties, one disadvantage is that it is generally less accurate than the classical

algorithm when both converge.

Second, we build upon this work by incorporating a homotopy operator that gradually deforms

the message passing operator from convex combination belief propagation into the operator used

in loopy belief propagation. Under this framework, convex combination belief propagation obtains

an initial solution. Then we improve the accuracy of the solution by using the homotopy operator

in a continuation scheme. The outcome of this work is an approximate inference algorithm that is

significantly more accurate than convex combination belief propagation, while also converging at a

much higher rate than loopy belief propagation.

Lastly, we demonstrate the usefulness of our approximate inference algorithms by applying them

to real-world problems. We discuss medical diagnostic inference on the QMR network which models

causal relations between a set of diseases and findings. We use our homotopy continuation algorithm

to perform inference in this problem. Our results show that this algorithm always converges and

obtains exceptional results on this task.

v

Acknowledgements

First, I would like to thank my research advisor Pedro. His guidance and support over the

last few years have been crucial to this research. I very much admire his approach to research

along with his balance between theory and meaningful applications. I hope to continue to pursue

interesting and challenging problems with the same creativity and practicality.

I also would like to thank Matt Harrison and Johnny Guzman for taking the time to serve on

my thesis committee and providing helpful feedback. I greatly appreciate the insightful discussion

and suggestions of future research directions.

I am incredibly grateful to my undergrad advisor Cheri Shakiban. I would like to thank her

leading so many undergraduate research projects and encouraging me to pursue a PhD. She has

been amazing mentor over the years and opened a door to many opportunities. I would also like

to thank Peter Olver for his guidance and support. His passion for mathematics is inspiring and I

hope to approach research with the same curiosity and vigor.

I am very thankful for the support of friends who have been a source of encouragement and

entertainment. Thank you to the previous generations of APMA graduate students who have

continued to pass down a collaborative and welcoming culture. I’d like to thank Ernesto for your

friendship over the years along with the countless hours of working on problem sets and playing pool

at the GCB. I would also like to thank Angelina for being a good tennis partner and even better

friend. Thank you to the rock climbing community across the pure and applied math departments.

I would also like to thank my office mates for lively and insightful discussions. A special thanks to

Becky for so many good conversations and for having a good sense of humor. I am very thankful

for Patrick who has been incredibly supportive and a constant source of inspiration. His love for

problem solving is contagious and I hope to continue to collaborate on projects.

Finally, I would like to thank my family for always being a phone call away, I cannot imagine

going through graduate school without their continual support. I also greatly appreciate their

encouragement to work hard and persevere when challenges arise. A special thanks to Cheerio for

all of the nice walks and adding so much joy to my life.

vi

Contents

CV iv

Acknowledgements vi

1 Introduction 1

1.1 Motivations . 1

1.2 Main Contributions . 2

1.2.1 Approximation Algorithms . 3

1.2.2 Theoretical Analysis . 4

1.2.3 Experimental Evaluation . 6

1.2.4 Real-World Applications . 6

1.3 Thesis Overview . 7

2 Background 8

2.1 Introduction . 8

2.2 Graph Theory . 9

2.3 Graphical Models . 11

2.3.1 Bayesian Networks . 12

2.3.2 Markov Random Fields . 14

2.3.3 Energy-Based Models . 15

2.3.4 Factor Graphs . 16

2.4 Probabilistic Inference . 19

2.4.1 Exact Algorithms . 20

vii

Exact Inference . 20

Variable Elimination . 21

Belief Propagation . 21

Junction Trees . 22

Graph Cuts . 22

2.4.2 Approximate Algorithms . 23

Stochastic Simulation . 23

Energy-Based Methods . 24

Belief Propagation . 25

2.5 Applications . 26

2.5.1 Ising and Spin Glass Model . 26

2.5.2 Image Analysis . 28

2.5.3 Medical Diagnostic Networks . 29

3 Belief Propagation Algorithms 31

3.1 Max-Product Algorithm . 31

3.1.1 Exact MAP Inference . 31

3.1.2 Simple Derivation of Messages . 32

3.1.3 Markov Random Fields . 34

3.1.4 Factor Graphs . 39

3.2 Min-Sum Algorithm . 42

3.2.1 Energy-Based MAP Inference . 43

3.2.2 Message Passing Algorithm . 44

3.3 Sum-Product Algorithm . 46

3.3.1 Marginal Inference . 46

3.3.2 Markov Random Fields . 47

3.3.3 Factor Graphs . 48

3.4 Literature Review . 49

3.4.1 Convergence . 49

3.4.2 Stability of Fixed Points . 50

viii

3.4.3 Alternative Belief Propagation Algorithms . 51

4 Convex Combination Belief Propagation on Pairwise Models 53

4.1 Introduction . 53

4.2 Min-Sum Algorithm . 56

4.2.1 Theoretical Settings . 56

4.2.2 Message Passing Operator . 56

4.2.3 Convergence . 57

4.3 Characterization of Beliefs . 61

4.3.1 Tree-Structured Graphs . 62

4.3.2 Simple Cycles . 66

Finite Unwrapped Graphs . 66

Infinite Unwrapped Graphs . 74

4.4 Image Restoration . 78

4.5 Sum-Product Algorithm . 82

4.5.1 Theoretical Settings . 82

4.5.2 Message Passing Operator . 82

4.5.3 Convergence of the Algorithm . 83

4.6 Discussion . 86

4.7 Conclusion . 90

5 Convex Combination Belief Propagation on Factor Graphs 92

5.1 Theoretical Settings . 92

5.2 Sum-Product Algorithm . 93

5.2.1 Message Passing Operators . 93

5.2.2 Message Passing in a Metric Space . 95

5.2.3 Lipschitz Continuity of the Normalization Operator 97

5.2.4 Convergence . 100

5.3 Max-Product Algorithm . 103

5.3.1 Message Passing Operators . 104

ix

5.3.2 Convergence . 105

5.4 Shortcomings of Convex Combination Belief Propagation 107

6 Belief Propagation with Numerical Homotopy Continuation 110

6.1 Introduction . 110

6.2 Homotopy Continuation Algorithm . 112

6.2.1 Basics of Homotopy Continuation . 112

6.2.2 Message Passing with a Homotopy . 113

6.2.3 Implementation . 117

6.3 Theoretical Analysis . 120

6.3.1 Existence of Fixed Points . 120

6.3.2 Continuity of Fixed Point . 121

6.4 Numerical Experiments . 123

6.4.1 Experimental Settings . 123

6.4.2 Varying the Coupling Factor . 124

6.4.3 Varying the Graph Connectivity . 126

6.5 Performance Enhancement . 127

6.5.1 Adaptive Time Step . 128

6.5.2 Stopping Early . 129

6.6 Max-Product Algorithm . 131

6.7 Conclusion . 132

7 Application: Approximate Inference in the QMR Network 133

7.1 Introduction . 133

7.2 QMR-Network . 135

7.2.1 Probabilistic Framework . 136

7.2.2 Assumptions in the Model . 137

7.2.3 Probabilistic Inference . 139

7.3 Efficient Belief Propagation . 140

7.3.1 Factor Graph Model . 141

x

7.3.2 Traditional Message Passing . 142

7.3.3 Convex Combination Message Passing . 143

7.4 Experiments . 146

7.4.1 Experimental Settings . 146

Problem Generation . 146

Belief Propagation Parameters . 147

Performance Metrics . 147

7.4.2 Varying Number of Negative Findings . 147

7.4.3 Varying the Inhibit Probabilities . 149

7.4.4 Varying the Connectivity of the Graph . 151

7.5 Local Stability Analysis . 152

7.5.1 Convergence Conjecture . 152

7.5.2 Overview of General Approach . 154

7.5.3 Oriented Line Graphs . 155

Topology of Oriented Line Graphs . 156

7.5.4 Jacobian of Belief Propagation . 161

Structure of Jacobian . 162

Eigenvalues of Jacobian . 164

7.5.5 Local Stability Condition . 165

Computation of Jacobian . 165

Stability Condition . 166

A Efficient Message Passing Equations 169

xi

List of Figures

1.1 Overview of main contributions in this thesis . 3

2.1 Cliques from size 1 to 4 . 10

2.2 Here we see a tree-structured graph on the left, a complete graph in the center, and

a bipartite graph on the right. 11

2.3 Fundamental types of causal relationships . 12

2.4 Directed graph from Example 2.3.1 . 13

2.5 Undirected graph from Example 2.3.3 . 15

2.6 Factor graph from Example 2.3.4 . 17

2.7 Factor graph representation of Markov random field from Example 2.3.3 18

2.8 Factor graph representation of Bayesian network from Example 2.3.1 18

2.9 Inference algorithms. On the left, we see exact algorithms in yellow boxes. On the

right, we see approximate inference algorithms in the orange boxes. 20

2.10 Here we see a graph on left and its junction tree on the right. In the junction tree,

circles represent node clusters and rectangles are separating sets, which are sets of

variables shared by neighboring clusters1. 22

2.11 Simple example of a spin glass model that lacks an external field. Particles are

spatially arranged in a 3× 4 grid graph and the spin of each particle is denoted by

an arrow. Note that neighboring particles have opposite spins. 27

2.12 Here we see an image grid on the left and its corresponding grid graph on the

right. Pixels in the image correspond to nodes in the graph and neighboring nodes

correspond to adjacent pixels. 28

xii

2.13 Simple example of a QMR network. 30

3.1 Simple tree-structured graph. Node 1 is highlighted to emphasize that the main

focus is to compute the max-marginal of this node. 33

3.2 Local message passing on a graph. Here we emphasize the messages that are used

to compute the max-marginal of node 1. 34

3.3 Illustration of message passing on a graph. We see that the message sent from the

node i to j aggregates messages from all other neighbors of i. 35

3.4 Illustration of message passing on a factor graph. Circles represent variable nodes

and squares represent factor nodes. On the left, we see that the message sent from

f to i aggregates messages from all other neighbors of f . On the right, we see that

the message sent from i to f also aggregates messages from the other neighbors. . . 40

3.5 Illustration of message updates in loopy belief propagation. Column vectors show

the two sets of messages computed on each iteration. Arrows represent either T or

P , depending on the color. The initial point on an arrow indicates the input to the

respective operator and the end points to the output. 41

3.6 On the left, we see that the belief oscillates when non-damped belief propagation

is applied to this example. On the right, we see that damped belief propagation

stabilizes the oscillations and the belief converges. 45

4.1 Beliefs obtained with convex combination belief propagation from Example 4.2.4.

Here we see that the algorithm converges after a small number of iterations. 60

4.2 Beliefs obtained with damped belief propagation from Example 4.2.4. Here we see

that the algorithm does not converge for any damping factor. 61

4.3 A simple tree-structured graph. 63

4.4 Subtrees of T (j) . 63

4.5 Unwrapping C3 to obtain its unwrapped graph Ĉ3,t, where each t corresponds to an

iteration of unwrapping. 67

xiii

4.6 The relationship between message passing on the cycle C3 and its unwrapped graphs

is shown. Each message sent between nodes is represented by an arrow and identical

messages have the same colored arrow. 68

4.7 The relationship between passing messages around the cycle C3 in the clockwise

direction and from the leftward nodes to the root on the unwrapped graphs is shown.

Each message sent between nodes is represented by an arrow and corresponding

messages have the same colored arrow. 72

4.8 On the left, we see a small region of an image with pixels i, j, k, ℓ in the image grid.

On the right, we see the corresponding nodes in the grid graph. In addition, each

node has an observed label which is depicted by the gray colored node. 78

4.9 Data used in the image restoration experiment. 80

4.10 Image restoration using convex combination belief propagation with λ = 1. 81

4.11 Image restoration using convex combination belief propagation with λ = 4. 81

4.12 Image restoration using convex combination belief propagation with λ = 10. 81

4.13 Beliefs obtained from min-sum belief propagation algorithms and exact min-marginals

of the energy from Example 4.6.1. Damped belief propagation (dmp BP) failed to

converge and the vertical lines show how the beliefs oscillated in the last 100 itera-

tions before stopping the algorithm after 1000 iterations. Convex combination belief

propagation (cc BP) converged as expected, but the resulting beliefs differ from the

true min-marginals. 88

4.14 Beliefs obtains from sum-product belief propagation and exact marginals from Ex-

ample 4.6.2. Damped belief propagation failed to converge and the vertical lines

show how the belief functions oscillated in the last 100 iterations before stopping the

algorithm after 1000 iterations. Convex combination belief propagation converged

as expected, but the resulting belief functions differ from the true marginals. 90

5.1 Beliefs and exact marginals from Example 5.4.1. Damped belief propagation failed

to converge, the vertical lines show how the beliefs oscillate in the last 20 iterations. 107

5.2 The star graphs S4 and S10 are shown on the left and right, respectively. Blue circles

represent variables and gray squares represent factors. 108

xiv

5.3 Beliefs obtains with belief propagation algorithms and exact marginals from Example

5.4.2. The beliefs shown on the left correspond to the star shaped graph S4, while

the beliefs on the right correspond to S10. 109

6.1 Complete graph with 4 nodes. 114

6.2 Solutions of the fixed point equation for every t ∈ [0, 1]. There is a unique fixed

point of the homotopy operator when t ∈ [0, 0.1). Then the path bifurcates into

three distinct branches when t = 0.1. 115

6.3 Single belief function evolving in time as t is varied from 0 to 1 with time steps of

dt = 0.1. 117

6.4 Beliefs obtained with belief propagation algorithms. Although convex combination

belief propagation and the homotopy continuation algorithm both converged, the

beliefs obtained with continuation are significantly more accurate. 119

6.5 On the left, we see an example of a path with a hole when t = 0.65. A continuation

algorithm would fail on this example because there is no point on the path that

corresponds to this time step. On the right, we see an example of a path with a

discontinuity when t = 0.5. A continuation algorithm is likely to fail because the

starting point of the next time step is relatively far from the path. 120

6.6 Erdos-Renyi Graphs with p = 0.5 . 125

6.7 Complete Graphs . 126

6.8 Erdos-Renyi Graphs with p = 0.5 . 127

6.9 Erdos-Renyi Graphs with p = 0.5 . 129

6.10 Erdos-Renyi Graphs with p = 0.5 . 130

7.1 Example of an arbitrary QMR network. Orange circles represent diseases and blue

circles represent findings. Edges are directed from diseases to findings as indicated

by the arrows. 136

7.2 Simple QMR network from Example 7.2.1. 137

7.3 Conditional Probability Table (CPT) . 138

xv

7.4 On the left, we see an illustration of observed findings from a QMR network. The

blue node indicates that the patient does not have a high temperature (i.e. negative

finding). The red node indicates that the patient has a sore throat (i.e. positive

finding). The node corresponding to a runny nose is left uncolored to represent that

it is unobserved. On the right, we see the exact posterior marginals computed with

the quickscore algorithm. 140

7.5 On the left, we see the QMR network from the previous section. On the right, we

see an equivalent factor graph representation of this network. 141

7.6 Illustration of messages sent by a factor that corresponds to a finding. This factor

node sends messages to the corresponding variable node and the neighboring disease

nodes as shown on the left and right. The indices used in this illustration match the

notation in Propositions 7.3.2 and 7.3.3. 143

7.7 On the left, we see the beliefs obtained with damped and convex combination belief

along with the true marginals. On the right, we see the ROC curve corresponding

to each algorithm. Damped belief propagation (dmp BP) provides a good approxi-

mation and accurately predicts the hidden state of the diseases. In contrast, convex

combination belief propagation (cc BP) obtains a poor approximation. It is inter-

esting to see that although the beliefs are a poor approximation, the corresponding

ROC curve is optimal. 145

7.8 Convergence and run time of belief propagation algorithms 148

7.9 Accuracy of the belief propagation algorithms . 148

7.10 Convergence and run time of belief propagation algorithms 150

7.11 Accuracy of belief propagation algorithms . 150

7.12 Convergence and run time of belief propagation algorithms 151

7.13 Accuracy of belief propagation algorithms . 151

xvi

7.14 Eigenvalue spectrum of the Jacobian of the operator from loopy belief propagation.

Loopy belief propagation without damping is locally stable when all eigenvalues are in

the green region. Damped belief propagation is locally stable when all eigenvalues lie

in the green and yellow regions. Both algorithms are unstable when the eigenvalues

lie in the orange region2. 154

7.15 Edges involved in the partial derivative in Equation 7.6. This pair of edges corre-

sponds to a non-zero partial derivative and an edge in the oriented line graph. 156

7.16 On the left, we see the factor graph from Example 7.3.1. On the right, we see the

vertices of the corresponding oriented line graph. The colors represent the corre-

spondence between types of edges in the factor graph and types of vertices in the

oriented line graph. 157

7.17 Modular structure of an oriented line graph. Each cell contains a subgraph (or

module) and the oriented line graph is the superposition of these subgraphs. 158

xvii

1

CHAPTER 1

Introduction

The focus of this chapter is to discuss the motivations behind this thesis and outline our main

contributions to the scientific community. Section 1.1 broadly introduces the technical domain of

this work, then briefly describes the fundamental problems that motivated the developments in this

thesis. Section 1.2 describes our general approach and then summarizes our main contributions. We

conclude by providing a concise overview of the content and organization of this thesis in Section

1.3.

1.1 Motivations

Graphical models are a well-established framework for probabilistic modeling due to their ability to

express complex relationships between variables in a system. The main components of this model

are a joint probability distribution that governs the system and a graph which captures certain

statistical properties. Each node in the graph represents a variable and edges encode statistical

relationships. Thus, the graph provides a global representation of the structure of the system in

terms of local relationships.

and reflects local dependencies between variables. The expressive power and flexible framework

of graphical models makes them a natural tool for solving problems in computer vision, machine

learning, bioinformatics, and engineering (see, e.g., [13], [24], [54], [56], [92]).

2

In these types of applications, a central computational objective is to perform probabilistic infer-

ence. We use the term probabilistic inference to refer to the following inference tasks: marginal infer-

ence and maximum a posterior (MAP) inference. Marginal inference involves computing marginal

probability distributions, while MAP inference involves determining the optimal configuration of

a system that maximizes the joint distribution. Probabilistic inference is an important problem

because the outcome of this calculation forms the basis behind machine-based learning and deci-

sion making. Exact inference in arbitrary graphical models is computationally intractable because

this problem has been proven to be NP-hard. This well-known fact has driven a large number of

research efforts to develop efficient approximation algorithms.

Belief propagation is a widely used local message passing algorithm that leverages the structure

of the graph to perform inference in graphical models. This algorithm was first introduced by

Judea Pearl in the 1980s as a method that performs exact inference in polynomial time when the

underlying graph is tree-structured [64]. When the graph contains cycles (i.e. loops), the method

can be adapted into a fixed point iteration scheme referred to as loopy belief propagation. In this

setting, the algorithm performs approximate inference by utilizing an operator that facilitates local

message passing between all neighboring nodes in the graph.

Loopy belief propagation has gained popularity within the artificial intelligence community

because it obtains state of the art results in certain settings such as error correcting codes and image

analysis (see, e.g., [11], [19], [21], [25], [74]). However, loopy belief propagation is also notorious

for being unreliable when the underlying graph has complex topology. This is problematic because

many real world networks fall into this category. Although there are alternative methods that

can perform approximate inference in these settings, loopy belief propagation is significantly more

efficient and accurate in certain settings.

1.2 Main Contributions

We are both motivated and intrigued by the challenge to develop efficient algorithms that perform

approximate inference in graphical models with cycles. Although there is a large body of work on

this subject, many of these methods are computationally expensive, fail to converge on challenging

problems, or difficult to use in practice. We present a solution that differentiates itself from other

3

approaches by being simple to implement and designed to converge on the most difficult inference

problems.

In this thesis, we address four key aspects of performing inference in graphical models with

cycles: 1) development of efficient approximation algorithms that address both types of inference

problems, 2) theoretical analysis that specifies when the algorithms converge and characterizes

the solution, 3) experimental evaluation that compares the performance of our algorithms to

other methods, 4) using our approximation algorithms to solve difficult real-world applications

where conventional methods fail. In Figure 1.1, we provide a visual outline of both the organization

and contributions in this thesis.

Figure 1.1: Overview of main contributions in this thesis

1.2.1 Approximation Algorithms

We present convex combination belief propagation which is a convergent alternative to loopy belief

propagation. This algorithm was developed by modifying the message passing operator in loopy

belief propagation in way that makes it more robust to graphs with cycles. The result is a class

of algorithms that are designed to converge on the most difficult inference problems. In addition,

4

our algorithms are fast and simple to incorporate within any existing implementation of belief

propagation, which is a major advantage compared to other methods. Convex combination belief

propagation is also foundational to subsequent contributions in this thesis. We emphasize this point

in Figure 1.1 by showing several research directions that branch out from this initial development.

In fact, convex combination belief propagation is our initial solution to performing inference in

graphical models with cycles. One limitation of this algorithm is that it tends to be less accurate

than loopy belief propagation when both algorithms converge. We build upon this work by incor-

porating a homotopy operator that gradually deforms the message passing operator from convex

combination belief propagation into the traditional operator used in loopy belief propagation. Un-

der this framework, convex combination belief propagation obtains an initial solution. Then we

improve the accuracy of the solution by using the homotopy operator in a continuation scheme.

The outcome of this work is an approximate inference algorithm that is significantly more accurate

than convex combination belief propagation, while also converging at a much higher rate than loopy

belief propagation.

1.2.2 Theoretical Analysis

A central objective of this thesis is to accompany algorithm development with theoretical analysis.

Our general approach is to consider belief propagation as a discrete-time map, then utilize ideas

from the theory of dynamical systems to understand the behavior of this algorithm. In this thesis,

we refer to a discrete-time map F : Rm → Rm as a function that acts on a vector x ∈ Rm according

to

x(n+1) := Fx(n),

where n is a discrete time index. It is natural to analyze belief propagation from a dynamical

systems perspective because both convex combination and loopy belief propagation are fixed point

iteration algorithms.

In Chapters 4 and 5, we analyze the theoretical properties of convex combination belief propa-

gation. One important result is that this algorithm is guaranteed to converge to a unique solution

(fixed point) independent of the graph’s topology and initialization of the fixed point iteration

scheme. We prove this result by showing that the message passing operator in convex combination

5

belief propagation is a contraction and then invoke Banach’s fixed point theorem. In addition, we

also provide a characterization of the solution obtained with convex belief propagation for certain

classes of graphs.

Chapter 6 focuses on belief propagation with homotopy continuation. The main idea behind

this method is to trace a path of fixed points that is parametrized by time t, where the path is

formed by gradually varying t from 0 to 1. This path originates at the unique fixed point of convex

combination belief propagation and terminates at a fixed point of loopy belief propagation. In order

for any continuation algorithm to be feasible, this path must be continuous with respect to time

so that it can be numerically traced as this parameter is gradually varied. We provide a rigorous

argument that uses Brouwer’s fixed point theorem and a generalization of the implicit function

theorem to prove that this property holds for arbitrary graphical models.

Lastly, Chapter 7 focuses on the local stability of belief propagation in the application of per-

forming approximate inference in a medical diagnostic network called the Quick Medical Reference

(QMR) network. In our experimental evaluation, we observe that belief propagation with homo-

topy continuation converges on every problem in this application. These results raise the question

of whether the QMR network is a special case where our continuation algorithm always converges.

One possible explanation is that the fixed points of belief propagation are locally stable in the case

of the QMR network. Under this assumption, numerical homotopy continuation would converge

(in theory) because this implies the existence of a small enough time step such that the current

approximate fixed point lies in the basin of attraction of the next fixed point.

From a dynamical systems perspective, a classical approach to this problem is to analyze the

eigenvalues of the Jacobian of the message passing operator. Although this approach is generally

intractable when the Jacobian is very high dimensional, we use the unique structure of the QMR

network to drastically simplify the Jacobian and computation of its eigenvalues. Our analysis draws

a connection between the topology of the graph and structure of the Jacobian. We prove that the

Jacobin consists of nested triangular matrices, then leverage this fact to reduce the complexity of

computing its eigenvalues. In addition, we also analyze how the parameters of this model affect

the local stability of belief propagation fixed points.

6

1.2.3 Experimental Evaluation

Another important objective of this thesis is to show that our inference algorithms have both strong

theoretical properties and good performance in applications. In particular, we aim to develop

inference algorithms that reliably outperform loopy belief propagation. We use the spin glass

models1 from statistical physics as a baseline inference problem to compare the performance of

our algorithms against loopy belief propagation. Spin glass models are often used for this purpose

because this model poses a difficult inference problem where loopy belief propagation tends to fail.

The performance of our algorithm is determined by analyzing the runtime, accuracy, and con-

vergence rate. Experimental evaluation is a crucial part of algorithm development because it reveals

both the advantages and limitations of an algorithm. Our initial experiments involving convex com-

bination belief propagation reveal that loopy belief propagation tends to be more accurate when

both algorithms converge. This realization led to the development of a belief propagation algo-

rithm that utilizes homotopy continuation. We show that this improved algorithm (on average)

outperforms loopy belief propagation across all performance metrics.

1.2.4 Real-World Applications

Although we perform an experimental evaluation of our inference algorithms on spin glass models,

this problem is only a toy example. Thus, we demonstrate the usefulness of our approximate infer-

ence algorithms by applying them to real-world problems. In Chapter 4, we use convex combination

belief propagation to perform image restoration. The objective of this image analysis problem is

to estimate a clean (original) picture given a corrupted version of it. The restoration problem is

formulated as “pixel labeling” where inference involves choosing an optimal label for each pixel.

In Chapter 7, we discuss medical diagnostic inference and the QMR network. Diagnostic infer-

ence is both a difficult and important problem which has attracted much attention in the last few

decades. The ultimate goal is to design an intelligent system that assists in diagnosing a patient

who exhibits some observed findings (or symptoms). One classical approach to this problem is

to develop a probabilistic model that utilizes a network which describes the relationship between

diseases and findings. The QMR network is a directed bipartite graph that models causal relations

1We formally introduce spin glass models in Chapter 2

7

between a set of diseases and findings. There have been many attempts to develop algorithms that

perform approximate inference on this network, including loopy belief propagation. We use our

homotopy continuation algorithm to perform inference in this problem. Our results show that this

algorithm always converges and obtains exceptional results on this task.

1.3 Thesis Overview

The outline below specifies the organization of this thesis:

• Chapter 2: Background material on graph theory, graphical models, and probabilistic infer-

ence.

• Chapter 3: Introduction to the loopy belief propagation algorithms.

• Chapter 4: Convex combination belief propagation for pairwise models

• Chapter 5: Convex combination belief propagation for factor graphs

• Chapter 6: Belief propagation with homotopy continuation

• Chapter 7: Medical diagnostic inference with belief propagation and homotopy continuation

8

CHAPTER 2

Background

This chapter presents background material necessary for subsequent developments in this thesis.

The main focus is to provide a self-contained introduction to graphical models and probabilistic

inference. In Section 2.2, we provide a brief overview of graph theory and establish some basic

notation. We broadly introduce graphical models in Section 2.3, and also describe a few special

types. In Section 2.4, we present the inference task and discuss some important approaches to this

problem. Lastly, we describe some relevant applications in Sections 2.5, which also provides context

for the inference problem.

2.1 Introduction

Graphical models are a well-established probabilistic model due to their ability to express complex

relationships between variables in a system. The main components of this model are a probability

distribution and a graph representing conditional independences (Markov properties) of the system.

The graph provides both a global representation of the structure of the system and reflects local

dependencies among variables. Graphical models are not only a natural model for complex systems,

they also provide a computational framework that is supported by a suite of algorithms. Many of

these algorithms are derived by utilizing the graphical structure of the model to simplify certain

calculations.

The origins of graphical models can be traced back to independent work in statistical physics,

genetics, and probability theory. One of the earliest uses dates back to Gibbs in the late 1800s

9

who used this framework to model physical systems of interacting particles [30]. He used a lattice

to model the global structure of these systems, where neighboring nodes represent interacting

particles. Later in the 1920s, Wright created an approach called “path analysis” which uses directed

graphs to model how genetic traits are generated in a population [84]. His analysis uses causal

modeling to express dependencies between variables. Markov developed a theory of stochastic

processes in which complex systems can be explained via a simple chain of dependencies [59].

His work established important notions about the relationship between conditional independence

and graphical structures which would later become part of the theoretical foundation of graphical

models.

It wasn’t until the 1980s that graphical models finally became mainstream. This development

was largely driven by research in artificial intelligence to design intelligent systems that rely on

probabilistic reasoning. The theoretical foundation was pioneered by Judea Pearl who introduced

mathematical tools for modeling causal relationships and performing probabilistic inference (see

[64], [65]). Over the course of 100 years, this general framework has found applications in a wide

variety of disciplines including bioinformatics, neuroscience, computer vision, statistical physics,

economics, and computer science (see, e.g., [10], [22], [27], [47], [61]). Graphical models have

become an important area of research as the need to model complex information continues to grow.

2.2 Graph Theory

A graph G = (V,E) consists of a set vertices (or nodes) V = {1, . . . , n} and a set of edges E

which connect pairs of vertices. The edge set consists of either directed or undirected edges. Let

{i, j} ∈ E denote an undirected edge, while (i, j) ∈ E denotes a directed edge. In this thesis, we

mostly focuses on graphical models which involve undirected graphs. Thus, assume that the graph

G is undirected for the remainder of this section. In addition, we also assume that the graph does

not contain self loops (i.e. {i, i} /∈ E).

Let N (i) = { j : {i, j} ∈ E } be the set of neighbors of node i. The degree d(i) of node i ∈ V

is given by d(i) = |N (i)|, where | · | denotes the cardinality of a set. A path between two nodes

i, j ∈ V is a sequence of distinct neighboring vertices that starts at i and ends at j. Let E(i, j)

be the set of all sequences of edges that form a path between nodes i and j. A graph is called

10

connected if there exists a path between any pair of vertices. A cycle is a path from a node i ∈ V

back to itself, where the path consists of a sequence of distinct edges.

A clique is any fully connected subset of vertices (see Figure 2.1). A clique is maximal if it is

not properly contained within any other clique. Let C(G) be the set of all cliques in the graph G.

The notion of a clique is especially useful in the study of graphical models because the structure

of the distribution is closely related to the set C(G).

Figure 2.1: Cliques from size 1 to 4

Next, we define several graphs that are extensively used through out this thesis. There are

several other types of graphs discussed in this thesis, including simple cycles, grid graphs, and

random graphs. However, the graphs in Definitions 2.2.1-2.2.3 play a more central role throughout

this work.

Definition 2.2.1. A tree-structured graph is an undirected graph in which every pair of distinct

vertices are connected by exactly one path.

Definition 2.2.2. A complete graph is an undirected graph in which every distinct pair of vertices

is connected by an edge.

Definition 2.2.3. A bipartite graph is an undirected graph G = (V ∪ U,E) whose vertices can be

divided into two disjoint sets (i.e. V ∩ U = ∅). The edge set consists of pairs of vertices {i, j} ∈ E

such that i ∈ V and j ∈ U .

11

Figure 2.2: Here we see a tree-structured graph on the left, a complete graph in the
center, and a bipartite graph on the right.

2.3 Graphical Models

Graphical models provide a computational framework for problems that are probabilistic in nature

and have an underlying graphical structure. In this section, we see that another important com-

ponent of this model is that the global properties are governed by local interactions. The joint

distribution is written as a product of local terms (i.e. potentials) that correspond to cliques in the

graph. Each potential models interactions between variables corresponding to the clique. Given

that this model was originally used to understand interacting particle systems, we use this as a

canonical example to explain the intuition behind the rigorous definition.

Let G = (V,E) be a graph with the vertex set V = {1, . . . , n}, where each node represents a

random variable in the system. Let X = (X1, . . . , Xn) be a random vector such that each Xi ∈ Ω

is a random variable defined over the set of possible outcomes Ω = {1, . . . ,m}. Intuitively, each

random variable represents a particle and the random vector represents the system. A configuration

of the random vector is given by x = (x1, . . . , xn) ∈ Ωn, where xi ∈ Ω is the state of the i-th random

variable. Let xS denote a configuration of a subset of random variables such that S ⊂ V . The

probability of a configuration of the random vector X is given by the joint distribution

P(X = x) =
1

Z

∏
C∈C

ψC(xC), (2.1)

where Z is a normalization constant and C ⊂ C(G) is a set of cliques. Each ψC : Ω|C| → R is a non-

negative function referred to as a potential. The potentials encode dependencies among random

12

variables and model local interactions between particles.

The expressive power of graphical models makes them a natural framework for modeling prob-

lems in computer vision, machine learning, bioinformatics, and robotics (see, e.g., [13], [24], [54],

[56], [92]). Some applications have a unique structure which is better suited for certain types

of graphical models. In this thesis, we discuss three distinct types of graphical models, namely

Bayesian networks, Markov random fields, and factor graph. The joint distribution in these special

types of graphical models has the same form as Equation 2.1, but the structure of the graph and

cliques differ. The remainder of this section reviews the three types of graphical models discussed

in this thesis.

2.3.1 Bayesian Networks

Bayesian networks gained popularity in the 80s and 90s as research in artificial intelligence shifted

towards designing intelligent systems that integrate expert knowledge and common sense into a

systematic framework. They became the standard model for building expert systems due to their

natural ability to encode causal relationships. Pearl was very influential in this paradigm shift with

his work on causality [65]. In this work, he identifies several different types of causal relationships

which are most naturally represented with a directed graph (see Figure 2.3) [70].

Let G = (V,E) be a directed graph such that the edge set is a collection of ordered pairs of

vertices (i, j) ∈ E. In a directed graph, each node i ∈ V has a set children nodes denoted by

Ch(i) = { j : (i, j) ∈ E } and parent nodes Pa(i) = { k : (k, i) ∈ E }.

Figure 2.3: Fundamental types of causal relationships

13

Each node i ∈ V in the graph represents a random variable Xi. A directed edge (i, j) ∈ E

indicates a dependency between the random variables Xi and Xj . In this type of model, depen-

dencies have a causal structure in the sense that the state of Xi is dependent upon the states of its

parents. Causal relationships between random variables are captured by conditional distributions,

which act as the potentials in the model. The likelihood of a configuration of the random vector

X is given by

P(X = x) =
1

Z

∏
i∈V

P
(
Xi = xi|XPa(i)

)
.

Next we provide a concrete example of a Bayesian network and more closely describe the

relationship between the topology of the graph and structure of the joint distribution. Note that

we also discuss an example of an expert system built upon a Bayesian network in Section 2.5.3.

Example 2.3.1. Let G = (V,E) be a directed graph with V = {1, . . . , 6} as shown in Figure 2.4.

Let X = (X1, . . . , X6) be a random vector and let joint distribution be

P(X = x) =
1

Z
P(X1)P(X2|X1)P(X3|X2, X5)P(X4|X3)P(X5)P(X6|X5).

Each random variable in the model corresponds to a conditional distribution. One common practice

is to define a conditional probability table (CPT) which stores all of these probabilities.

Figure 2.4: Directed graph from Example 2.3.1

14

2.3.2 Markov Random Fields

Markov random fields are the most popular type of graphical model and have been used in a wide

variety of applications, especially computer vision and image analysis (see, e.g., [15], [57], [58],

[91]). This type of graphical modes captures non-causal relationships between random variables on

an undirected graph. This allows them to express certain dependencies that a Bayesian network

cannot. In particular, Markov random fields are well-suited to expressing marginal dependence and

conditional independence [23].

The joint distribution in a Markov random field has the same general form as Equation 2.1. One

key difference is that the potentials must be strictly positive by Hammersly-Clifford Theorem [34].

One distinctive feature of this model is that it satisfies the local Markov property. This property

describes a certain conditional independence property in terms of the topology of the graph. The

main idea is that the conditional distribution of a random variable Xi given the states of all other

variables is equivalent to the conditional distribution of Xi given its neighbors.

Definition 2.3.2. A random vector X is a Markov random field with respect to the undirected

graph G = (V,E) if for all vertices i ∈ V ,

P(Xi|XV \i) = P(Xi|XN (i)).

Example 2.3.3. Let G = (V,E) be an undirected graph with V = {1, . . . , 7} as shown in Figure

2.5. Let X = (X1, . . . , X7) be a random vector and let joint distribution be

P(X = x) =
1

Z
Ψ12(x1, x2)Ψ27(x2, x7)Ψ2345(x2, x3, x4, x5)Ψ456(x4, x5, x6).

15

Figure 2.5: Undirected graph from Example 2.3.3

2.3.3 Energy-Based Models

Energy-based models are often used to model physical systems whose dynamics are governed by

some underlying energy principles. The main components of this model are an undirected graph

and energy defined with respect to the graph. The energy is a sum of cost functions (or potentials)

that both model local interactions and incorporate prior information. In addition, the cost functions

correspond to cliques in a graph, which makes this model closely related to Markov random fields.

The discussion in this section describes energy-based models in the context of graph labelling.

Let G = (V,E) be an undirected graph with the vertex set V = {1, . . . , n} and let Ω =

{1, . . . ,m} be a set of labels. A labelling of the vertices in the graph is given by x = (x1 . . . , xn) ∈

Ωn, where xi ∈ Ω denotes the label of node i ∈ V . We use xS to denote a labeling of a subset of

nodes such that S ⊂ V . The cost (or energy) of a labeling x is given by the Gibbs energy

E(x) =
∑
i∈V

gi(xi) +
∑

{i,j}∈E

hij(xi, xj), (2.2)

where gi and hij are non-negative functions. The function gi : Ω → R captures local information

such as an observation of the label of a node i. The value of gi(xi) is a cost for assigning label xi

to node i. The function hij : Ω×Ω→ R captures pairwise relationships and influences neighboring

nodes to have compatible labels.

Energy-based models provide a computational framework for performing either probabilistic

or non-probabilistic inference. Non-probabilistic inference involves determining the labeling that

16

minimizes the energy. Equivalently, one can define the joint distribution

P(X = x) =
1

Z
e−E(x), (2.3)

where probabilistic inference involves obtaining the labeling that maximizes the distribution. One

important realization is that the probabilistic version of this model is a pairwise Markov random

field,

P(X = x) =
1

Z
e−E(x)

=
1

Z
exp

(
−
∑
i∈V

gi(xi)−
∑

{i,j}∈E

hij(xi, xj)
)

=
1

Z

∏
i∈V

e−gi(xi)
∏

{i,j}∈E

e−hij(xi,xj)

=
1

Z

∏
i∈V

ϕi(xi)
∏

{i,j}∈E

ψij(xi, xj)

where ϕi(xi) = exp
(
− gi(xi)

)
and ψij(xi, xj) = exp

(
− hij(xi, xj)

)
. This is a useful observation

because it can be leveraged to derive efficient algorithms that perform non-probabilistic inference

in energy-based models.

2.3.4 Factor Graphs

Factor graphs are the most general class of graphical models since they explicitly represent arbitrary

factorizations of distributions. This also makes them the most expressive graphical model since

they incorporate higher order dependencies among variables. In this model, the joint distribution

factors into a product of potential functions which encode statistical dependencies among arbitrary

subsets of random variables. The structure of this distribution is represented by a bipartite graph

referred to as a factor graph.

Let G = (V ∪F,E) be an undirected bipartite graph with a set of variable nodes V = {1, . . . , n}

and factor nodes F = {1, . . . , k}. Variable nodes represent random variables, while factor nodes

represent potentials. Given that the graph is bipartite, then N (i) ⊂ F when i ∈ V and N (f) ⊂ V

when f ∈ F . In this work, we use the convention that the letters i, j, k denote a variable node

17

whereas f, g, h denote a factor node.

Each factor node f ∈ F is connected to some subset of variable nodes (i.e. N (f) ⊂ V). The

factor captures statistical dependencies among these random variables, which are encoded in the

potential function Ψf : Ωd(f) → R. Given that each factor corresponds to a potential, the joint

distribution is written as a product over the factor nodes

P(X = x) =
1

Z

∏
f∈F

Ψf (xN (f)).

Example 2.3.4. Let G = (V ∪ F,E) be a factor graph with the variable nodes V = {1, 2, 3, 4, 5}

and factor nodes F = {a, b, c, d} as shown in Figure 2.6. Let X = (X1, . . . , X5) be a random vector

and let the joint distribution be

P(X = x) =
1

Z
Ψa(x1)Ψb(x2, x3)Ψc(x1, x2, x4)Ψd(x2, x4, x5).

Each potential corresponds to a factor node and it is a function of the random variables correspond-

ing to the neighbors of the factor node.

Figure 2.6: Factor graph from Example 2.3.4

Factor graphs are the most expressive type of graphical model and particularly well-suited for

certain computations. Both Markov random fields and Bayesian networks can be easily transformed

into an equivalent factor graph. In fact, this is a standard practice when performing probabilistic

18

inference. Given a Markov random field, each clique is identified with a factor node. Then vertices

belonging to the clique are connected to the factor node (see Figure 2.4).

Figure 2.7: Factor graph representation of Markov random field from Example 2.3.3

Bayesian networks can also be easily transformed into a factor graph. Given a Bayesian network,

let i′ ∈ F be a factor node which is identified as a copy of node i ∈ V . Then node i′ is connected

to i and the parents of this node (see Figure 2.8).

Figure 2.8: Factor graph representation of Bayesian network from Example 2.3.1

19

2.4 Probabilistic Inference

Probabilistic inference is a central computational challenge in many applications. Exact inference

is generally intractable for arbitrary distributions, especially when the joint is defined over a large

number of random variables. A major advantage of graphical models is that the structure of the

joint distribution can be exploited to derive more efficient algorithms. As a result, graphical models

also provide a computational framework which is supported by a suite of inference algorithms.

In this thesis, we focus on the two closely related inference tasks which frequently appear

in applications. The first involves computing marginal distributions, while the second task is to

determine the optimal configuration of the system.

1. Marginal Inference. Compute the marginal distribution of each random variable i ∈ V ,

P(Xi = τ) =
∑
xV \i

P(X = x).

2. Maximum a Posteriori (MAP) Inference. Determine the globally optimal state of the random

vector,

x̂MAP = argmax
x∈Ωn

P(X = x).

It is well-known that exact inference is NP-hard in both of these problems [14]. The reason being

that the first involves summing over an exponential number of terms, while the latter involves

optimizing over an exponential number of states. There are certain classes of graphical models in

which these computations can be performed in polynomial time. For general models, it is essential

to use an approximation algorithm.

Next we provide a literature review of important approaches to the inference problem. First,

we describe several exact algorithms which are only applicable in certain settings. Then we discuss

various algorithms that perform approximate inference which is a very active area of research. In

Figure 2.9, we summarize the algorithms which are covered in this section.

20

Figure 2.9: Inference algorithms. On the left, we see exact algorithms in yellow
boxes. On the right, we see approximate inference algorithms in the orange boxes.

2.4.1 Exact Algorithms

The discussion in this section focuses on algorithms that perform exact marginal inference. There

are analogous versions of these algorithms that compute the MAP solution. In general, this version

can be easily recovered by replacing each “sum” with a “max”. Since these algorithms are so closely

related, we simplify the discussion by focusing on marginal inference.

Exact Inference

The main idea behind these exact inference algorithms is to reduce the computational complexity

by directly manipulating the joint distribution. As an example, let X = (X1, . . . , X4) be a random

vector with the joint distribution

P(X = x) =
1

Z
ψ1(x1)ψ1(x1, x2)ψ2(x2, x3)ψ3(x3, x4),

where the underlying graph is a chain with 4 nodes. The marginals are computed by fixing the

value of one random variable, then summing over all possible states. The number of operations

is exponential in the number of variables if this calculation is carried out naively. However, the

21

computational complexity can be reduced to polynomial time,

P(X4 = τ) =
1

Z

∑
x1

∑
x2

∑
x3

ψ1(x1)ψ1(x1, x2)ψ2(x2, x3)ψ3(x3, x4)

=
1

Z

∑
x3

ψ3(x3, x4)
∑
x2

ψ2(x2, x3)
∑
x1

ψ1(x1)ψ1(x1, x2).

Exact inference methods are derived by leveraging this observation to improve the computational

complexity.

Variable Elimination

The variable elimination algorithm performs exact inference by iteratively marginalizing (or elimi-

nating) variables. The computation is carried by eliminating the innermost sum, then multiplying

the result with the new innermost sum. This process is repeated until every variable has been

marginalized. The main advantage of variable elimination is that it can be applied to arbitrary

graphical models. In many cases, the algorithm can drastically reduce the computational complex-

ity of exact inference. However, the run time is highly dependent upon the ordering of the sums.

There are some efficient algorithms that find good orderings, but these methods are only applicable

to low tree-width graphs. In general, determining the optimal visitation schedule is NP-hard [68].

Belief Propagation

Although belief propagation shares some similarities with variable elimination, this algorithm car-

ries out the calculations in a more elegant manner. The main idea is to use dynamic programming

to break up the sum into subproblems. This results in a local message passing algorithm, where

information is propagated throughout the graph by sending messages between neighboring nodes.

Each message incorporates local information from the potential and messages from neighboring

nodes (excluding the neighbor receiving the message). It is well-known that belief propagation per-

forms exact inference when the graph is tree-structured. This turns out to be a major limitation

of the algorithm because many real work networks contain cycles (i.e. loopy graphs).

22

Junction Trees

The junction tree algorithm can be used to transform a loopy graph into a tree-structured graph.

In a junction tree, each node corresponds to a subset of random variables as shown in Figure 2.10.

The purpose of this construction is to eliminate cycles by clustering them into a single node. The

details of this algorithm are a bit involved, but the main idea is to marginalize out certain variables

within each cluster. If these cluster-level problems can be solved exactly, then belief propagation

can be used to compute the exact marginals. This algorithm is very effective in certain settings,

but it does not generalize well to arbitrary graphical models. One issue is that the complexity

is highly dependent upon how the nodes are clustered. Although there are some algorithms that

find good junction trees, the runtime has only been proven to be polynomial when the size of the

largest clique is O(log n) with n being the number of vertices. In general, determining the optimal

junction tree is NP-hard [3].

Figure 2.10: Here we see a graph on left and its junction tree on the right. In the
junction tree, circles represent node clusters and rectangles are separating sets, which

are sets of variables shared by neighboring clusters1.

Graph Cuts

Graph cuts are a general class of algorithms that perform both exact and approximate MAP

inference. The main idea behind this method is to define an energy-based model, then minimize

the energy by solving a max flow problem. Although this algorithm is very popular in computer

1Note: this figure was originally created by Mark Paskin

23

vision, it is only guaranteed to perform exact inference in certain settings. Greig et al. (1989)

showed that “binary” problems can be solved exactly with a single graph cut computation. Their

algorithm involves maximizing the flow through an associated network after the introduction of a

source and sink [32]. Ishikawa (2003) generalized this algorithm to first order Markov random fields

with prior terms that are convex in terms of a linearly ordered label set [44].

2.4.2 Approximate Algorithms

Due to the computational complexity of performing exact inference, most efforts have been cen-

tered around developing approximation algorithms. There have been numerous approaches to

this problem which broadly includes stochastic simulation, energy-based methods, and loopy belief

propagation. In this section, we provide a brief description of each class of algorithms along with

some advantages and limitations of each method.

Stochastic Simulation

Stochastic simulation is a rich area of research which has been very active since the 1940s. This

class of algorithms uses that statistical properties of a large number of random samples are de-

terministic when certain conditions are met. Sampling directly from an arbitrary distribution is

often intractable, instead a common practice is to sample from a simpler proposal distribution.

This technique leads to an exact solution as long as the proposal satisfies certain conditions. One

approach is to use rejection sampling where samples are generated from the proposal (e.g. uniform

distribution), then rejected according to a probability which depends upon how well the proposal

approximates the target distribution. One issue is that this algorithm tends to have a high re-

jection rate when the distribution is high dimensional, which makes the method very inefficient.

Importance sampling is one alternative where samples are drawn from a proposal that is roughly

proportional to the target, then samples are reweighed in a principled way. One improvement is to

use adaptive importance sampling in which statistical properties of the samples are used to itera-

tively update the proposal [1]. This general approach tends to work better than rejection sampling

and is more efficient in the sense that all samples are used. However, one limitation is that choosing

a good proposal is not straight forward and can be very difficult in some cases. In addition, the

24

rate of convergence is highly dependent upon the approximation quality of the proposal. In the

context of graphical models, one disadvantage of sampling procedures is they are general purpose

schemes that do no utilize the underlying graphical structure of the model.

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms that similarly aim

to generate samples from a target distribution. One important advantage of these algorithms is

that they are better suited for sampling from high dimensional distributions. The main idea is to

construct a Markov chain in which the stationary distribution is the target distribution. Then an

approximation is obtained by using random walks to generate sequences of samples. As more sam-

ples are produced, the values more closely approximate the target distribution. In the Metropolis-

Hastings algorithm, a current sample is used to generate a candidate sample which is accepted

according to some probability. This probability is defined in such a way that samples are more

likely to stay in high-density regions. Gibbs sampling is a special case of the Metropolis-Hastings

algorithm in which samples are generated from the conditional distribution of each random variable

[27]. This method is particularly well-suited for Markov random fields because each conditional is

relatively simple due to the local Markov property. It can be shown that the sequence of samples

constitutes a Markov chain, and the stationary distribution is exactly the target distribution [26].

Although these sampling algorithms are very popular, they are also notorious for being slow to

converge. In addition, it can be difficult to determine how many iterations are necessary to obtain

a good approximation.

Energy-Based Methods

Variational methods are another general class of algorithms that perform approximate inference

[46]. The main idea is to reformulate inference as an optimization problem, then use gradient

descent to obtain the approximation [41]. In order to make inference tractable, the approximation

is restricted to a more manageable class of distributions. The objective is to minimize the KL-

divergence over this class, which is equivalently done by maximizing a lower bound known as the

evidence lower bound (ELBO). One of the main advantages of variational inference is that it scales

better and is more amenable to techniques like parallelization and GPU optimization. Since most

implementations rely on stochastic gradient descent, variational methods are susceptible to common

25

pitfalls of this algorithm such as local minima, sensitivity to the initialization, and determining an

optimal step size. Another challenge is that the approximation is dependent upon the chosen class

of distributions. In general, more expressive families of distributions tend to result in more difficult

optimization problems.

Graph cuts perform MAP inference by optimizing an objective function. There are certain

problem instances where graph cuts compute the exact MAP solution, which were discussed in the

previous section. In general, this class of algorithms is used to obtain an approximation of the MAP

solution. One common approach is to initialize some solution, then iteratively perform moves that

improve the quality of the solution. In the context of image analysis, a move refers to changing

a pixel’s label in order to decrease the energy. Boykov et al. (2001) use large moves referred to

as α-expansions and αβ-swaps which simultaneously change the labels of arbitrarily large sets of

pixels [9]. Their expansion algorithm finds a labeling within a known factor of the global minimum,

while the swap algorithm handles more general energy functions.

Quadratic pseduo-Boolean optimization (QPBO) is a combinatorial optimization method which

is closely related to graph cuts. When an energy is a sum of unary and binary cost functions

which are submodular and defined with respect to binary variables, the MAP solution can be

obtained with a graph cut optimization. This optimization problem is known to be NP-hard

when the energy is not sub-modular. One alternative is to replace non-submodular terms with

a submodular approximation, then use exact methods to obtain an approximation. However,

this generally produces sub-optimal results, especially when there are a large number of non-

submodular terms [53]. Instead a more favorable alternative is to use the QPBO algorithm. This

algorithm involves building an extended graph and introducing a set of auxiliary variables, then the

approximation is obtained from the min cut of this graph is computed with a max-flow algorithm

(see [8],[7]).

Belief Propagation

Belief propagation was originally developed to perform exact inference in tree-structured graphs.

However, there are many important problems in which the underlying graph contains cycles. In

these applications, a common practice is to adapt the message passing scheme into a fixed point

26

iteration algorithm called loopy belief propagation. This algorithm performs approximate inference

and there are numerous examples of it obtaining good approximations (see [5],[25]). Loopy belief

propagation tends to work well when the underlying graph is locally tree-structured. Since this

algorithm relies on fixed point iteration, its susceptible to common issues associated with this

numerical scheme. When the underlying graph has many cycles, the message passing operator

tends to have multiple fixed points. The local dynamics of each fixed point are often unpredictable.

Some fixed points may be attractive, while other are repelling which often causes the scheme to

fail. Even if the algorithm does converge, the resulting solution depends on the initialization and

may not provide a good approximation.

2.5 Applications

The main objective of this section is to introduce several applications of graphical models and

provide context for the inference problem. The applications discussed in this section also play a

central role throughout this thesis. In Section 2.5.1, we introduce the Ising model from statistical

physics. Section 2.5.2 discusses how graphical models are used to perform image analysis. Lastly,

we conclude this chapter by providing an example of a medical diagnostic network in Section 2.5.3.

2.5.1 Ising and Spin Glass Model

The Ising model is a mathematical model of ferromagnetism in statistical mechanics. The model

consists of a large number of interacting particles that are spatially arranged in a lattice. Particles

have an atomic spin that can be in one of two distinct states (i.e. up or down). The dynamics of

this physical system are driven by local interactions between neighboring particles and an external

magnetic field. The Ising model aims to understand ferromagnetic interactions in which neighboring

particles prefer to be in the same state. These dynamics are often complicated by an external

magnetic field which defines a preferred state for each particle. Given that the dynamics are driven

by physical interactions, it is most natural to model this system with an energy-based model. In

this setting, neighboring particles with compatible spins have a lower energy and the system tends

to the lowest energy.

27

Figure 2.11: Simple example of a spin glass model that lacks an external field.
Particles are spatially arranged in a 3× 4 grid graph and the spin of each particle is

denoted by an arrow. Note that neighboring particles have opposite spins.

Let Gn,m = (V,E) be an n × m grid graph with undirected edges. Particles correspond to

vertices and edges connect interacting particles. Let Ω = {−1, 1} be the set of possible orientations

of a particle’s spin. A configuration of the particle system is given by x = (x1 . . . , xn) ∈ Ωn, where

xi ∈ Ω denotes the state of particle i ∈ V . The energy of a configuration of the system is given by

E(x) = −
∑
i∈V

xiyi −
∑

{i,j}∈E

λijxixj .

The configuration y = (y1, . . . , yn) is an external field, where yi defines a local preference for

each particle i ∈ V . The parameter λij is a coupling factor which influences interactions between

neighboring particles i, j ∈ V . The magnitude of this parameter controls how strongly neighboring

states are coupled and the sign determines whether neighbors prefer to be aligned or misaligned.

An interaction between two particles is ferromagnetic when λij > 0 and anti-ferromagnetic when

λij < 0. In the Ising model, the coupling terms are assumed to be positive so that all interactions

are ferromagnetic. There is a more complicated version of this model called a spin glass model,

where the coupling factors may be either positive or negative.

An important computational problem is determining the configuration of the system that min-

imizes the energy. This problem can be equivalently stated as performing MAP inference since

minimizing an energy is equivalent to maximizing the corresponding energy-based joint distribu-

tion. There are a few special cases in which this problem can be solved exactly. For example,

the model was solved exactly in 1-dimension by Ernest Ising in the mid 1920s [66]. Then the

28

2-dimensional case was solved by Onlager in the mid 1940s [63]. Later, it was discovered that the

n-dimensional case can also be solved exactly with graph cuts [2].

In this thesis, we use spin glass models in our experimental evaluation of comparing the per-

formance of various belief propagation algorithms. Spin glass models are a good test case because

positive and negative coupling factors instigate both attractive and repulsive dynamics. This often

makes approximate inference with message passing very difficult. For this reason, this model is

generally used as a test case for approximate inference algorithms.

2.5.2 Image Analysis

Markov random fields are a natural framework for image analysis due to their ability to encode

spatial dependencies between pixels and enforce image priors that capture spatial coherence. Images

have an inherent graphical structure which is captured by a grid graph. This model has been used in

many image analysis tasks including image segmentation, depth estimation, and image restoration

(see, e.g., [15], [57], [58], [91]). These applications generally use an energy-based model, where the

cost functions are tailored to the particular application and enforce certain image priors. The task

is then formulated as finding a labelling of the vertices (pixels) of the graph (image) that minimize

the energy. The cost functions are defined in such a way that the optimal labelling provides a good

solution to the imaging problem.

Figure 2.12: Here we see an image grid on the left and its corresponding grid graph
on the right. Pixels in the image correspond to nodes in the graph and neighboring

nodes correspond to adjacent pixels.

29

To formalize this approach, let I be an n ×m image and let Gn,m = (V,E) be an n ×m grid

graph that provides a graphical representation of the image. Each pixel corresponds to a node and

the edges connect neighboring pixels as shown in Figure 2.12. Let Ω = {ℓ1, . . . , ℓk} be the set of

possible labels, where the contents of this set depend upon the application. For example, binary

labels are used in image segmentation and light intensity values from 0 to 255 are used in image

restoration. Let x = (x1, . . . , xnm) ∈ Ωnm denote a labelling of the vertices of the graph and note

that a labelling defines an image. The cost (or energy) of a labelling is given by the Gibbs energy

E(x) =
∑
i∈V

gi(xi) + λ
∑

{i,j}∈E

hij(xi, xj).

The unary cost function gi : Ω→ R is generally used to encode information over individual pixels.

For example, this function may incorporate a noisy observation of a label or a likelihood that

defines a local preference for certain labels. The pairwise function hij : Ω × Ω → R enforces that

the optimal labelling is smooth and consists spatially coherent regions. In practice, this function

is usually either the ℓ1- or ℓ2-distance.

In applications, the main computational objective is to perform MAP inference which involves

determining a labelling of the vertices that minimizes the Gibbs energy. Exact inference is compu-

tationally intractable because images often have a large number of pixels and the set of labels may

be large. Thus, it is essential to use approximate inference algorithms in these applications.

2.5.3 Medical Diagnostic Networks

Diagnostic inference is both a difficult and important problem which has attracted much attention

in the last few decades. The objective is to design an intelligent system that assists in diagnosing a

patient who exhibits some observed findings (or symptoms). Bayesian networks are a natural model

for this task due to their ability to encode causal relationships into a systematic framework. The

Quick Medical Reference (QMR) network is an example of a Bayesian network that models causal

relationships between diseases and findings. This system uses a bipartite graph where diseases

point to findings, which reflects the causal relationship between these variables. Each disease and

finding pair has a corresponding conditional probability that represents the probability that a

disease causes a finding to be present.

30

Figure 2.13: Simple example of a QMR network.

The QMR network is a directed bipartite graph G = (D ∪ F , E), where D = {1, . . . , n} is a set

of disease nodes and F = {n + 1, . . . ,m} is a set of finding nodes. The set E is a collection of

ordered pairs of vertices (i, j) ∈ E such that i ∈ D and j ∈ F . Each pair is a directed edge which

models that findings are dependent upon diseases. Let D = (D1, . . . , Dn) and F = (Fn+1, . . . , Fm)

be random vectors that represent the set of disease and finding nodes, respectively. Let Ω = {0, 1}

be the set of outcomes of each random variable. A configuration of the random vector (D,F) is

given by (d, f) = (d1, . . . , dn, fn+1, . . . , fm) ∈ Ωm. The likelihood of a configuration is given by the

joint distribution

P(F = f,D = d) =
∏
i

P(Fi = fi|Pa(i))
∏
j

P(Di = dj).

There are a number of underlying assumptions in this model that allow us to simplify the joint

distribution. We return to this topic in Chapter 7, which provides a detailed overview of the QMR

network.

The inference task is to estimate the conditional probability of a individual disease being present

given an observation of findings. The outcome of this calculation provides a probabilistic expla-

nation of the cause behind the observed findings. It has been proven that the computational

complexity of exact inference is NP-hard [16]. Thus, it is essential to use approximate inference

algorithms in these applications.

31

CHAPTER 3

Belief Propagation Algorithms

This chapter presents an introduction to the traditional belief propagation algorithms. There are

two closely related variants of this algorithm which correspond to distinct inference tasks. The

focus of Section 3.1 is to introduce the max-product algorithm which performs MAP inference,

then Section 3.2 describes an equivalent version of this algorithm called the min-sum algorithm. In

Section 3.3, we introduce the sum-product algorithm which performs marginal inference. Lastly,

we provide a concise overview of recent developments in the belief propagation literature in Section

3.4.

3.1 Max-Product Algorithm

In this section, we present the max-product algorithm which performs MAP inference in a graphical

model. Our objective is to both describe the intuition behind the algorithm, while also communi-

cating its technical aspects. We discuss the MAP inference problem in Section 3.1.1, then provide

a simple example in Section 3.1.2 that explains how and why the max-product algorithm works.

In Sections 3.1.3 and 3.1.4, we present the max-product algorithm along with some discussion of

its limitations.

3.1.1 Exact MAP Inference

Exact MAP inference in graphical models is computationally intractable because this problem is

NP-hard. However, when the underlying graph is tree-structured, it is possible to derive an efficient

32

algorithm that performs exact inference in polynomial time. In this special case, the max-product

algorithm leverages the structure of both the joint distribution and underlying graph to break up

the calculation into subproblems. Then the solution is efficiently computed by recursively solving

the subproblems with dynamic programming.

The max-product algorithm computes max-marginals of the joint distribution, then obtains the

MAP solution by maximizing each individual function. The max-marginal of node i ∈ V is given

by

pi(xi) = max
xV \i

P(X = x). (3.1)

The value pi(xi) specifies the maximum probability of a configuration of the random vector when

the state of the i-th random variable is xi. As long as there are no ties, the exact MAP solution

x̂MAP := argmax
x

P(X = x) can be obtained by computing

x̂i = argmax
τ∈Ω

pi(τ) ∀i ∈ V. (3.2)

3.1.2 Simple Derivation of Messages

Let G = (V,E) be the undirected graph in Figure 3.1 and let V = {1, . . . , 5} be the set of vertices.

Let X = (X1, . . . , X5) be a random vector and Ω = {1, . . . , N} be the set of possible outcomes of

each random variable. Let the joint distribution of this Markov random field be

P(X = x) =
1

Z

∏
{i,j}∈E

ψij(xi, xj).

where Z is a normalization constant.

33

Figure 3.1: Simple tree-structured graph. Node 1 is highlighted to emphasize that
the main focus is to compute the max-marginal of this node.

The purpose of this simple example is to explain the connection between dynamic programming

and message passing. Since the algorithms are derived by analyzing the structure of the calculation,

we proceed in this manner by computing the max-marginal of node 1.

p1(x1) = max
x2

max
x3

max
x4

max
x5

{
ψ12(x1, x2)ψ15(x1, x5)ψ23(x2, x3)ψ24(x2, x4)

}
= max

x5

{
ψ15(x1, x5)max

x2

{
ψ12(x1, x2)max

x3

{
ψ23(x2, x3)max

x4

ψ24(x2, x4)
}}}

.

Since x1 is a constant and the max over x5 is disjoint from the rest, this expression can be simplified

as a product of maxes.

P(X1 = x1) =

(
max
x5

ψ15(x1, x5)

)(
max
x2

{
ψ12(x1, x2)max

x3

{
ψ23(x2, x3)max

x4

ψ24(x2, x4)
}})

Similarly, the maximizations over x3 and x4 are also disjoint, so the expression within the max over

x2 can also be simplified as a product of maxes.

=

(
max
x5

ψ15(x1, x5)︸ ︷︷ ︸
m51(x1)

)(
max
x2

{
ψ12(x1, x2)

(
max
x3

ψ23(x2, x3)︸ ︷︷ ︸
m32(x2)

)(
max
x4

ψ24(x2, x4)︸ ︷︷ ︸
m42(x2)

)}
︸ ︷︷ ︸

m21(x1)

)
(3.3)

Computing the max-marginals can be realized as a succession of subproblems mij(xj) which

can be efficiently solved with dynamic programming. This approach drastically reduces the com-

putational complexity from O(N5) if the calculation is carried out naively to O(N2).

34

Figure 3.2: Local message passing on a graph. Here we emphasize the messages
that are used to compute the max-marginal of node 1.

The subproblems are derived by exploiting that some maximizations are disjoint and can be

simplified as a product of maxes. The max-product algorithm leverages this pattern to simplify

the calculation as a succession of recursive subproblems. In the context of belief propagation,

each subproblem is referred to as a message. Messages are sent between neighboring nodes, where

mij(xi) denotes the message sent from node i to j.

The max-marginal of node 1 can be efficiently computed with local message passing as shown in

Figure 3.2. The first step is to compute messages sent from the leaves of the graph rooted at node 1.

Once a node receives a message, it sends messages to its other neighbors. The process repeats until

node 1 receives messages from all of its neighbors. Although this procedure efficiently computes

the max-marginal of node 1, the max-marginals of every node must be computed to obtain the

MAP solution. If we repeat the same derivation for every max-marginal, some of the exact same

messages reappear. Thus, the max-marginals can be more efficiently obtained by computing all

messages sent between neighboring nodes in parallel.

3.1.3 Markov Random Fields

Let X = (X1, . . . , Xn) be a random vector and Ω = {1, . . . , N} be the set of possible outcomes

for each random variable. Let G = (V,E) be an undirected graph with the set of vertices V =

{1, . . . , n}, where each node represents a random variable. In a pairwise Markov random field, the

joint distribution is

P(X = x) =
1

Z

∏
i∈V

ϕi(xi)
∏

{i,j}∈E

ψij(xi, xj),

35

The unary potential ϕi : Ω → R captures local information such as an observation of the random

variable Xi. The binary potential ψij : Ω × Ω → R encodes a statistical dependency between

the random variables Xi and Xj . Our initial discussion of the max-product algorithm focuses on

pairwise models, where the joint distribution is comprised of unary and binary potentials.

MAP inference is a central computational challenge in many applications involving graphi-

cal models. When the graph is tree-structured, the max-product algorithm computes the max-

marginals for each random variable in polynomial time. The main idea behind this algorithm is

to use dynamic programming to break up the calculation into subproblems. This results in a local

message passing algorithm, where information is propagated throughout the graph via messages

passing between neighboring nodes as illustrated in Figure 3.3.

Let mij ∈ RN be the message sent from node i to j. For arbitrary tree-structured graphs,

messages are computed with the max-product equations

mij(xj) = max
xi

{
ϕi(xi)ψij(xi, xj)

∏
k∈N (i)\j

mki(xi)
}
.

This equation is a generalization of the messages from Equation (3.3) in the previous section. Each

message incorporates local information from the potentials along with messages received from the

other neighbors. Intuitively, the message mij provides information regarding what state node i

thinks Xj should be in, where large values of mij(xj) correspond to favorable states. The messages

are often normalized for numerical reasons, in which case mij is a distribution over the set of

possible states.

Figure 3.3: Illustration of message passing on a graph. We see that the message
sent from the node i to j aggregates messages from all other neighbors of i.

36

After a node receives a message from each of its neighbors, the incoming messages are combined

to compute belief functions for each node. Let bj : Ω→ [0, 1] be the belief function of node j such

that

bj(xj) = ϕj(xj)
∏

i∈N (j)

mij(xj). (3.4)

A classical result in the belief propagation literature is that bj is the exact max-marginal of node

j ∈ V when the graph is tree-structured [64]. In this case, the MAP solution can be obtained by

maximizing each belief function individually.

When the graph contains cycles, this algorithm can be adapted into a fixed point iteration

scheme referred to as loopy belief propagation. In this setting, the message passing equations are

used to define an operator that facilitates message passing between all neighboring nodes in the

graph. The message passing operator acts on the product space

M :=
⊗
i∈V

⊗
j∈N (i)

R|Ω|
+

Let m ∈M be a vector which consists of all messages sent between neighboring nodes in the graph.

Definition 3.1.1. The message passing operator P : M → M in the max-product algorithm is

P = NQ. Q computes new messages using the max-product equation and N normalizes each

message to sum to one.

(
Qm

)
ij
(xj) = max

xi

{
ϕi(xi)ψij(xi, xj)

∏
k∈N (i)\j

mki(xi)
}

(
Nm

)
ij
(xj) =

mij(xj)∑
τ∈Ω

mij(τ)

Note that the message updates are normalized to prevent numerical overflow. Since the messages

and beliefs are only scaled by a constant, normalizing simply scales the resulting beliefs. In loopy

belief propagation, the messages are initialized as m(0) ∈ M and repeatedly updated by using the

37

fixed point iteration scheme:

m(ℓ+1) = Pm(ℓ),

where ℓ ∈ N is the number of iterations. In practice, this scheme is either run for a large number

of iterations or stopped once the messages have sufficiently converged. The resulting messages m(ℓ)

are then used to compute beliefs b
(ℓ)
j for every node.

Definition 3.1.2. The belief b
(ℓ)
j : Ω→ [0, 1] of node j ∈ V after ℓ iterations is given by

b
(ℓ)
j (xj) = κϕj(xj)

∏
i∈N (j)

m
(ℓ)
ij (xj), (3.5)

where κ is a normalization constant.

The beliefs are an approximation of the exact max-marginals and can be used to obtain an

approximate MAP solution x̃MAP ∈ Ωn such that

x̃i := argmax
xi

b
(ℓ)
i (xi).

Belief propagation has gained popularity within the artificial intelligence community since it ob-

tains a good approximation to the MAP solution in certain settings such as error correcting codes

and image analysis (see, e.g., [11],[19],[21],[25],[74]). However, belief propagation is also notorious

for failing to converge, being sensitive to the message initialization, and returning an inaccurate

estimate of the MAP solution. These problems are the main motivations behind the developments

in this thesis as well as many other works over the last few decades.

One general approach is to consider belief propagation as a discrete-time map, then utilize

ideas from the theory of dynamical systems to understand the behavior of this algorithm. This is a

natural approach to this problem because the messages are updated with the fixed point iteration

scheme:

m(ℓ) := Pm(ℓ)

where m(0) ∈ M is the message initialization. If the messages converge, they provide an approxi-

mation of a solution (i.e. fixed point) of the fixed point equation Pm = m. It is well-known that

this equation always has at least one solution when the potentials are positive [39]. There are a

38

number of works that have studied how the topology of the graph and potentials affect the number

of solutions. In general, graphical models with strong couplings between random variables and

graphs with more cycles tend to have more fixed points. We return to this topic in Section 3.4,

where we go into more detail on the findings from the literature.

Although the fixed point equation Pm = m is guaranteed to have at least one solution, it is

often very difficult to obtain any solution with loopy belief propagation. The local dynamics of the

fixed points are often unpredictable. Some fixed points may be attractive, while others are repelling

which often causes the messages to oscillate. One numerical method that improves the performance

of this algorithm is to stabilize the scheme by taking a convex combination of the messages from

the previous and current iteration. In the belief propagation literature, this modification is referred

to as damped belief propagation1.

Definition 3.1.3. The damping operator Pα :M→M in the max-product algorithm is

Pαm = (1− α)Pm+ αm,

where α ∈ (0, 1) is the damping factor.

In practice, this scheme often prevents the messages from oscillating and converges to a fixed

point faster than loopy belief propagation when both algorithms converge [69]. In Section 3.2, we

provide an example where damping effectively prevents the messages from oscillating. However,

the theoretical understanding of damped belief propagation is very limited. One general result is

that this scheme converges when the operator is non-expansive and defined over a closed, bounded

compact subset of a Hilbert space (see [4],[67]). However, the message passing operator in loopy

belief propagation is generally expansive with a Lipschitz constant much greater than one. There

are many problems where damping is not enough to prevent oscillations. In the next chapter, we

provide an example of a graphical model where damped belief propagation does not converge for

any damping factor that we tried.

1This general scheme is referred to as the Krasnoselskij-Mann iteration scheme in the numerical analysis literature.

39

3.1.4 Factor Graphs

Next we present the factor graph version of the max-product algorithm. The message passing

scheme is similar, but one key difference is that both factor and variable nodes send messages.

Although this complicates the analysis, most results on pairwise models extend to this more general

case.

Let G = (V ∪ F,E) be an undirected bipartite graph with the set of variable nodes V =

{1, . . . , n} and factor nodes F = {1, . . . ,m}. In this thesis, variable and factor nodes are concisely

referred to as variables and factors, respectively. In addition, we use the convention that the letters

i, j, k denote variables whereas f, g, h denote factors. Let X = (X1, . . . , Xn) be a random vector

and let Ω = {1, . . . , N} be the set of possible outcomes of each random variable. Now consider the

joint distribution

P(X = x) =
1

Z

∏
f∈F

Ψf (xN (f)).

Let µf→i ∈ RN be the message sent from factor f to variable i and let νi→f ∈ RN be the

message sent from i to f . Note that we use µ as opposed to m to distinguish between messages

sent on factor graphs versus Markov random fields. When the factor graph is tree-structured, the

messages are computed as

νi→f (xi) =
∏

g∈N (i)\f

µg→i(xi)

µf→i(xi) = max
xN (f)

{
Ψf (xN (f))

∏
j∈N (f)\i

νj→f (xj)
}
.

The semantic meaning of each message is slightly different in the case of a factor graph. Intuitively,

the message µf→i provides information regarding what state the other neighbors of factor f think

the random variable Xi should be in, where large values of µf→i(xi) correspond to favorable states.

The message νi→f communicates what state node i thinks that the other neighbors of factor f

should be in. The incoming messages at each variable are multiplied together to compute a belief

40

function bi : Ω→ R+ given by

bi(xi) = κ
∏

f∈N (i)

µf→i(xi) ∀i ∈ V,

where κ is a normalization constant. When the factor graph is tree-structured, the beliefs are the

exact max-marginals.

Figure 3.4: Illustration of message passing on a factor graph. Circles represent
variable nodes and squares represent factor nodes. On the left, we see that the
message sent from f to i aggregates messages from all other neighbors of f . On the
right, we see that the message sent from i to f also aggregates messages from the

other neighbors.

When the graph contains cycles, this algorithm can be adapted into a fixed point iteration

scheme. In this setting, the message passing equations are used to define operators that facilitate

message passing between all neighboring nodes in the graph. The message passing operators act

on the product space

M :=
⊗
f∈F

⊗
i∈N (f)

RN
+

Let µ ∈M be a vector which consists of all messages sent from factors to variables and let ν ∈M

consist of all messages sent from variables to factors.

Definition 3.1.4. The message passing operator T :M→M in the max-product algorithm that

computes messages sent from variables to factors is

(
Tµ
)
i→f

(xi) =
∏

g∈N (i)\f

µg→i(xi).

41

Definition 3.1.5. The message passing operator P :M→M in the max-product algorithm that

computes messages sent from factors to variables is P = NQ. Q computes new messages using the

sum-product equation and N normalizes the messages.

(
Qν
)
f→i

(xi) = max
xN (f)

Ψf (xN (f))
{ ∏

j∈N (f)\i

νj→f (xj)
}

(
Nν
)
f→i

(xi) =
νi→f (xi)∑

τ∈Ω
νi→f (τ)

.

Definition 3.1.6. The message passing operator D :M×M→M×M updates all messages in

parallel,

D(µ, ν) = (Pν, Tµ).

Figure 3.5: Illustration of message updates in loopy belief propagation. Column
vectors show the two sets of messages computed on each iteration. Arrows represent
either T or P , depending on the color. The initial point on an arrow indicates the

input to the respective operator and the end points to the output.

In loopy belief propagation, the messages are initialized with µ(0), ν(0) ∈ M, then repeatedly

updated via the fixed point iteration scheme

(
µ(ℓ+1), ν(ℓ+1)

)
:= D(µ(ℓ), ν(ℓ)),

42

where ℓ ∈ N denotes the number of iterations. The algorithm terminates when the messages

converge to a solution of the following system of nonlinear equations

µ = Pν

ν = Tµ.

It is important to note that a solution to this system of equations can also be realized as a fixed

point of the system PTµ = µ (also note that PTµ(ℓ+1) = µ(ℓ)). This system of equations is

guaranteed to have at least one solution when the potentials are strictly positive [86]. Once the

algorithm converges, the messages are used to compute beliefs.

Definition 3.1.7. Let b
(ℓ)
i : Ω→ (0, 1) be the belief of i ∈ V be given by,

b
(ℓ)
i (xi) = κ

∏
f∈N (i)

µ
(ℓ)
f→i(xi)

with κ being a normalization constant.

The factor graph version of the max-product algorithm suffers from the same problems discussed

in the last section, namely multiple fixed points, instability, and sensitivity to the initialization of

the messages. Similarly, damping is often used as an attempt to stabilize the message passing

dynamics.

Definition 3.1.8. The damping operator Dα :M×M→M×M is

Dα(µ, ν) =
((

1− α
)
ν + αTµ,

(
1− α

)
µ+ αPν

)

where α ∈ (0, 1) is the damping factor.

3.2 Min-Sum Algorithm

Next we present the min-sum algorithm which also performs MAP inference in graphical models.

MAP inference is an interesting problem which differentiates itself from marginal inference by

having an equivalent, alternative form. MAP inference can be performed by either maximizing

43

the joint distribution or minimizing a closely related energy function. This alternative form is

more natural for certain applications and also provides additional insight on the behavior of belief

propagation.

3.2.1 Energy-Based MAP Inference

Let E(x) = − log P(X = x) be an energy function. The energy-based formulation of the MAP

inference problem is often preferred because it is less sensitive to numerical artifacts.

The minimization problem can be solved in an analogous manner by computing min-marginals,

then minimizing each individual function. The min-marginal of node i ∈ V is given by

qi(xi) = min
xV \i

E(x).

The value qi(xi) specifies the optimal cost of a labeling where the i-th node is labelled as xi. As

long as there are no ties, the MAP solution x̂MAP ∈ Ωn can be obtained as

x̂i = argmin
τ∈Ω

qi(τ) ∀i ∈ V.

Computing exact min-marginals in an energy-based model is also NP-hard. However, when the

graph is tree-structured, the min-marginals can be computed efficiently by exploiting the relation-

ship between energy-based models and Markov random fields. One corollary of this relationship is

that the min-marginals can be written in terms of the corresponding max-marginals,

qi(xi) = min
xV \i

E(x)

= min
xV \i

log P(X = x)

= − log max
xV \i

P(X = x)

= − log pi(xi)

where pi is the max-marginal of node i ∈ V . Note that the normalization constant in the distribution

44

can be ignored since it does not affect the MAP solution. This relationship implies that the max-

product algorithm can be adapted into an equivalent algorithm that computes min-marginals.

3.2.2 Message Passing Algorithm

The min-sum algorithm is a local message passing algorithm that computes exact min-marginals

when the underlying graph is tree-structured. In this algorithm, messages are computed with the

min-sum equation

mij(xj) = min
xi

{
gi(xi) + hij(xi, xj) +

∑
k∈N(i)\j

mki(xi)
}
,

which is the negative log version the max-product equations. Intuitively, the message mij provides

information regarding what label node i thinks that its neighbor j should be given, where small

values of mij(xj) correspond to favorable labels.

The incoming messages at each node are summed together to compute a belief function bj :

Ω→ R given by

bj(xj) = gj(xj) +
∑

i∈N(j)

mij(xj).

For tree-structured graphs the definition of messages in terms of other messages leads to a unique

solution that can be obtained by starting from the leaves of the graph. In this case, the resulting

beliefs are exactly the min-marginals of the energy. Thus, the optimal labelling can be obtained by

minimizing each belief function individually.

When the graph contains cycles, the min-sum equations can be used to define a message passing

operator that updates all the messages sent between nodes in the graph in parallel (sequential

update versions are also commonly used in practice).

Definition 3.2.1. The message passing operator Q :M →M in the min-sum algorithm is Q =

NP . P computes new messages using the min-sum equation and N centers each message so the

resulting vectors have mean zero.

(
Pm

)
ij
(xj) = min

xi

{
gi(xi) + hij(xi, xj) +

∑
k∈N (i)\j

mki(xi)
}
,

45

(
Nm

)
ij
(xj) = mij(xj)−

1

|Ω|
∑
τ∈Ω

mij(τ).

Although the min-sum algorithm has been successfully used in a variety of applications, the

algorithm is not guaranteed to converge. Similarly, damping is often used to stabilize the fixed

point iteration scheme. Next we provide a simple example where damping prevents the messages

from oscillating.

Example 3.2.2. Let G = (V,E) be a cycle with four nodes and let Ω = {−1, 1}. Suppose that

y = (1,−1, 1,−1) is an “external field” that defines a local preference for the label of each vertex.

Define the cost functions,

gi(xi) = −yixi and hij(xi, xj) = −xixj .

We applied both damped and undamped belief propagation to this example and show the resulting

beliefs in Figure 3.6.

Figure 3.6: On the left, we see that the belief oscillates when non-damped belief
propagation is applied to this example. On the right, we see that damped belief

propagation stabilizes the oscillations and the belief converges.

In general, damped belief propagation appears to converge more often when compared to non-

damped belief propagation, but the approach is still not guaranteed to converge. In the next

chapter, we show an example where damped belief propagation does not converge for any damping

factor that we tried.

46

3.3 Sum-Product Algorithm

The main objective of this section is to present the sum-product algorithm. In Section 3.3.1, we

discuss the marginal inference problem, then provide a simple example that explains how and why

the algorithm works. Sections 3.3.2 and 3.3.3 present the Markov random field and factor graph

versions of the sum-product algorithm, respectively.

3.3.1 Marginal Inference

In marginal inference, the objective is to compute

P(Xi = xi) =
1

Z

∑
xV \i

P(X = x).

This objective bears a close resemblance to MAP inference in the sense that they both involve a

calculation over every configuration of the random vector. In fact, we can simplify the calculation

in the exact same manner by exploiting the unique structure of the joint distribution.

Next we use the same graphical model from Section 3.1.2 to describe how and why the algorithm

works. Since the algorithm is derived by analyzing the structure of the calculation, we proceed in

this manner by computing the marginal of node 1.

P(X1 = x1) =
1

Z

∑
x5

∑
x4

∑
x3

∑
x2

ψ15(x1, x5)ψ23(x2, x3)ψ24(x2, x4)

=
1

Z

∑
x5

(
ψ15(x1, x5)

∑
x2

(
ψ12(x1, x2)

∑
x3

(
ψ23(x2, x3)

∑
x4

ψ24(x2, x4)
)))

,

Several of these sums are disjoint and can be written as a product of sums,

=
1

Z

(∑
x5

ψ15(x1, x5)︸ ︷︷ ︸
m51(x1)

)(∑
x2

ψ12(x1, x2)
(∑

x3

ψ23(x2, x3)︸ ︷︷ ︸
m32(x2)

)(∑
x4

ψ24(x2, x4)︸ ︷︷ ︸
m42(x2)

)
︸ ︷︷ ︸

m21(x1)

)
. (3.6)

Similar to the case of computing max-marginals, the calculation can be reduced to computing a

series of messages mij(xj). The messages are derived by exploiting that some sums are disjoint

47

and can be simplified as a product of sums. The sum-product algorithm leverages this pattern to

simplify the calculation. Next we generalize these message passing equations to the case of an

arbitrary graph.

3.3.2 Markov Random Fields

Let G = (V,E) be an undirected graph with the set of vertices V = {1, . . . , n}. Let X =

(X1, . . . , Xn) be a random vector and Ω = {1, . . . , N} be the set of possible outcomes for each

random variable. In a pairwise Markov random field, the joint distribution is

P(X = x) =
1

Z

∏
i∈V

ϕi(xi)
∏

{i,j}∈E

ψij(xi, xj),

where Z is a normalization constant.

When the factor graph is tree-structured, the sum-product algorithm can be used to efficiently

compute the marginals. In this case, messages are computed with the sum-product equations

mij(xj) =
∑
xi

ϕi(xi)ψij(xi, xj)
∏

k∈N (i)\j

mki(xi).

After a node receives a message from each of its neighbors, the incoming messages are combined to

compute beliefs by using Equation 3.4. Similar to the case of max-product algorithm, the beliefs

are the exact marginals when the graph is tree-structured [64].

When the graph contains cycles, the sum-product equation can be adapted into a message

passing operator. The operator used in this version of belief propagation is nearly the same as the

max-product algorithm. The only difference is that it includes a “sum” as opposed to a “max”.

Definition 3.3.1. The sum-product message passing operator S :M→M that computes messages

sent from factors to variables is S = NR. R computes new messages with the sum-product equation

48

and N normalizes messages.

(
Rm

)
ij
(xj) =

∑
xi

ϕi(xi)ψij(xi, xj)
∏

k∈N (i)\j

mki(xi)

(
Nm

)
ij
(xj) =

mij(xj)∑
τ∈Ω

mij(τ)

In loopy belief propagation the messages are initialized, then repeatedly updated by using fixed

point iteration with the operator S. If the algorithm converges, the messages are used to compute

beliefs by using Definition (3.1.2). The beliefs then provide an approximation to the marginals. The

sum-product algorithm (even with damping) suffers from the exact same issues as the max-product

algorithm, namely the messages often fail to converge, the operator can have multiple fixed points,

and the resulting fixed point may depend on the initialization of messages.

3.3.3 Factor Graphs

In this section, we present the factor graph version of the the sum-product algorithm. Most details

of this algorithm are very closely related to the factor graph version of the max-product algorithm.

In order to avoid being repetitive, we simply define the message passing operators used in this

algorithm.

Definition 3.3.2. The sum-product message passing operator T :M→M that computes messages

sent from variables to factors is

(
Tµ
)
i→f

(xi) =
∏

g∈N (i)\f

µg→i(xi).

Definition 3.3.3. The sum-product message passing operator S :M→M that computes messages

sent from factors to variables is S = NR. R computes new messages using the sum-product equation

49

and N normalizes messages.

(
Rν
)
f→i

(xi) =
∑
xN (f)

Ψf (xN (f))
∏

j∈N (f)\i

νj→f (xj)

(
Nν
)
f→i

(xi) =
νi→f (xi)∑

τ∈Ω
νi→f (τ)

The message passing operators in the sum-product algorithm share several commonalities with

the operators from the max-product algorithm. First, the operator T which computes message from

variables to factors is identical in both algorithms. Then both algorithms utilize a normalization

operator denoted by N . In fact, the only difference is the operator which updates messages sent

from factors to variables uses a “sum” as opposed to a “max”.

3.4 Literature Review

Since Pearl popularized the algorithm in the late 1980s, there has been significant progress in un-

derstanding the behavior of loopy belief propagation. Research in this area has mostly centered

around three key topics: convergence, stability, and alternatives. Studying the convergence and

stability of the algorithm has led to definitive criteria that characterizes when the algorithm con-

verges. This insight has led to the development of alternative message passing algorithms that

address aspects of the model that often cause belief propagation to fail.

3.4.1 Convergence

Weiss (2000) analyzes the accuracy of belief propagation when the graph contains a single loop

[80]. For these networks, belief propagation with sufficient damping is guaranteed to converge to

a unique fixed point that corresponds to the MAP solution [81]. Although the resulting beliefs

may be inaccurate, nodes can use local information in the messages to correct their beliefs. Weiss

and Freeman (2001) extend this result to graphs with arbitrary topology and nodes that describe

jointly Gaussian random variables [82].

50

Jordan and Tatikonda (2002) address the convergence of belief propagation by drawing a con-

nection between Gibbs measures and the algorithm’s computation tree2. Their main result is that

belief propagation is guaranteed to converge when the model satisfies Dobrushin’s condition (see

[28], [75], [76]). The main idea of this condition is that oscillations will not occur when the influence

that nodes have on each other is sufficiently small. Ihler et al. (2005) derive a slightly stronger

condition by bounding message error in terms of the dynamic range3 of the potentials [43].

Heskes (2004) derives sufficient conditions for unique fixed points that depends on both the

topology of the graph and the strength of the potentials. His approach utilizes the connection

between fixed points of loopy belief propagation and extrema of the Bethe free energy [39]. The

main result is a set of conditions that guarantee when the Bethe free energy is convex. Equivalently,

these conditions also imply that belief propagation has a unique fixed point [40]. One interesting

corollary of this work is that the Bethe free energy is always convex when the graph is tree-

structured.

3.4.2 Stability of Fixed Points

In stability analysis4, the main objective is to understand how fixed point iteration behaves with

respect to small perturbations of a fixed point. The stability of a fixed point is closely related to

convergence since fixed point iteration tends to converge when the fixed point is attractive. There

is a stream of belief propagation research which aims to derive stability conditions that describe

when the fixed points are locally attractive.

Heske (2002) approached the stability problem by leveraging the relationship between belief

propagation and the Bethe free energy. He proved that stable fixed points of loopy belief prop-

agation are minima of the Bethe free energy [39]. Watanabe and Fukumizu (2009) established a

formula that connects the Hessian of the Bethe free energy with the edge zeta function [79]. The

formula clarifies the relation initially described by Heske, while also providing new insights on the

connection between belief propagation and the edge zeta function. Martin and Lasgouttes (2012)

derive a sufficient condition for local stability in terms of the graph structure and the beliefs values

2The computation tree represents an unwrapping of the original graph with respect to belief propagation [76].
3The dynamic range d(f) of a positive function is given by d(f) = supx,y

√
f(x)/f(y)

4We assume a basic understanding of a fixed point being (globally or locally) attractive versus repelling. Otherwise,
we direct the reader to Devaney’s book [18] as a resource.

51

at the fixed point [60]. Their work provides insight on why belief propagation is more likely to

converge on sparse graphs.

3.4.3 Alternative Belief Propagation Algorithms

In general, the belief propagation literature focuses on two distinct topics. The first is to un-

derstand the behavior of the algorithm, while the second is to present convergent alternatives to

the traditional belief propagation algorithms. The main objective of this section is to introduce

some important alternative algorithms that perform approximate inference in the problem instances

where the traditional algorithms fail.

In the last two decades, there has been a push to derive message passing algorithms from

convex free energies. An important member of this class are the generalized belief propagation

algorithms by Yedida et al. (2000). The main idea of this approach is reduce the number of cycles

in the graph by formulating message passing between regions of nodes [85]. They prove that the

fixed points are identical to the stationary points of a region-based free energy. Although the

algorithm outperforms traditional belief propagation, the performance is highly dependent upon

how the graph is partitioned into regions. There have been a number of follow up works that have

addressed this issue (see, e.g., [12],[83],[86]).

Another important class of algorithms are tree-reweighted belief propagation (TRW) methods

introduced by Wainwright et al. (2003) [77]. Their approach was inspired by maximizing a lower

bound on the log partition function of a graphical model by approximating the distribution with

a convex combination of tree-structured distributions [78]. One outcome of this work is TRW

in which messages are adjusted by edge weights determined by the structure of the graph. In a

follow up work, Wainwright et al. (2008) derived a condition that guarantee when their algorithm

converges on arbitrary graphs [72]. We return to this topic in the next chapter since it is closely

related to convex combination belief propagation.

In addition, there are a number of different algorithms that are based upon ideas from convex

optimization. Yuille (2004) developed a double-loop algorithm to minimize the Bethe free energy.

The method is derived by using a concave-convex procedure where the free energy is decompose

into a convex part and a concave part (see [89], [90]). The main advantage of the algorithm is that

52

it’s guaranteed to converge. However, it hasn’t gained much attention since the runtime exceeds

the traditional algorithm by an order of magnitude.

53

CHAPTER 4

Convex Combination Belief

Propagation on Pairwise Models

In this chapter, we present convex combination belief propagation which is a convergent alternative

to traditional belief propagation. This chapter focuses on describing the main ideas behind this

class of algorithms, while also discussing some theoretical results. In Section 4.1, we describe

our motivations for developing this algorithm along with a concise overview of related methods.

We introduce the min-sum version of this algorithm and prove that it converges in Section 4.2.

Section 4.3 is a more theoretical and presents a characterization of the beliefs obtained by this

algorithm. Then Section 4.4 focuses on applying convex combination belief propagation to perform

image restoration. Lastly, we conclude by discussing the sum-product algorithm in Section 4.5 and

discuss some limitations of the algorithm in Section 4.6.

4.1 Introduction

Belief propagation is a well-established message passing algorithm that has diverse applications

ranging from neuroscience to economics to statistical physics. In fact, the algorithm has been

independently rediscovered in a number of different disciplines over the last 60 years. The modern

formulation of belief propagation was introduced by Judea Pearl in the 1980s as a method that

performs exact inference on a tree-structured graph in polynomial time [64]. There is a popular

54

alternative form of this algorithm referred to as loopy belief propagation that uses fixed point

iteration to perform approximate inference in graphs that contains cycles.

The performance of this algorithm is highly dependent upon the topology of the graph. Broadly

speaking, the algorithm performs exact inference when the graph tree-structured and approximate

inference when the graph contains cycles. However, the topology has a more intricate effect upon the

accuracy and performance of the algorithm. For example, the algorithm is essentially guaranteed

to perform exact inference when the graph only contains a single cycle, except in a few rare cases

[82]. The algorithm is also known to perform extremely well when the graph is sparse. Loopy

belief propagation has gained popularity within the artificial intelligence and information theory

communities due to its success on these types of graphs.

As the topology of the graph becomes more complex, the performance of the algorithm deteri-

orates. Given that loopy belief propagation is a fixed point iteration scheme, cycles in the graph

cause the algorithm to become unstable. One issue is that graphs with many cycles are known to

result in multiple fixed points, which makes the algorithm sensitive to the initialization. The local

dynamics of fixed points are even more problematic because some may be repelling. This causes

the messages to oscillate which often results in the algorithm failing to converge. Despite the po-

tential for an inconclusive result, loopy belief propagation is often used anyways since approximate

inference is central to many applications involving graphical models.

Over the last 20 years, approximate inference has been an active area of research since exact

inference is computationally intractable in high dimensional models. Some general approaches to

this problem include stochastic simulation, variational methods, and alternative message passing

algorithms. Since the main objective of this chapter is to present a new algorithm that falls into the

latter category, we provide a concise literature review that describes some important algorithms of

this type. Wainwright et al. (2003) developed a class of local message passing algorithms referred

to as tree-reweighted belief propagation [77]. The approach was inspired by maximizing a lower

bound on the log partition function by approximating the distribution with convex combinations

of tree-structured distributions [77]. Their algorithm incorporates edge-based weights that are

determined by the structure of the graph [72]. The algorithm converges to a unique fixed point for

arbitrary graphs when the weights satisfy certain conditions. One drawback of TRW it can difficult

55

to determine weights that both satisfy these conditions and result in a good approximation.

Kolmorogov (2006) builds upon their work by developing sequential tree-reweighted belief prop-

agation [52]. This algorithm utilizes sequential message updates as opposed to parallel updates.

Once an update schedule is determined, the algorithm is guaranteed to converge. However, one

drawback is that the solution depends on the update schedule. Hazan and Shashua (2010) devel-

oped another closely related algorithm called norm-product belief propagation [35]. They take a

general perspective on BP and TRW by using convex duality to derive a local message passing

algorithm from a fractional free energy. This algorithm similarly utilizes edge weights to guarantee

convergence. One challenge is that the weights are determined by solving an optimization problem

which may be quite difficult. Felzenszwalb and Svaiter (2019) used a type of non-linear diffusion to

obtain globally convergent methods for approximate inference in graphical models [20]. The struc-

ture of this algorithms is similar to belief propagation in the sense that information is propagated

across a graph using fixed point iteration. However, their algorithm only keeps track of information

associated with the vertices of a graph instead of utilizing messages sent along edges.

In this chapter, we present a new class of message passing algorithms called convex combination

belief propagation. Convex combination belief propagation is an inference engine that is designed

for the most difficult inference tasks. Our motivation for developing convex combination belief

propagation is that loopy belief propagation often fails on graphs with complex topology. In

particular, graphs with short cycles and dense regions are especially problematic. These regions

may become message passing feedback loops where statistical information is over-counted which

causes the algorithm to fail. Convex combination belief propagation addresses this problem by

utilizing edge-weights that mitigates the effect of feedback loops. Most importantly, the algorithm

converges to a unique solution regardless of the topology of the graph and initialization of the

messages. One advantage of this algorithm over similar methods (e.g. TRW, sequential-TRW,

norm-product BP) is that the edge-weight condition is much easier to verify and it can readily

incorporated into existing implementations of belief propagation.

56

4.2 Min-Sum Algorithm

In this section, we present convex combination belief propagation which is a convergent alternative

to loopy belief propagation. The main objectives of this section are to introduce the message

passing operator used in the min-sum version of the algorithm. Then prove that the algorithm is

guaranteed to converge to a unique fixed point.

4.2.1 Theoretical Settings

Let G = (V,E) be an undirected graph with V = {1, . . . , n} and let Ω = {1, . . . , N} be a set of

labels. The cost E : Ωn → R+ of a labeling x is given by the Gibbs energy

E(x) =
∑
i∈V

gi(xi) +
∑

{i,j}∈E

hij(xi, xj).

The functions gi capture local information about a node. The value of gi(xi) is a cost for assigning

label xi to node i. The function hij captures pairwise relationships to enforce that neighboring

nodes have compatible labels. Note that this energy is a pairwise model since it utilizes unary and

binary cost functions.

4.2.2 Message Passing Operator

We present a local message passing algorithm referred to as convex combination belief propagation.

The message passing operator in our algorithm is a slight modification of the operator from loopy

belief propagation. The key difference is that our operator utilizes edge-weights. Messages sent

between neighboring nodes incorporate a convex combination of messages from the other neighbors.

The weights dampen messages so that each node prioritizes information from nearby nodes.

Definition 4.2.1. The message passing operator Q̂ : M → M in min-sum convex combination

belief propagation is given by

(
Q̂m

)
ij
(xj) = min

xi

{
gi(xi) + hij(xi, xj) + γ

∑
k∈N (i)\j

wkimki(xi)
}
,

57

where the weights must satisfy
∑

k∈N (i)\j
wki ≤ 1 with wki > 0 and γ ∈ (0, 1).

The only conditions imposed upon the weights is that they must be non-negative and sum to one.

The simplest way to define each weight is to set wki = 1/(d(i)−1), where d(i) is the degree of node

i. Alternatively one can give more weight to some edges based on some additional information from

a particular application (see [20]). Intuitively, the weights control how much influence neighboring

nodes have upon each other. When the message sent from node i to j incorporates uniform weights,

the other neighbors have equal influence upon node j. Non-uniform weights may be used to give

some neighbors more influence.

This operator also incorporates a damping factor γ ∈ (0, 1). This ensures the algorithm always

converges. In addition, the rate of convergence is dependent upon its magnitude. We recommend

setting this factor very close to one since the algorithm generally converges very quickly. Another

important aspect of this algorithm is that we do not center updated messages, which differs from

loopy belief propagation where the updates are centered to have mean zero. The inclusion of the

weights wki and factor γ are sufficient to ensure that fixed point iteration with Q̂ converges to a

unique fixed point.

4.2.3 Convergence

Next we prove that convex combination belief propagation converges to a unique fixed point inde-

pendent of the topology of the graph and initialization of the messages. Our general approach is

to consider belief propagation as a discrete-time map, then use results from the theory of dynam-

ical systems. In particular, we use Banach’s fixed point theorem which guarantees existence and

uniqueness of fixed points of certain discrete-time maps referred to as contractions. Given a metric

space (X, d), an operator F : X → X is called a contraction if there is a constant γ ∈ (0, 1) such

that

d(F (x), F (y)) ≤ γd(x, y)

for any x, y ∈ X where d is a metric. Banach’s fixed point theorem states that a contractive operater

(i.e. contraction) defined over a complete metric space has a unique and globally attractive fixed

point x⋆ ∈ X [31].

58

In order to use this result, we must set up the problem under the framework of a metric space.

Recall that each message sent between two nodes is a real-valued vector mij ∈ RN with N = |Ω|

and the pair (RN , d∞) is a complete metric space, where d∞ : RN ×RN → R is the metric induced

by the ℓ∞-norm.

Observation 4.2.2. Let d :M×M→ R be the metric given by

d(m,n) = max
i∈V

max
j∈N (i)

∥mij − nij∥∞,

then the pair
(
M, d

)
is a complete metric space.

Lemma 4.2.3. The operator Q̂ is contractive with Lipschitz constant γ.

Proof. Choose any m,n ∈M, then

(
Q̂m

)
ij
(xj) = min

xi

{
gi(xi) + hij(xi, xj) + γ

∑
k∈N (i)\j

wkimki(xi)
}

= min
xi

{
gi(xi) + hij(xi, xj) + γ

∑
k∈N (i)\j

wki

(
nki(xi)− nki(xi) +mki(xi)

)}
≤ min

xi

{
gi(xi) + hij(xi, xj) + γ

∑
k∈N (i)\j

wkinki(xi) + γ
∑

k∈N (i)\j

wki∥mki − nki∥∞
}

≤ min
xi

{
gi(xi) + hij(xi, xj) + γ

∑
k∈N (i)\j

wkinki(xi)
}
+ γ

∑
k∈N (i)\j

wki∥mki − nki∥∞

=
(
Q̂n
)
ij
(xj) + γ

∑
k∈N (i)\j

wki∥mki − nki∥∞

=⇒
(
Q̂m

)
ij
(xj)−

(
Q̂n
)
ij
(xj) ≤ γ

∑
k∈N (i)\j

wki∥mki − nki∥∞.

Since this inequality holds when m and n are interchanged, we can take the absolute value of the

left hand side. In addition, this inequality holds for any xj ∈ Ω, so it also holds for the maximum

59

of the left hand side.

∥∥(Q̂m)ij − (Q̂n)ij
∥∥
∞ ≤ γ

∑
k∈N (i)\j

wki∥mki − nki∥∞

≤ γ max
k∈N (i)\j

∥mki − nki∥∞

≤ γ max
i∈V

max
j∈N (i)

max
k∈N (i)\j

∥mki − nki∥∞

= γ max
i∈V

max
j∈N (i)

∥mij − nij∥∞

The simplification on the second line holds by using that the weights define a convex combination.

Since the inequality holds for any {i, j} ∈ E in the left hand side,

max
i∈V

max
j∈N (i)

∥∥(Q̂m)ij − (Q̂n)ij
∥∥
∞ ≤ γ max

i∈V
max
j∈N (i)

∥mij − nij∥∞

=⇒ d
(
Q̂m, Q̂n

)
≤ γ d(m,n).

Theorem 4.2.1. The message passing operator Q̂ has a unique fixed point m⋆ ∈ M and any

sequence of messages defined by m(ℓ+1) := Q̂m(ℓ) converges to m⋆. Furthermore, after ℓ iterations

d
(
Q̂(ℓ)m(0),m⋆

)
≤ γℓ d(m(0),m⋆

)
.

Proof. Given that Q̂ is a contraction according to Lemma 4.2.3, the result holds by applying

Banach’s fixed point theorem.

This result establishes that the min-sum version of convex combination belief propagation is

guaranteed to converge. Since the argument does not make any assumptions about the graph, the

algorithm converges independent of the topology of the graph.

In the previous chapter, we introduced damped belief propagation which generally improves the

performance of loopy belief propagation, but there are few theoretical guarantees on when damped

belief propagation converges. In practice, damped belief propagation often fails to converge on

60

graphs with complex topology and a large number of nodes. As an example, we compare damped

and convex combination belief propagation on a graph of this type.

Example 4.2.4. Let G = (V,E) be a complete graph with 10 nodes and let Ω = {−1, 1} be a set

of labels. Consider the energy function

E(x) =
∑
i∈V

yixi +
∑

{i,j}∈E

λijxixj

Each yi was uniformly sampled from {−1, 1} and λij was sampled from a standard normal distri-

bution. Let γ = 0.9 and wki = 1/(|N (i)| − 1) in convex combination belief propagation. In damped

belief propagation, we varied the damping factor from α = 0.8 to α = 0.99 in an attempt to make the

algorithm converge. The messages were initialized as m
(0)
ij = (1, 1), then damped belief propagation

(fixed point iteration with Qα) and convex combination belief propagation (fixed point iteration with

Q̂) were applied to this example.

The resulting beliefs of the node 1 are shown in Figures 4.1 and 4.2, where b
(ℓ)
1 and b̂

(ℓ)
1 denote

the beliefs computed by damped and convex combination belief propagation on the ℓ-th iteration,

respectively. We see that damped belief propagation does not converge for any damping factor,

while convex combination belief propagation converges very quickly.

Figure 4.1: Beliefs obtained with convex combination belief propagation from Ex-
ample 4.2.4. Here we see that the algorithm converges after a small number of itera-

tions.

61

Figure 4.2: Beliefs obtained with damped belief propagation from Example 4.2.4.
Here we see that the algorithm does not converge for any damping factor.

4.3 Characterization of Beliefs

Although convex combination belief propagation is guaranteed to converge, the algorithm is only

useful if it converges to a meaningful result. When the graph is tree-structured, the traditional min-

sum algorithm computes the exact min-marginals of the Gibbs energy. In this section, we provide

an analogous characterization of the beliefs obtained with convex combination belief propagation.

The main result in this section is beliefs are the exact min-marginals of a weighted energy which is

closely related to the Gibbs energy.

62

4.3.1 Tree-Structured Graphs

Let m be the unique fixed point of Q̂, then the belief function b̂j : Ω→ R corresponding to node j

is

b̂j(xj) = gj(xj) +
∑

i∈N (j)

mij(xj).

Next we prove that this belief is the exact min-marginal of a weighted energy Ej(x). This energy

is closely related to the Gibbs energy E(x), but a key difference is that the cost functions are

weighted according to the weights wki and factor γ used in the definition of Q̂. Each belief b̂j is

the min-marginal of a different energy function Ej(x) as the weights of each term depend on the

choice of j.

Before defining the weighted energy for an arbitrary tree-structured graph, we provide a simple

example of how to write down this energy for a small graph. In order to simplify the expressions

for the energies, we define the cost function Hij(xi, xj) = gi(xi) + hij(xi, xj).

Example 4.3.1. Let G be the graph shown in Figure 4.3. In this case, the Gibbs energy is

E(x) = g1(x1) +H21(x2, x1) +H32(x3, x2) +H43(x4, x3) +H53(x5, x3).

Let wki = 1/
(
|N (i)| − 1

)
in the definition of Q̂. When convex combination belief propagation is

applied to this graph, the resulting belief function β1 is the min-marginal of the energy:

E1(x) = g1(x1) +H21(x2, x1) + γH32(x3, x2) +
γ2

2
H43(x4, x3) +

γ2

2
H53(x5, x3),

This energy contains the same cost functions as the Gibbs energy, but each term Hij(xi, xj) is

multiplied by a product of weights and a power of γ.

Now we will generalize the energy in the example above to the case of an arbitrary tree-

structured graph.

Let T (j) be a tree-structured graph with a distinguished root node j ∈ V . Once a tree T is

rooted at a node j, every node i ̸= j has a unique parent P(j, i), a set of children C(j, i), and a

set of descendants D(j, i). Let T (j, i) denote the subtree of T (j) rooted at node i as illustrated in

Figure 4.4. The subtree T (j, i) includes node i and its descendants.

63

Figure 4.3: A simple tree-structured graph.

Figure 4.4: Subtrees of T (j)

Let R(T (j)) be the depth of a rooted tree. Let Nd(T (j)) ⊂ V with d ≥ 0 be the set of nodes

at distance d from the root j.

Definition 4.3.2. Let w : V × V → R+ be the weight function

w(i, j) =
∏

(k,l)∈E(i,j)

wkl,

where E(i, j) is the collection of directed edges along the path from node i to j.

Definition 4.3.3. Let Ej : Ω
n → R be the weighted energy function given by

Ej(x) = gj(xj) +
∑

i∈N (j)

R(T (j,i))−1∑
d=0

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)(xk, xP(j,k)),

This energy is closely related to the Gibbs energy but it puts more weight on terms “near” node

j. For each edge (k,P(j, k)) the cost associated with that edge is scaled by γdw(k, i). When the

64

damping factor and weights are removed from Ej , this energy is exactly the Gibbs energy.

Proposition 4.3.4. If wki = 1 for all {k, i} ∈ E and γ = 1, then Ej(x) = E(x).

Proof.

Ej(x) = gj(xj) +
∑

i∈N (j)

R(T (j,i))−1∑
d=0

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)(xk, xP(j,k))

= gj(xj) +
∑

i∈N(j)

R(T (j,i))−1∑
d=0

∑
k∈Nd(T (j,i))

(
gk(xk) + hkP(j,k)

(
xk, xP(j,k)

))
= gj(xj) +

∑
k∈V \j

(
gk(xk) + hkP(j,k)

(
xk, xP(j,k)

))
=
∑
k∈V

gk(xk) +
∑

{k,i}∈E

hki(xk, xi)

= E(x).

Next, we prove that convex combination belief propagation computes the exact min-marginals

of the weighted energy in Definition 4.3.3. The main idea of the argument is to use that computing

the min-marginals in a tree-structured graphical model can be broken down into subproblems that

can be solved recursively. Each subproblem involves a function Fji : Ω → R that corresponds to

the min-marginals of an optimization problem defined by T (j, i).

Lemma 4.3.5. Let Fji : Ω→ R be the function given by

Fji(xi) = min
xD(j,i)

{R(T (j,i))−1∑
d=1

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)

(
xk, xP(j,k)

)}
,

then Fji(xi) = γ
∑

k∈N (i)\P(j,i)

wkimki(xi) where m is the unique fixed point of Q̂.

Proof. This claim can be proven by inducting on the depth of the subtree T (j, i). In the base case

when the depth is 1 we have Fji(xi) = 0 and the result follows trivially. Now for the induction

65

step,

Fji(xi) = min
xD(j,i)

{R(T (j,i))−1∑
d=1

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)

(
xk, xP(j,k)

)}

= min
xD(j,i)

{ ∑
k∈N (i)\P(j,i)

γwkiHki(xk, xi) +

R(T (j,i))−1∑
d=2

∑
k′∈Nd(T (j,i))

γdw(k′, i)Hk′P(j,k′)

(
xk′ , xP(j,k′)

)}

= min
xD(j,i)

{ ∑
k∈N (i)\P(j,i)

γwki

(
Hki(xk, xi) +

R(T (j,k))−1∑
d=1

∑
k′∈Nd(T (j,k))

γdw(k′, k)Hk′P(j,k′)

(
xk′ , xP(j,k′)

))}

= γ
∑

k∈N (i)\P(j,i)

wkimin
xk

{
Hki(xk, xi) + min

xD(j,k)

{R(T (j,k))−1∑
d=1

∑
k′∈Nd(T (j,k))

γdw(k′, k)Hk′P(j,k′)

(
xk′ , xP(j,k′)

)}}
= γ

∑
k∈N (i)\P(j,i)

wkimin
xk

{
Hki(xk, xi) + Fjk(xk)

}
= γ

∑
k∈N (i)\P(j,i)

wkimin
xk

{
Hki(xk, xi) + γ

∑
k′∈N (k)\P(j,k)

wk′kmk′k(xk)
}

= γ
∑

k∈N (i)\P(j,i)

wkimki(xi).

Theorem 4.3.1. The belief function b̂j is the min-marginal of Ej with respect to the j-th variable.

Proof. Choose any j ∈ V , then the min-marginal pj of Ej is

pj(xj) = min
xV \j

Ej(x)

= gj(xj) + min
xV \j

{ ∑
i∈N (j)

R(T (j,i))−1∑
d=0

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)(xk, xP(j,k))
}

= gj(xj) +
∑

i∈N (j)

min
xi

{
Hij(xi, xj) + min

xD(j,i)

{R(T (j,i))−1∑
d=1

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)(xk, xP(j,k))
}}

66

Now using Lemma 4.3.5 implies that

= gj(xj) +
∑

i∈N (j)

min
xi

{
Hij(xi, xj) + Fji(xi)

}
= gj(xj) +

∑
i∈N (j)

min
xi

{
Hij(xi, xj) + γ

∑
k∈N (i)\j

wkimki(xi)
}

= gj(xj) +
∑

i∈N (j)

mij(xj)

= b̂j(xj).

4.3.2 Simple Cycles

Next we generalize the previous characterization result to the case of a simple cycle. Our general

approach is to first characterize the belief obtained after a finite number of iterations. Then make

a limiting argument to get a characterization of the belief obtained from the fixed point of the

algorithm (i.e. after an infinite number of iterations).

Finite Unwrapped Graphs

Let Cn = (Vn, En) be an undirected cycle with Vn = {0, . . . , n− 1} and assume that the clockwise

order of the vertices is (0, . . . , n− 1). The analysis in this section uses the notion of the unwrapped

graph of a cycle. The unwrapped graph is initialized with a distinguished root node that represents

some node on the cycle. We assume that the root corresponds to node 0 ∈ Vn in order to simplify

notation. Then nodes are iteratively added to the unwrapped graph by simultaneously traversing

the cycle clockwise and counterclockwise, and adding a copy of each node that is passed.

Definition 4.3.6. Let Ĉn,t be the finite unwrapped graph of the undirected cycle Cn. This graph is

generated recursively with Ĉn,0 =
(
{0}, ∅

)
and after t iterations Ĉn,t = (V̂n,t, Ên,t) with

V̂n,t = V̂n,t−1 ∪ {−t, t }

Ên,t = Ên,t−1 ∪
{
{−t,−t+ 1 }, { t− 1, t }

}
.

67

Example 4.3.7. The unwrapped graph Ĉ3,t is shown in Figure 4.5.

Figure 4.5: Unwrapping C3 to obtain its unwrapped graph Ĉ3,t, where each t
corresponds to an iteration of unwrapping.

Each node in the unwrapped graph is denoted by an integer, where negative nodes correspond

to unwrapping the cycle in the counterclockwise direction. This notation is convenient because the

correspondence between nodes in the unwrapped graph and cycle can be easily recovered via the

modulo operation. For example, node i ∈ V̂n,t corresponds to i′ ∈ Vn where i′ = i mod n.

The unwrapped graph is useful because there is an equivalence between performing message

passing on a graph and its unwrapped graph. For any number of iterations of belief propagation,

there exists a node on an unwrapped graph that receives the exact same message received by the

corresponding node on the original graph [80]. To make this statement more precise, we define the

convex combination message passing equations in the case of the unwrapped graph.

Definition 4.3.8. Let Ĉn,t be an unwrapped graph and let i′ ∈ Vn be given by i′ = i mod n for

any i ∈ V̂n,t.

Definition 4.3.9. Let Ĥij : Ω× Ω→ R be the cost function given by

Ĥij(xi, xj) := gi′(xi′) + hi′j′(xi′ , xj′)

with {i, j} ∈ Ên,t.

68

Let m̂ij,t denote the message sent from node i to j on the unwrapped graph Ĉn,t. Message are

computed with the min-sum equation

m̂i+1 i,t(xj) = min
xi

{
Ĥij(xi, xj) + γ m̂i+2 i+1,t(xi)

}
,

where γ ∈ (0, 1) and wki = 1 because each node has two neighbors.

Figure 4.6: The relationship between message passing on the cycle C3 and its
unwrapped graphs is shown. Each message sent between nodes is represented by an

arrow and identical messages have the same colored arrow.

Next we define a set of equations that precisely describes the correspondence between message

passing on a cycle and its unwrapped graph. Since the notation used in this set of equations is a bit

cumbersome, we provide a simple example in Figure 4.6 that captures the essence of the equations.

In the case when t = 1 and n ≥ 3, the set of equations is

m
(1)
10 (x0) = m̂10,1(x0)

m
(1)
21 (x1) = m̂21,2(x1)

... (4.1)

m
(1)
n−1n−2(xn−2) = m̂n−1n−2,n−1(xn−2)

m
(1)
0n (xn−1) = m̂nn−1,n(xn−1)

under the assumption thatm(0) = 0⃗. In the first iteration of convex combination belief propagation,

the value of m
(1)
i+1 i is completely dependent upon the minimizing the potential Hi+1 i. The reason

being that node i+1 receives a vector of zeros from the other neighbor due to m(0) := 0⃗. Similarly,

69

the message m̂i+1 i,i+1 is also entirely dependent upon minimizing the potential Ĥi+1 i = Hi+1 i

because node i is the only neighbor of node (i+ 1) ∈ Ĉn,i+1.

If we continue to write down an analogous set of equations in the cases when t = 2 and t = 3,

we see a pattern emerge. In the most general case when t ∈ N and n ≥ 3, the relationship between

message passing on a cycle and its unwrapped graph is that

m
(t)
i+1 i(xi) = m̂i+1 i, t+i(xi) ∀i < n (4.2)

m
(t)
0n−1(xn−1) = m̂nn−1, t+n−1(xn−1) (4.3)

under the assumption that m(0) = 0⃗. This set of equations can be proven by fixing n and inducting

on t. In the next example, we prove this result in the case when n = 3. Although this is a special

case of the more general result to be presented later, we start with this simple case because it

illustrates most of the underlying ideas without getting involved with the additional technicalities

of the general case.

Example 4.3.10. Given the cycle C3, then the following equations hold for all t > 0

m
(t)
10 (x0) = m̂10,t(x0)

m
(t)
21 (x1) = m̂21,t+1(x1)

m
(t)
02 (x2) = m̂32,t+2(x2)

when m(0) := 0⃗. Under the assumption that the Equation 4.1 holds, then the first equation is true

by

mt+1
10 (x0) = min

x1

{
H10(x1, x0) + γ m

(t)
21 (x1)

}
= min

x1

{
Ĥ10(x1, x0) + γ m̂21,t+1(x1)

}
= m̂10,t+1(x0),

which holds by the inductive hypothesis and definition of m̂10,t+1. The second equation can be

proven by adapting the argument used above. The argument behind the third equation is a bit more

70

involved.

m
(t+1)
02 (x2) = min

x0

{
H02(x0, x2) + γ m

(t)
10 (x0)

}
= min

x0

{
H02(x0, x2) + γ m̂10,t(x0)

}
= min

x3

{
Ĥ32(x3, x2) + γ m̂10,t(x3)

}
= min

x3

{
Ĥ32(x3, x2) + γ m̂43,t+3(x3)

}
= m̂32,t+3(x2),

where the second line holds by invoking the inductive hypothesis. The final line holds by using that

nodes 4 ∈ V̂3,t+3 and 1 ∈ V̂3,t correspond to node 1 ∈ V3. Moreover, these nodes have the exact same

number of edges between themselves and the rightmost node on their respective graphs. The ordering

of the edges is identical with respect to their corresponding edges on the cycle. Thus, these nodes

receive an identical set of messages from their neighbor to the right and so m̂10,t(x3) = m̂43,t+3(x3).

Theorem 4.3.2. Given the cycle Cn, then the Equations (1.2) and (1.3) hold for all n ≥ 3 and

t <∞ when m(0) := 0⃗.

Proof. We prove this claim by fixing n ∈ N and inducting on t, the base case holds for every i < n

by

m
(1)
i+1 i(xi) = min

xi+1

{
Hi+1 i(xi+1, xi) + γ m

(0)
i+2 i+1(xi+1)

}
= min

xi+1

Hi+1 i(xi+1, xi)

= min
xi+1

Ĥi+1 i(xi+1, xi)

= m̂i+1 i,1+i(xi),

71

where the second line holds by using that m(0) = 0⃗. We conclude that the base case holds with

m
(1)
0n−1(xn−1) = min

x0

{
H0n−1(x0, xn−1) + γ m

(0)
10 (x0)

}
= min

x0

H0n−1(x0, xn−1)

= min
x0

Ĥnn−1(xn, xn−1)

= m̂nn−1,n(xn−1).

Now suppose the claim holds for some t <∞, then the inductive step holds in the case i < n holds

by

m
(t+1)
i+1 i (xi) = min

xi+1

{
Hi+1 i(xi+1, xi) + γ m

(t)
i+2 i+1(xi+1)

}
= min

xi+1

{
Ĥi+1 i(xi+1, xi) + γ m̂i+2 i+1, t+i+1(xi+1)

}
= m̂i+1 i, t+1+i(xi),

where the second line holds by the inductive hypothesis. We conclude that the claim holds by

m
(t+1)
0n−1(xn−1) = min

x0

{
H0n−1(x0, xn−1) + γ m

(t)
10 (x0)

}
= min

xn

{
Ĥnn−1(xn, xn−1) + γ m̂10,t(xn)

}
= min

xn

{
Ĥnn−1(xn, xn−1) + γ m̂n+1n,t+n(xn)

}
= min

xn

{
Ĥnn−1(xn, xn−1) + γ m̂n+1n,t+1+n−1(xn)

}
= m̂nn−1, t+1+n−1(xn−1).

The third line holds by using that both node 1 ∈ V̂n,t and node n + 1 ∈ V̂n,t+n correspond to

node 1 ∈ Vn. Moreover, these nodes have the exact same number of edges between themselves and

the right most node on their respective graphs. The order of the edges is identical with respect to

their corresponding edges on the cycle. Thus, these nodes receive an identical set of messages from

their neighbor to the right and so m̂10,t(xn) = m̂n+1n,t+n(xn).

72

This result establishes an equivalence between message passing on the cycle and its unwrapped

graph. Given any message m
(t)
ij sent between nodes on the cycle, these equations specify which

node on the unwrapped graph receives an identical set of messages. Note that these equations

describe the relationship message passing counterclockwise around a cycle and message passing on

the unwrapped graph from the rightward nodes to the root (see Figure 4.6). There is an analogous

relationship between message passing clockwise around a cycle and from the leftward nodes on

the unwrapped graph towards the roots. This relationship is established in Corollary 4.3.11 and

illustrated in Figure 4.7.

Figure 4.7: The relationship between passing messages around the cycle C3 in
the clockwise direction and from the leftward nodes to the root on the unwrapped
graphs is shown. Each message sent between nodes is represented by an arrow and

corresponding messages have the same colored arrow.

Corollary 4.3.11. Given the cycle Cn for any n ∈ N, then the following equations holds for every

i ∈ {−(n− 1), . . . , 0} and t <∞

mt
i−1 i(xi) = m̂i−1 i, t+i(xi)

mt
(n−1) 0(x0) = m̂(n−1)n, t+(n−1)(x0)

under the assumption that m0 = 0⃗.

Proof. This claim holds by using that the unwrapped graph is symmetric about its root, so the

argument in Theorem 4.3.2 can be adapted to prove this claim.

73

Next we use these results to establish an analogous equivalence between the corresponding belief

functions. This result follows naturally because beliefs are computed from messages. Let β
(t)
0 be

the belief corresponding to the node 0 ∈ Vn obtained after t iterations of convex combination belief

propagation.

Definition 4.3.12. Let β̂0,t : Ω → R be the belief function of node 0 ∈ V̂n,t after t iterations of

convex combination belief propagation be given by

β̂0,t(x0) = g0(x0) +
∑

i∈N(0)

m̂i0,t(x0).

Corollary 4.3.13. Let Cn be a cycle and Ĉn,t be its unwrapped graph, then β
(t)
0 (τ) = β̂i,t(τ) for

all τ ∈ Ω and t <∞ when m(0) := 0⃗.

Proof. Given any τ ∈ Ω, then

β
(t)
0 (τ) = g0(τ) +

∑
i∈N(0)

m
(t)
i0 (τ) = gj(τ) +

∑
i∈N(0)

m̂i0,t(τ) = β̂0,t(τ),

which holds by using that m
(t)
i0 (τ) = m̂i0,t(τ) by Theorem 4.3.2 and Corollary 4.3.11.

The significance of Theorem 4.3.2 and Corollary 4.3.11 is that they reduce message passing

on a cycle to message passing on its unwrapped graph which is tree-structured. Given that β̂0,t

corresponds to a node on a tree-structured graph, Theorem 4.3.1 characterizes this belief as the

exact min-marginal of the weighted energy in Definition 4.3.3.

Definition 4.3.14. Let Ĥd+ : Ω× Ω→ R and Ĥd− : Ω× Ω→ R be the cost functions given by

Ĥd+(xd+) := Ĥd,d+1

(
xd, xd+1

)
Ĥd−(xd−) := Ĥ−d−1,−d

(
x−d−1, x−d

)
.

Definition 4.3.15. Let Ê0,t : Ω
n → R be the energy given by

Ê0,t(x) = g0(x0) +

t∑
d=0

γd
(
Ĥd−(xd−) + Ĥd+(xd+)

)

74

with γ ∈ (0, 1).

This energy is an adaptation of the energy in Definition 4.3.3 to the special case of a path graph

rooted at its center node. Given that the graph Ĉn,t is tree-structured, then β̂0,t is the exact min-

marginal of Ê0,t by Theorem 4.3.1. Thus, we can characterize β
(t)
0 by equivalently characterizing

β̂0,t.

Theorem 4.3.3. Given the cycle Cn and any t ∈ N, then the belief β
(t)
0 is the exact min-marginal

of node 0 ∈ Vn with respect to the energy Ê0,t when m
(0) := 0⃗.

Proof. Given that the graph Ĉn,t is tree-structured, then β̂0,t is the exact min-marginal of Ê0,t by

Theorem 4.3.1. Moreover, given β
(t)
0 (τ) = β̂0,t(τ) for all τ ∈ Ω by Corollary 4.3.13, then β

(t)
0 (τ) is

the exact min-marginal of the Ê0,t.

Infinite Unwrapped Graphs

Next we characterize the belief function β0 obtained from the unique fixed point of Q̂ when the

graph is a cycle. We build upon the main result in the previous section by proving that β0 is the

min-marginal of an energy defined with respect to an infinite unwrapped graph.

The infinite unwrapped graph is a rooted path graph with infinitely many nodes that are labelled

by the integers. Again, we assume that the root node of the unwrapped graph corresponds to node

0 ∈ Vn without loss of generality.

Definition 4.3.16. Let Ĉn = (V̂n, Ên) be the infinite unwrapped graph of the cycle Cn with

V̂n := Z

Ên :=
{
{i, i+ 1} : i ∈ Z

}
.

Let m ∈M be the unique fixed point of Q̂. The fixed point can be equivalently written as the

message obtained in the limit

mij(xj) = lim
t→∞

m
(t)
ij (xj) = lim

t→∞
m̂ij,t(xj). (4.4)

75

The first equality holds by using that Q̂ being contractive implies that m(t) → m and the second

holds by Theorem 4.3.2. The variable t represents the iteration of belief propagation in the first

limit. In the second limit, this variable represents the iteration of unwrapping the cycle to obtain

its unwrapped graph. Thus, the limiting value mij has two equivalent interpretations. It is the

message sent from node i to j after an infinite number of iterations of message passing on a cycle.

Equivalently it is the message that node i sends to j when these are nodes on the infinite unwrapped

graph.

Equation 4.4 captures the relationship between message passing on a cycle for an infinite number

of iterations on a cycle and message passing on the infinite unwrapped graph. Now this relationship

can be used to show an analogous relationship between the corresponding belief functions.

Proposition 4.3.17. Given the cycle Cn and the unique fixed point m ∈M of Q̂, then

β0(τ) = lim
t→∞

β
(t)
0 (τ) = lim

t→∞
β̂0,t(τ).

Proof. Given any τ ∈ Ω, the first equality holds by

lim
t→∞

β̂0,t(τ) = lim
t→∞

(
ĝ0(τ) +

∑
i∈N(0)

m̂i0,t(τ)
)

= lim
t→∞

(
g0(τ) +

∑
i∈N(0)

m
(t)
i0 (τ)

)
= lim

t→∞
β
(t)
0 (τ),

where the second line holds by Theorem 4.3.2. Then the second equality holds by

lim
t→∞

β
(t)
0 (τ) = lim

t→∞

(
g0(τ) +

∑
i∈N(0)

m
(t)
i0 (τ)

)
= g0(τ) +

∑
i∈N(0)

lim
t→∞

m
(t)
i0 (τ)

= g0(τ) +
∑

i∈N(0)

mi0(τ)

= β0(τ).

76

Next we prove that β0 is the min-marginal of an energy defined with respect to an infinite

unwrapped graph. This energy is an adaptation of the energy Ê0,t to the case of an infinitely long

path graph.

Definition 4.3.18. Let Ê0 : Ω
n → R be the energy function given by

Ê0(x) = g0(x0) +

∞∑
d=0

γd
(
Ĥd−(xd−) + Ĥd+(xd+)

)

with γ ∈ (0, 1).

Next we prove that β0 is the exact min-marginal of the energy Ê0. The main idea of the

argument is to split up this energy into three parts. One part corresponds to a finite path graph

centered about the root. This implies β̂
(t)
0 is the min-marginal of the truncated energy defined on

a finite unwrapped graph. The two other parts are the tails of the energy, which converge to zero

in the limit.

Lemma 4.3.19. The tail of the energy Ê is uniformly bounded by

max
x∈Ωn

∣∣∣ ∞∑
d=t

γd
(
Ĥd−(xd−) + Ĥd+(xd+)

)∣∣∣ ≤ 2K
γt

1− γ

when γ ∈ (0, 1).

Proof. Under the assumption that gi and hij are both bounded, there exists some K < ∞ such

that |gi(xi) + hij(xi, xj)| ≤ K for all xi, xj ∈ Ω. Then the tail of the energy is bounded by

max
x∈Ωn

∣∣∣ ∞∑
d=t

γd
(
Ĥd−(xd−) + Ĥd+(xd+)

)(
≤ max

x

∞∑
d=t

γd
)
Ĥd−(xd−) + Ĥd+(xd+)

∣∣
≤ 2Kmax

x

∞∑
d=t

γd

= 2K

∞∑
d=t

γd

= 2K
γt

1− γ
.

77

Theorem 4.3.4. Let Cn be an undirected cycle, then β0 is the exact min-marginal of the energy

Ê(x).

Proof. Suppose that t ∈ N is fixed, then

max
τ∈Ω

∣∣∣β0(τ)− min
x∈Ωn

x0=τ

Ê0(x)
∣∣∣ = max

τ

∣∣∣β0(τ)− (g0(τ) + min
x

x0=τ

∞∑
d=1

γd
(
Ĥd−(xd−) + Ĥd+(xd+)

)∣∣∣
≤ max

τ

∣∣∣β0(τ)− (g0(τ) + min
x

x0=τ

t∑
d=1

γd
(
Ĥd−(xd−) + Ĥd+(xd+)

)
+max

x
x0=τ

∞∑
d=t+1

γd
(
Ĥd−(xd−) + Ĥd+(xd+)

)∣∣∣
= max

τ

∣∣β0(τ)− min
x

x0=τ

Ê0,t +max
x

x0=τ

∞∑
d=t+1

γd
(
Ĥd−(xd−) + Ĥd+(xd+)

)∣∣∣
≤ max

τ

∣∣∣β0(τ)− min
x

x0=τ

Ê0,t + 2K
γt+1

1− γ

∣∣∣,
where the last line holds by Lemma 4.3.19. Now we can use Proposition 4.3.17 to obtain the final

result by

= max
τ

∣∣∣ lim
t→∞

β̂0,t(τ)− min
x

x0=τ

Ê0,t(x) + 2K
γt+1

1− γ

∣∣∣
= max

τ

∣∣∣ lim
t→∞

(
β̂0,t(τ)− min

x
x0=τ

Ê0,t(x) + 2K
γt+1

1− γ

)∣∣∣
= lim

t→∞

(
max
τ

∣∣β̂0,t(τ)− min
x

x0=τ

Ê0,t(x)
∣∣+ 2K

γt+1

1− γ

)
=

2K

1− γ
lim
t→∞

γt+1

= 0,

where the last inequality holds by Theorem 4.3.13.

78

4.4 Image Restoration

In this section, we demonstrate the practical application of convex combination belief propagation

by using this algorithm to perform image restoration. The objective of image restoration is to

estimate a clean (original) image given a corrupted version of it. A classical approach is to formulate

this problem as finding the optimal labelling of a graph with respect to the Gibbs energy (see e.g.

[6], [19], [27]). The cost functions used in the energy enforce that the restored image is piecewise

smooth and consistent with the observed image. Once the image restoration model is formulated

under this framework, convex combination belief propagation can be used to restore the corrupted

image by obtaining an approximation to the minimum of the Gibbs energy.

Figure 4.8: On the left, we see a small region of an image with pixels i, j, k, ℓ in
the image grid. On the right, we see the corresponding nodes in the grid graph. In
addition, each node has an observed label which is depicted by the gray colored node.

To formalize this approach, let I be an n ×m image and let Gn,m = (V,E) be an n ×m grid

graph that provides a graphical representation of the image. Each pixel in the image corresponds

to a node in this graph and the edges connect neighboring pixels as shown in Figure 4.8. Under the

assumption that I is an 8-bit image, the label space Ω = {0, . . . , 255} is the set of possible pixel

intensities. Let x = (x1, . . . , xnm) ∈ Ωnm denote a labelling of the graph and note that a labelling

defines an image. Let y = (y1 . . . , ymn) ∈ Ωnm denote the observed (corrupted) image. The cost

functions used in this application are

gi(xi) = |xi − yi|2 and hij(xi, xj) = λmin
(
|xi − xj |2, τ

)
.

79

The function gi enforces that each pixel in the restored image is consistent with the observed im-

age. The pairwise function hij enforces that the restored image is piece-wise smooth with spatially

coherent regions. The quadratic difference in hij is bounded by τ ∈ Ω to allow for large differences

between neighboring pixels, which occurs when two neighbors belong to different objects in the im-

age. The parameter λ > 0 controls how much weight is placed on the consistency versus smoothing

terms in the energy, where large values of λ result in smoother images.

Under this framework, an approximation to the clean image can be obtained by minimizing the

Gibbs energy given by

E(x) =
∑
i∈V
|xi − yi|2 + λ

∑
{i,j}∈E

min
(
|xi − xj |2, τ

)
.

For our experiments we used the RGB image shown on the left hand side of Figure 4.9. This

image is composed of three color channels, where each channel is an 8-bit image with dimensions

400× 466. We restore the RGB image by separately restoring each of the three color channels.

We generated a corrupted version of the image by adding independent noise to each pixel, by

sampling from a Gaussian distribution with mean µ = 0 and standard deviation σ = 50. In Figure

4.9, we show the original image on the left and a corrupted version of this image on the right. The

weights used in the operator Q̂ were set uniformly and we set γ = 0.99. The parameters in our

image model were set as τ = 100 and we tried several values of λ. We applied convex combination

belief propagation to restore each channel of the corrupted image and the algorithm converged after

at most 8 iterations.

80

Figure 4.9: Data used in the image restoration experiment.

A crucial component of this model is choosing a good value for the smoothing parameter λ. We

obtained the best results with λ = 3 as shown in Figure 4.11. The restored image is smooth almost

everywhere while also preserving sharp discontinuities at the boundary of different objects in the

image. The image restoration results in Figures 4.10 and 4.12 show the effect of using a value of λ

that is too small and too big, respectively. When this parameter is too small, the resulting image

still contains a significant amount of noise as seen in the zoomed section in Figure 4.10. When the

magnitude of the λ is too large, the restored image appears blurry and the boundaries between

objects are fuzzy as seen in the zoomed in section.

81

Figure 4.10: Image restoration using convex combination belief propagation with
λ = 1.

Figure 4.11: Image restoration using convex combination belief propagation with
λ = 4.

Figure 4.12: Image restoration using convex combination belief propagation with
λ = 10.

82

4.5 Sum-Product Algorithm

The main objective of this section is present the sum-product version of convex combination belief

propagation. We introduce the message passing operator in Section 4.5.2, then prove that the

algorithm converges in Section 4.5.3.

4.5.1 Theoretical Settings

Let G = (V,E) be an undirected graph with V = {1, . . . , n}. Let X = (X1, . . . , Xn) be a random

vector and Ω = {1, . . . , N} be the set of possible outcomes (labels) for each random variable. Let

the joint distribution be

P(X = x) =
1

Z

∏
i∈V

ϕi(xi)
∏

{i,j}∈E

ψij(xi, xj),

where ϕi and ψij are assumed to be positive functions and Z is a normalization constant. Note

that this graphical model is a pairwise Markov random field since the joint distribution consists of

unary and binary potentials

4.5.2 Message Passing Operator

The operator used in the sum-product version of convex combination belief propagation is analogous

to the the min-sum case. The incoming messages are also “weighted” so that each node receives

a convex combination of messages from its neighbors. One difference is that the sum-product

algorithm the combination of messages involves a weighted geometric average.

Definition 4.5.1. The sum-product operator Ŝ :M→M in convex combination belief propagation

is (
Ŝm
)
ij
(xj) =

∑
xi

(
ϕi(xi)ψij(xi, xj)

(∏
k∈N (i)\j

mki(xi)
wki

)γ)
,

where the weights in the sum must satisfy
∑
k

wki ≤ 1 with wki > 0 and γ ∈ (0, 1).

Note that we do not incorporate a normalization in the definition of the operator. The main

purpose of the normalization factor in loopy belief propagation is to prevent numerical underflow,

but our algorithm does not suffer from this problem.

83

4.5.3 Convergence of the Algorithm

Our approach to proving that belief propagation with the message passing operator Ŝ converges is

analogous to the argument given in Section 4.2.3. The main idea is to show that Ŝ is contractive,

then use this fact to conclude that there exists a unique and strongly attracting fixed point by

using Banach’s Fixed Point Theorem.

In the next lemma, we define a distance function over the set of positive reals and prove that it

is a metric. Then we extend this distance function into a metric that is defined over the product

spaceM.

Lemma 4.5.2. Let f : R+ × R+ → R be the distance function given by

f(xi, xj) = | log xi − log xj |

for any xi, xj ∈ R+, then the pair (R+, f) is a complete metric space.

Proof. It is clear that f is non-negative, symmetric, and that d(xi, xj) = 0 if and only if xi = xj .

The triangle inequality holds for any xi, xj , xk ∈ R+ by

f(xi, xj) = | log xi − log xj |

= | log xi − log xk + log xk − log xj |

≤ | log xi − log xk|+ | log xk − log xj |

= f(xi, xk) + f(xk, xj).

To show that this space is complete, choose any Cauchy sequence {xn} ⊂ R+ and note that this

sequence can be written as {xn} = {eyn} with yn = log(xn). The sequence {yn} ⊂ R must be

Cauchy with respect to the Euclidean metric because for any ϵ > 0 there exists an N > 0 such that

f(xn, xm) < ϵ for all n,m > N , which implies that

|yn − ym| = | log xn − log xm| = f(xn, xm) < ϵ.

84

Since {yn} is a Cauchy sequence in a complete space, there exists some y ∈ R such that yn → y

which implies that xn = eyn → ey.

Proposition 4.5.3. Let d :M×M→ R be the distance function given by

d(m,n) = max
i∈V

max
j∈N (i)

max
xj

∣∣ log mij(xj)− log nij(xj)
∣∣,

then the pair
(
M, d

)
is a complete metric space.

Proof. It is clear that d is non-negative, symmetric, and that d(m,n) = 0 if and only if m = n. To

show the triangle inequality, choose any m,n, p ∈M and observe that

d(m,n) = max
i∈V

max
j∈N (i)

max
xj

∣∣ log mij(xj)− log nij(xj)
∣∣

≤ max
i∈V

max
j∈N (i)

max
xj

(∣∣ log mij(xj)− log pij(xj)|+ | log pij(xj)− log nij(xj)
∣∣)

≤ max
i∈V

max
j∈N (i)

max
xj

∣∣ log mij(xj)− log pij(xj)|+max
i∈V

max
j∈N (i)

max
xj

| log pij(xj)− log nij(xj)
∣∣

= d(m, p) + d(p, n).

Now choose any Cauchy sequence {m(t)} ⊂ M, then {m(t)
ij (xj)} ⊂ R+ is a Cauchy sequence in

(R+, f) because for any ϵ > 0 there exists an N > 0 such that for all s, t > N

f
(
m

(t)
ij (xj), m

(s)
ij (xj)

)
=
∣∣ log m(t)

ij (xj)− log m
(s)
ij (xj)

∣∣
≤ max

i∈V
max
j∈N (i)

max
xj

∣∣ log m(t)
ij (xj)− log m

(s)
ij (xj)

∣∣
= d
(
m(t),m(s)

)
< ϵ

Given that the pair (R+, f) is a complete metric space by Lemma 4.5.2, there exists some m such

that m
(t)
ij (xj)→ mij(xj). Thus, the space (M, d) is complete because m(t) → m ∈M by

d(m(t),m) = max
i∈V

max
j∈N (i)

max
xj

f
(
m

(t)
ij (xj),mij(xj)

)
→ 0.

85

Now that this problem is set up under the framework of a complete metric space, we prove that

Ŝ has a unique and globally attracting fixed point by showing that this operator is contractive.

Lemma 4.5.4. The operator Ŝ is contractive with Lipschitz constant γ.

Proof. Choose any m,n ∈M, then

(
Ŝm
)
ij
(xj) =

∑
xi

ϕi(xi)ψij(xi, xj)
∏

k∈N (i)\j

mki(xi)
γwki

=
∑
xi

ϕi(xi)ψij(xi, xj)
∏

k∈N (i)\j

nki(xi)
γwki

∏
k∈N (i)\j

mki(xi)
γwki

nki(xi)γwki

≤
(∑

xi

ϕi(xi)ψij(xi, xj)
∏

k∈N (i)\j

nki(xi)
γwki

)(
max
xi

∏
k∈N (i)\j

mki(xi)
γwki

nki(xi)γwki

)

=
(
Ŝn
)
ij
(xj) max

xi

∏
k∈N (i)\j

mki(xi)
γwki

nki(xi)γwki
.

Taking the logarithm of both sides yields that

log
(
Ŝm
)
ij
(xj) ≤ log

((
Ŝn
)
ij
(xj) max

xi

∏
k∈N (i)\j

mki(xi)
γwki

nki(xi)γwki

)

= log
(
Ŝn
)
ij
(xj) + γ max

xi

∑
k∈N (i)\j

wki log
mki(xi)

nki(xi)

≤ log
(
Ŝn
)
ij
(xj) + γ max

xi

∑
k∈N (i)\j

wki

∣∣∣ log mki(xi)

nki(xi)

∣∣∣
=⇒ log

(
Ŝm
)
ij
(xj)− log

(
Ŝn
)
ij
(xj) ≤ γ max

xi

∑
k∈N (i)\j

wki

∣∣∣ log mki(xi)

nki(xi)

∣∣∣.
Since this inequality holds when m and n are interchanged, we can take the absolute value of the

left hand side. Moreover, given that the above inequality holds for any xj ∈ Ω, it must hold for the

86

maximum over xj the left hand side.

max
xj

∣∣∣ log (Ŝm)ij(xj)

(Ŝn)ij(xj)

∣∣∣ ≤ γ max
xi

∑
k∈N (i)\j

wki

∣∣∣ log mki(xi)

nki(xi)

∣∣∣
≤ γ max

i∈V
max
j∈N(i)

max
xi

∑
k∈N (i)\j

wki

∣∣∣ log mki(xi)

nki(xi)

∣∣∣
≤ γ max

i∈V
max
j∈N(i)

max
k∈N (i)\j

max
xi

∣∣∣ log mki(xi)

nki(xi)

∣∣∣
= γ max

i∈V
max
j∈N (i)

max
xi

∣∣∣ log mij(xi)

nij(xi)

∣∣∣.
Since the edge {i, j} ∈ E was chosen arbitrarily from the beginning, the inequality holds for any

{i, j} ∈ E. The final result is obtained by taking the maximum of the left hand side over all the

edges in the graph.

max
i∈V

max
j∈N (i)

max
xi

∣∣∣ log (Ŝm)ij(xj)

(Ŝn)ij(xj)

∣∣∣ ≤ γ max
i∈V

max
j∈N (i)

max
xi

∣∣∣ log mij(xi)

nij(xi)

∣∣∣
=⇒ d

(
Ŝm, Ŝn

)
≤ γ d(m,n)

Theorem 4.5.1. The message passing operator Ŝ has a unique fixed point m⋆ ∈ M and the

sequence defined by m(t+1) := Ŝm(t) converges to m⋆. Furthermore, after t iterations

d(Ŝ(t)m(0),m⋆) ≤ γtd(m(0),m⋆).

Proof. Given that the pair (M, d) is a complete metric space by Proposition 4.5.3 and Ŝ is a

contraction by Lemma 4.5.4, then the result holds by applying Banach’s fixed point theorem.

4.6 Discussion

The purpose of this chapter is to introduce convex combination belief propagation which is a

convergent alternatives to traditional belief propagation. The primary advantage of this class

of algorithms is that they converge to unique fixed points on graphs with arbitrary topology,

87

independent of the initialization of messages. We provided a characterization of the beliefs obtained

from the min-sum version of the algorithm in the case when the graph is tree-structured. In addition,

we demonstrated the practical application of this algorithm for image restoration.

Although convex combination belief propagation has good theoretical properties, one drawback

is that the resulting beliefs may not provide a good approximation of the true min-marginals (or

marginal distributions) in the case of the min-sum (or sum-product) algorithm. For example, tra-

ditional belief propagation is guaranteed to compute the exact min-marginals (or marginals) when

the graph is tree-structured. However, we showed the beliefs obtained with convex combination

belief propagation are the min-marginals of a weighted energy function when the graph is tree-

structured. Although the beliefs are likely to differ from the true min-marginals (or marginals), the

beliefs still provide useful information. To illustrate this point, we provide an example of using con-

vex combination belief propagation to obtain a fixed point in the spin glass model from statistical

physics.

Example 4.6.1. Let G = (V,E) be a complete graph with twelve nodes and let Ω = {−1, 1} be a

set of labels. Let E : Ω12 → R be the energy

E(x) =
∑
i∈V

yixi +
∑

{i,j}∈E

λijxixj

each yi was uniformly sampled from {−1, 1} and λij was sampled from a standard normal distribu-

tion.

Let γ = 0.9 and wki = 1/(|N (i)| − 1) in convex combination belief propagation. Let α = 0.9

in damped belief propagation. We initialized the messages as m
(0)
ij = (1, 1) and applied both belief

propagation algorithms to this example. For each algorithm, we computed the belief function of

every node along with the true min-marginals of the energy. In Figure 4.13, we show the value of

these functions when xi = 1. (Note: each function was shifted to have mean zero.)

88

Figure 4.13: Beliefs obtained from min-sum belief propagation algorithms and exact
min-marginals of the energy from Example 4.6.1. Damped belief propagation (dmp
BP) failed to converge and the vertical lines show how the beliefs oscillated in the
last 100 iterations before stopping the algorithm after 1000 iterations. Convex com-
bination belief propagation (cc BP) converged as expected, but the resulting beliefs

differ from the true min-marginals.

In Figure 4.13, we see that the beliefs obtained with damped belief propagation oscillate despite

the damping factor being quite large. In contrast, convex combination belief propagation converged,

but some of the beliefs are not a good approximation of the true marginals. We have seen convex

combination belief propagation obtain good approximations to min-marginals across many problem

instances, but there is no theoretical bound on the quality of this approximation. This is an issue

that is shared by both convex combination and damped belief propagation (when damped BP

converges).

In damped belief propagation, the message passing operator Qα can have multiple fixed points.

Some fixed points may be attractive while others may be repelling which makes the dynamics

of fixed point iteration unstable. Convex combination belief propagation is always guaranteed to

converge. Although the beliefs may differ from the true min-marginals, the beliefs provide useful

information to find a good approximation of the MAP solution. In this setting, the accuracy of

the beliefs is less important because they are only used to choose a good label for each node in the

graph.

89

Consider the problem of obtaining an optimal labelling in Example 4.6.1. Each belief in Fig-

ure 4.13 was centered to have mean zero. Since the label space consists of exactly two elements each

belief function is positive for one label and negative for the other (under the assumption there are

no ties between labels). In this framework, the value “0” functions as a decision boundary where

favorable labels correspond to negative beliefs. The beliefs obtained with damped belief propaga-

tion in Example 4.6.1 are problematic because they oscillate. In some special cases of oscillations,

the beliefs can be useful as long as they choose the same label for the entire period of the oscilla-

tion. However, the beliefs in Example 4.6.1 do not fall into this category. Instead these beliefs are

uninformative because they oscillate about the decision boundary. Given these circumstances it is

difficult to confidently choose a labelling with the beliefs.

In contrast, although the beliefs obtained with convex combination belief propagation differ

from the true min-marginals, they agree on the optimal label for all but one node (see Figure 4.13).

This example highlights the strength of this algorithm, namely that it converges on difficult problem

instances and the beliefs tend to align with the true min-marginals. Thus, one conclusion to draw

from this example is that convex combination belief propagation provides useful information in

decision based applications.

Next we include a similar example for the sum-product message passing operators.

Example 4.6.2. Let G = (V,E) be a complete graph with twelve nodes and let Ω = {−1, 1} be a

set of labels. Let the joint distribution of this model be

P(X = x) =
1

Z
exp

(
−
∑
i∈V

yixi −
∑

{i,j}∈E

λijxixj

)

yi was uniformly sampled from {−1, 1} and λij was sampled from a standard normal distribution.

Let γ = 0.9 and wki = 1/(|N (i)|−1) in convex combination belief propagation and let α = 0.9 in

damped belief propagation. We used the initial set of messages m
(0)
ij = (1, 1), then applied damped

and convex combination belief propagation. For each algorithm, we computed beliefs of every node

along with the true marginals. In Figure 4.14, we show the value of these functions when xi = 1.

90

Figure 4.14: Beliefs obtains from sum-product belief propagation and exact
marginals from Example 4.6.2. Damped belief propagation failed to converge and
the vertical lines show how the belief functions oscillated in the last 100 iterations
before stopping the algorithm after 1000 iterations. Convex combination belief prop-
agation converged as expected, but the resulting belief functions differ from the true

marginals.

In this framework, a common objective is to obtain the most probable label for each node. A

probable label for node i is obtained from by maximizing its belief. Given there are two possi-

ble labels and the beliefs are normalized to add to one, the value “0.5” functions as a decision

boundary. In Figure 4.14 we see that the beliefs obtained from damped belief propagation are

uninformative because they oscillate about the decision boundary. In contrast, convex combination

belief propagation provides a conclusive result and agrees with the true marginals on all but two

labels.

4.7 Conclusion

We conclude by noting that convex combination belief propagation is not only guaranteed to con-

verge on arbitrary graphs but also converges quickly. As discussed above the resulting beliefs

provide useful information in the context of decision making, a central component of an intelligence

system. Many applications require powerful algorithms that can handle complex and large scale

91

data sets. Convex combination belief propagation is a natural fit for these applications because it

is designed to converge on the most challenging problems.

Although this algorithm has potential useful applications, we improve the accuracy of this

algorithm by utilizing homotopy continuation. Since the weights in the message passing operators

affects the accuracy, we use homotopy continuation to gradually phase out the weights. Homotopy

continuation is the main focus of Chapters 6 and 7, before introducing this algorithm we generalize

convex combination belief propagation to factor graphs.

92

CHAPTER 5

Convex Combination Belief

Propagation on Factor Graphs

This chapter presents a generalization of convex combination belief propagation to factor graphs.

In Sections 5.2 and 5.3, we introduce the message passing operators used in the sum-product and

max-product algorithm, respectively. Then we conclude the chapter with some discussion of the

shortcomings of convex combination belief propagation in Chapter 5.4.

5.1 Theoretical Settings

Let G = (V ∪F,E) be an undirected bipartite graph with the set of variable nodes V = {1, . . . , n}

and factor nodes F = {1, . . . ,m}. In this chapter, variable and factor nodes are concisely referred

to as variables and factors, respectively. Let X = (X1, . . . , Xn) be a random vector and let

Ω = {1, . . . , N} be the set of possible outcomes of each random variable. Let the joint distribution

of the factor graph be

P(X = x) =
1

Z

∏
f∈F

Ψf (xN (f)),

where Ψf is assumed to be positive.

93

5.2 Sum-Product Algorithm

The main objective of this section is to present the factor graph version of the sum-product algo-

rithm in convex combination belief propagation. In Section 5.2.1, we define the message passing

operators and the message update scheme. The remainder of this section focuses on proving that

the algorithm is guaranteed to converge. We define a metric on the space of messages in Section

5.2.2, then prove that the normalization operator is Lipschitz with respect to an equivalent metric

in Section 5.2.3. In Section 5.2.4, we prove that the algorithm is guaranteed to converge to a unique

fixed point.

5.2.1 Message Passing Operators

Next we generalize convex combination belief propagation to factor graphs, then prove that the

algorithm is guaranteed to converge to a unique fixed point. Belief propagation on factor graphs is

more complex since it involves message passing between two difference types of nodes. In order to

ensure that the algorithm converges, we use edge-based weights in both message passing operators.

One of the operators also incorporates a normalization to ensures that the messages sum to one.

Normalization is not necessary to guarantee that the algorithm converges. However, it is needed

to prove certain properties about the homotopy continuation algorithm in the next chapter. We

include the normalization operator in this chapter in order to lay the theoretical foundation for the

homotopy continuation algorithm.

The addition of the normalization operator also implies that its output is an vector in a high

dimensional simplex. Let K be the simplex given by

K =
⊗
i∈V

⊗
f∈N (i)

∆N ,

where ∆N is the N -simplex.

94

Definition 5.2.1. The message passing operator T̂ : K →M in sum-product convex combination

belief propagation is given by

(
T̂ µ
)
i→f

(xi) =
∏

g∈N (i)\f

µg→i(xi)
γwg→i ,

where the weights in the sum must satisfy
∑
g
wg→i ≤ 1 and γ ∈ (0, 1/2).

Definition 5.2.2. The message passing operator Ŝ :M→ K in sum-product belief propagation is

Ŝ = NR̂. R̂ computes a new message using a weighted version of the sum-product equation and N

normalizes each message.

(
R̂ν
)
f→i

(xi) =
∑
xN (f)

Ψf (xN (f))
∏

j∈N (f)\i

νj→f (xj)
wj→f

(
Nν)f→i(xi) =

νi→f (xi)∑
τ∈Ω

νi→f (τ)
,

where the weights in the sum must satisfy
∑
j
wj→f ≤ 1.

The simplest way to define each weight is to set wg→i = 1/
(
|N (i)| − 1

)
and wj→f = 1/(

|N (f)| − 1
)
. Alternatively one can give more weight to certain edges based on some additional

information from a particular application (see [20]). The operator T̂ also includes a damping factor

γ. Later in this section, we see that this parameter is necessary to guarantee convergence. In

addition, the magnitude of this value controls the rate of convergence.

In traditional belief propagation, the messages are initialized and then repeatedly updated with

T and S until both sets of messages converge. Our algorithm could utilize the same update scheme

with T̂ and Ŝ. However, this scheme is inefficient in terms of memory usage. Instead we argue that

it’s better to initialize one set of messages µ(0) ∈ K, then repeatedly update the messages with the

composition operator Θ̂ = NŜT̂ .

Definition 5.2.3. The message passing operator Θ̂ : K → K in sum-product convex combination

belief propagation is Θ̂ = NŜT̂ given by

(
ŜT̂ µ

)
f→i

(xi) =
∑
xN (f)

Ψf (xN (f))
∏

j∈N (f)\i

(∏
g∈N(j)\f

µg→j(xj)
γwg→j

)wj→f

.

95

The composition operator can be defined with either T̂ Ŝ or ŜT̂ . We use the latter because

the beliefs are ultimately computed with the output of this operator. The message passing scheme

defined by Θ̂ is equivalent to the scheme used in traditional belief propagation. But the advantage

of is that it requires half as much memory, since only one set of messages is stored on each iteration.

The composition operator exploits that each message update µ(n+1) can be directly computed from

µ(n) without accessing ν(n) from memory. Alternatively, the message ν
(n)
j→f is computed as an

intermediate step, then immediately used to obtain the update µ
(n+1)
f→i . Moreover, it is unnecessary

to compute and store both sets of messages because their convergence is interdependent.

5.2.2 Message Passing in a Metric Space

The main objective of this section is to prove that the sum-product version of convex combination

belief propagation is guaranteed to converge on factor graphs. We use Banach’s fixed point theorem

to prove this result, which requires that the problem is formulated under the framework of a metric

space. In the next lemma, we define a distance function over the set of positive reals and prove

that this pair is a complete metric space. Then we extend this distance function into a metric that

is defined over the product space K.

Lemma 5.2.4. Let f : R+ × R+ → R be the distance function given by

f(xi, xj) = | log xi − log xj |

for any xi, xj ∈ R+, then the pair (R+, f) is a complete metric space.

Proof. It is clear that f is non-negative, symmetric, and that d(xi, xj) = 0 if and only if xi = xj .

The triangle inequality holds for any xi, xj , xk ∈ R+ by

f(xi, xj) = | log xi − log xj |

= | log xi − log xk + log xk − log xj |

≤ | log xi − log xk|+ | log xk − log xj |

= f(xi, xk) + f(xk, xj).

96

To show that this space is complete, choose any Cauchy sequence {xn} ⊂ R+ and note that this

sequence can be written as {xn} = {eyn} with yn = log(xn). The sequence {yn} ⊂ R is Cauchy with

respect to the Euclidean metric because for any ϵ > 0 there exists an N > 0 such that f(xn, xm) < ϵ

for all n,m > N , which implies that

|yn − ym| = | log xn − log xm| = f(xn, xm) < ϵ.

Since {yn} is a Cauchy sequence in a complete space, there exists some y ∈ R such that yn → y

which implies that xn = eyn → ey.

Proposition 5.2.5. Let d : K ×K → R be the distance function given by

d(µ, λ) = max
i∈V

max
f∈N (i)

max
xi

∣∣ log µf→i(xi)− log λf→i(xi)
∣∣

for any µ, λ ∈ K, then the pair
(
K, d

)
is a complete metric space.

Proof. It is clear that d is non-negative, symmetric, and that d(µ, λ) = 0 if and only if µ = λ. The

triangle inequality holds for any µ, λ, ψ ∈ K by

d(µ, λ) = max
i∈V

max
f∈N (i)

max
xi

∣∣ log µf→i(xi)− log λf→i(xi)
∣∣

≤ max
i∈V

max
f∈N (i)

max
xi

(∣∣ log µf→i(xi)− log ψf→i(xi)|+ | log ψf→i(xi)− log λf→i(xi
∣∣)

≤ max
i∈V

max
f∈N (i)

max
xi

∣∣ log µf→i(xi)− log ψf→i(xi)|+max
i∈V

max
f∈N (i)

max
xi

| log ψf→i(xi)− log λf→i(xi)
∣∣

= d(µ, ψ) + d(ψ, λ).

97

Given any Cauchy sequence {µ(n)} ⊂ K, then {µ(n)f→i(xi)} ⊂ R+ is a Cauchy sequence in (R+, f)

because for any ϵ > 0 there exists an N > 0 such that for all n,m > N

f
(
µ
(n)
f→i(xi), µ

(m)
f→i(xi)

)
=
∣∣ log µ(n)f→i(xi)− log µ

(m)
f→i(xi)

∣∣
≤ max

i∈V
max
f∈N (i)

max
xi

∣∣ log µ(n)f→i(xi)− log µ
(m)
f→i(xi)

∣∣
= d
(
µ(n), µ(m)

)
< ϵ.

Given that the pair (R+, f) is a complete metric space by Lemma 5.2.4, there exists some µ ∈ K

such that µ
(n)
f→i(xi)→ µf→i(xi). Thus, the space (K, d) is complete because µ(n) → µ ∈ K by

d(µ(n), µ) = max
i∈V

max
f∈N (i)

max
xi

f
(
µ
(n)
f→i(xj), µf→i(xi)

)
→ 0.

5.2.3 Lipschitz Continuity of the Normalization Operator

In this section, we prove that the normalization operator N is 2-Lipschitz with respect to the metric

d. It is difficult to directly prove this fact using the definition of the metric. Instead we circumvent

this issue by defining an equivalent metric d′, then prove that N is Lipschitz in this metric. A

metric d′ is said to be equivalent to another metric d if there exists constants α, β > 0 such that

αd(µ, λ) ≤ d′(µ, λ) ≤ β d(µ, λ).

for any µ, λ ∈ K. This notion is useful because N being Lipschitz in d′ implies that it must also be

Lipschitz with respect to any equivalent metric. However, one important note is that the Lipschitz

constant often differs between equivalent metrics.

Proposition 5.2.6. Let d′ : K ×K → R be the distance function given by

d′(µ, λ) = max
i∈V

max
f∈N (i)

max
τ,υ∈Ω

∣∣∣ log µf→i(τ)

µf→i(υ)
− log

λf→i(τ)

λf→i(υ)

∣∣∣,

98

for any µ, λ ∈ K, then the pair (K, d′) is a metric space.

Proof. It is clear that d′ is non-negative, symmetric, and that d′(µ, λ) = 0 if and only if µ = λ.

The triangle inequality holds for any µ, λ, ψ ∈ K by

d′(µ, λ) = max
i∈V

max
f∈N (i)

max
τ, υ

∣∣∣ log µf→i(τ)

µf→i(υ)
− log

nf→i(τ)

nf→i(υ)

∣∣∣
= max

i∈V
max
f∈N (i)

max
τ, υ

∣∣∣ log µf→i(τ)

µf→i(υ)
− log

ψf→i(τ)

ψf→i(υ)
+ log

ψf→i(τ)

ψf→i(υ)
− log

λf→i(τ)

λf→i(υ)

∣∣∣
≤ max

i∈V
max
f∈N (i)

max
τ, υ

(∣∣∣ log µf→i(τ)

µf→i(υ)
− log

ψf→i(τ)

ψf→i(υ)

∣∣∣+ ∣∣∣ log ψf→i(τ)

ψf→i(υ)
− log

λf→i(τ)

λf→i(υ)

∣∣∣)
≤ max

i∈V
max
f∈N (i)

max
τ, υ

∣∣∣ log µf→i(τ)

µf→i(υ)
− log

ψf→i(τ)

ψf→i(υ)

∣∣∣+max
i∈V

max
f∈N (i)

max
τ, υ

∣∣∣ log ψf→i(τ)

ψf→i(υ)
− log

λf→i(τ)

λf→i(υ)

∣∣∣
= d(µ, ψ) + d(ψ, λ).

Lemma 5.2.7. Given any µ, λ ∈ K, then there exists some υ ∈ Ω such that

max
τ

∣∣∣ log µf→i(τ)

λf→i(τ)

∣∣∣ ≤ max
τ

∣∣∣ log µf→i(τ)

λf→i(τ)
− log

µf→i(υ)

λf→i(υ)

∣∣∣
when µf→i and λf→i are both normalized.

Proof. Assume, without loss of generality, that

τ⋆ := argmax
τ

∣∣∣ log µf→i(τ)

λf→i(τ)

∣∣∣ and log
µf→i(τ

⋆)

λf→i(τ⋆)
> 0.

The inequality on the right implies that λf→i(τ
⋆) < µf→i(τ

⋆), so the claim holds if µf→i(υ) ≤

λf→i(υ) for some υ ∈ Ω. Conversely, if λf→i(υ) < µf→i(υ) for every υ ∈ Ω, then summing this

inequality over every υ ∈ Ω implies that

∑
τ∈Ω

λf→i(τ) <
∑
τ∈Ω

µf→i(τ) = 1.

But this contradicts the constraint that each message must sum to one.

Proposition 5.2.8. The metric d′ is equivalent to d.

99

Proof. Given any µ, λ ∈ K, then

d′(µ, λ) = max
i∈V

max
f∈N (i)

max
τ, υ

∣∣∣ log µf→i(τ)

µf→i(υ)
− log

λf→i(τ)

λf→i(υ)

∣∣∣
≤ max

i∈V
max
f∈N (i)

max
τ

∣∣∣ log µf→i(τ)

λf→i(τ)

∣∣∣+max
i∈V

max
f∈N (i)

max
υ

∣∣∣ log µf→i(υ)

λf→i(υ)

∣∣∣
= 2 max

i∈V
max
f∈N (i)

max
τ

∣∣∣ log µf→i(τ)

λf→i(τ)

∣∣∣
= 2 d(µ, λ)

The reverse inequality holds by applying Lemma 5.2.7 to

d(µ, λ) = max
i∈V

max
f∈N (i)

max
τ

∣∣∣ log µf→i(τ)

λf→i(τ)

∣∣∣
≤ max

i∈V
max
f∈N (i)

max
τ, υ

∣∣∣ log µf→i(τ)

µf→i(υ)
− log

λf→i(τ)

λf→i(υ)

∣∣∣
= d′(µ, λ).

We obtain the final result by combining the equalities to conclude that

d(µ, λ) ≤ d′(m,n) ≤ 2 d(µ, λ).

Lemma 5.2.9. The normalization operator N is 1-Lipschitz in the metric d′.

Proof. Choose any µ, λ ∈ K, then

d′
(
Nµ,Nλ

)
= max

i∈V
max
f∈N (i)

max
τ

∣∣∣∣ log
(
Nµ
)
f→i

(τ)(
Nλ
)
f→i

(τ)
− log

(
Nµ
)
f→i

(υ)(
Nλ)f→i(υ)

∣∣∣∣
= max

i∈V
max
f∈N (i)

max
τ

∣∣∣∣ log µf→i(τ)

λf→i(τ)
− log

µf→i(υ)

λf→i(υ)

∣∣∣∣
= d(µ, λ)

where the simplification on the second line holds because the normalization constants cancel.

Proposition 5.2.10. The normalization operator N is 2-Lipschitz in the metric d.

100

Proof. Choose any µ, λ ∈ K, then

d
(
Nµ,Nλ) ≤ d′

(
Nµ,Nλ

)
= d′(µ, λ)

≤ 2 d(µ, λ)

which holds by applying Proposition 5.2.9 and Lemma 5.2.8.

5.2.4 Convergence

Next we prove that Θ̂ is contractive by exploiting that it is a composition of operators. Since each

individual operator is Lipschitz, Θ̂ must also be Lipschitz. Although the Lipschitz constant of each

operator may be different, composing them results in a Lipschitz constant less than one.

Lemma 5.2.11. The operator T̂ is a contraction with Lipschitz constant γ with respect to the

metric d.

Proof. Choose any µ, λ ∈ K, then

(
T̂ µ
)
i→f

(xi) =
∏

g∈N (i)\f

µg→i(xi)
γwg→i

=

(∏
g∈N (i)\f

λg→i(xi)
γwg→i

)(∏
g∈N (i)\f

µg→i(xi)
γwg→i

λg→i(xi)γwg→i

)

=
(
T̂ λ
)
i→f

(xi)

(∏
g∈N (i)\f

µg→i(xi)
γwg→i

λg→i(xi)γwg→i

)

≤
(
T̂ λ
)
i→f

(xi)

(
max
yi

∏
g∈N (i)\f

µg→i(yi)
γwg→i

λg→i(yi)γwg→i

)

101

Taking the logarithm of both sides yields that

log
(
T̂ µ
)
i→f

(xi) ≤ log
(
T̂ λ
)
i→f

(xi) + log

(
max
yi

∏
g∈N (i)\f

µg→i(yi)
γwg→i

λg→i(yi)γwg→i

)

= log
(
T̂ λ
)
i→f

(xi) + γ
∑

g∈N (i)\f

wg→imax
yi

log
µg→i(yi)

λg→j(yi)

≤ log
(
T̂ λ
)
i→f

(xi) + γ
∑

g∈N (i)\f

wg→i max
yi

∣∣∣ log µg→i(yi)

λg→i(yi)

∣∣∣
≤ log

(
T̂ λ
)
i→f

(xi) + γ max
g∈N (i)\f

max
yi

∣∣∣ log µg→i(yi)

λg→i(yi)

∣∣∣,
where the last inequality holds by using that the weights are a convex combination. Now the

inequality can be written as

log

(
T̂ µ
)
i→f

(xi)(
T̂ λ
)
i→f

(xi)
≤ γ max

g∈N (i)\f
max
yi

∣∣∣ log µg→i(yi)

λg→j(yi)

∣∣∣ .
Since this inequality holds when µ and λ are interchanged, we can take the absolute value of the

left hand side. Moreover, given that the above inequality holds for any xi ∈ Ω, it must hold for the

maximum of the left hand side.

max
xi

∣∣∣∣ log
(
T̂ µ
)
i→f

(xi)(
T̂ λ
)
i→f

(xi)

∣∣∣∣ ≤ γ max
g∈N (i)\f

max
yi

∣∣∣ log µg→i(yi)

λg→i(yi)

∣∣∣
≤ γ max

i∈V
max
f∈N (i)

max
yi

∣∣∣ log µf→i(yi)

λf→i(yi)

∣∣∣
Since the edge {i, f} ∈ E was chosen arbitrarily from the beginning, the inequality holds for any

{i, f} ∈ E. The final result is obtained by taking the maximum of the left hand side over all the

edges in the graph.

max
i∈V

max
f∈N (i)

max
xi

∣∣∣∣ log
(
T̂ µ
)
i→f

(xi)(
T̂ λ
)
i→f

(xi)

∣∣∣∣ ≤ γ max
i∈V

max
f∈N (i)

max
yi

∣∣∣ log µf→i(yi)

λf→i(yi)

∣∣∣
=⇒ d

(
T̂ µ, T̂ λ

)
≤ γ d(µ, λ)

102

Lemma 5.2.12. The operator R̂ is non-expansive with respect to the metric d.

Proof. Given any ν, λ ∈ K, then

(
R̂ν
)
f→i

(xi) =
∑
xN (f)

Ψf (xN (f))
∏

j∈N (f)\i

νj→f (xj)
wj→f

=
∑
xN (f)

(
Ψf (xN (f))

∏
j∈N (f)\i

λj→f (xj)
wj→f

∏
j∈N (f)\i

νj→f (xj)
wj→f

λj→f (xj)
wj→f

)

≤
(∑

xN (f)

Ψf (xN (f))
∏

j∈N (f)\i

λj→f (xj)
wj→f

)(
max
yj

∏
j∈N (f)\i

νj→f (yj)
wj→f

λj→f (yj)
wj→f

)

=
(
R̂λ
)
f→i

(xi)

(
max
yj

∏
j∈N (f)\i

νj→f (yj)
wj→f

λj→f (yj)
wj→f

)
.

Next we take the logarithm of both sides to get that

log
(
R̂ν
)
f→i

(xi) ≤ log
(
R̂λ
)
f→i

(xi) + log

(
max
yj

∏
j∈N (f)\i

νj→f (yj)
wj→f

λj→f (yj)
wj→f

)

= log
(
R̂λ
)
f→i

(xi) + max
yj

∑
j∈N (f)\i

wj→f log
νj→f (yj)

λj→f (yj)

≤ log
(
R̂λ
)
f→i

(xi) +
∑

j∈N (f)\i

wj→f max
yj

∣∣∣ log νj→f (yj)

λj→f (yj)

∣∣∣
≤ log

(
R̂λ
)
f→i

(xi) + max
j∈N (f)\i

max
yj

∣∣∣ log νj→f (yj)

λj→f (yj)

∣∣∣
=⇒ log

(
R̂ν
)
f→i

(xi)(
R̂λ
)
f→i

(xi)
≤ max

j∈N (f)\i
max
xj

∣∣∣ log νj→f (xj)

λj→f (xj)

∣∣∣
Since this inequality holds when ν and λ are interchanged, we can take the absolute value of the

left hand side. Moreover, given that the above inequality holds for any xi ∈ Ω, hence

max
xi

∣∣∣∣ log
(
R̂ν
)
f→i

(xi)(
R̂λ
)
f→i

(xi)

∣∣∣∣ ≤ max
j∈N (f)\i

max
yj

∣∣∣ log νj→f (yj)

λj→f (yj)

∣∣∣
= max

i∈V
max
f∈N (i)

max
yi

∣∣∣ log νi→f (yi)

λi→f (yi)

∣∣∣.
Since the edge {i, f} ∈ E was chosen arbitrarily from the beginning, the inequality holds for any

{i, f} ∈ E. Thus, the final result is obtained by taking the maximum of the left hand side over all

103

the edges in the graph.

max
i∈V

max
f∈N (i)

max
xi

∣∣∣∣ log
(
R̂ν
)
f→i

(xi)(
R̂λ
)
f→i

(xi)

∣∣∣∣ ≤ max
i∈V

max
f∈N (i)

max
xi

∣∣∣ log νi→f (xi)

λi→f (xi)

∣∣∣
=⇒ d

(
R̂ν, R̂λ

)
≤ d(ν, λ)

Proposition 5.2.13. The operator Θ̂ is a contraction with respect to the metric d.

Proof. Given any µ, λ ∈ K, then

d
(
Θ̂µ, Θ̂λ

)
= d
(
ŜT̂ µ, ŜT̂ λ

)
= d
(
NR̂T̂µ,NR̂T̂λ

)
≤ 2 d

(
R̂T̂µ, R̂T̂ λ

)
≤ 2 d

(
T̂ µ, T̂ λ

)
≤ 2γ d(µ, λ)

< d(µ, λ)

where lines 2 - 4 hold by using Lemmas 5.2.11 - 5.2.10.

Theorem 5.2.1. The message passing operator Θ̂ has a unique fixed point µ⋆ ∈ K and the sequence

of messages defined by µn+1 := Θ̂µn converges to µ⋆ for any initialization µ⋆ ∈ K. Furthermore,

after n iterations

d
(
Θ̂(n)µ(0), µ⋆

)
≤ (2γ)nd(µ(0), µ⋆).

Proof. Given that Θ̂ is a contraction by Proposition 5.2.13 and defined over a complete metric

space by Proposition 5.2.5, then the result holds by applying Banach’s Fixed Point Theorem.

5.3 Max-Product Algorithm

The main objective of this section is to present the factor graph version of the max-product algo-

rithm in convex combination belief propagation. In Section 5.3.1, we define the message passing

104

operators and the message update scheme. Then we prove that the algorithm is guaranteed to

converge to a unique fixed point in Section 5.3.2.

5.3.1 Message Passing Operators

Now we define a max-product version of convex combination belief propagation and show that

the resulting operator has a unique and globally attractive fixed point. We prove this result by

showing that this operator is contractive, then invoke Banach’s fixed point theorem. This operator

is analogous to the one derived from the sum-product equations in the sense that the incoming

messages are “weighted” so that each node receives a convex combination of messages from its

neighbors.

Definition 5.3.1. The message passing operator M̂ :M → K in max-product belief propagation

is M̂ = NP̂ . N normalizes each message and P̂ computes a new message using a weighted version

of the max-product equation with

(
P̂ ν
)
f→i

(xi) = max
xN (f)

{
Ψf (xN (f))

∏
j∈N (f)\i

νj→f (xj)
wj→f

}

where the weights in the sum must satisfy
∑
j
wj→f ≤ 1.

The operator M̂ is part of a message passing scheme that involves sending messages from factors

to nodes and nodes to factors. In Chapter 3, we described that the convention is to compute two

sets of messages on each iteration, but this scheme is inefficient in terms of the space complexity.

Instead we argued that it is better to use a composition operator that uses half as much memory.

In the case of the max-product algorithm, we can utilize the same message passing scheme that

consists of a composition of operators that involves M̂ .

Definition 5.3.2. The message passing operator Q̂ : K → K in max-product convex combination

belief propagation is Q̂ = NM̂T̂ with

(
M̂T̂µ

)
f→i

(xi) = max
xN (f)

{
Ψf (xN (f))

∏
j∈N (f)\i

(∏
g∈N(j)\f

µg→j(xj)
γwg→j

)wj→f
}
.

105

5.3.2 Convergence

Next we prove that the algorithm is guaranteed to converge on graphs with arbitrary topology. The

argument is analogous to the one provided in Theorem 5.2.1 and most of the supporting lemmas

proven have already been proven in Section 5.2. In fact, all that remains is to prove that the

message passing operator P̂ is non-expansive.

Lemma 5.3.3. The operator P̂ is non-expansive with respect to the metric d.

Proof. Choose any µ, λ ∈ K, then

(
P̂ ν
)
f→i

(xi) = max
xN (f)

{
Ψf (xN (f))

∏
j∈N (f)\i

νwj→f
(xj)

wj→f

}
= max

xN (f)

{
Ψf (xN (f))

∏
j∈N (f)\i

νj→f (xj)
wj→f

λj→f (xj)
wj→f

λj→f (xj)
wj→f

}
≤ max

xN (f)

{
Ψf (xN (f))

∏
j∈N (f)\i

λj→f (xj)
wj→f

}
max
xj

νj→f (xj)
wj→f

λj→f (xj)
wj→f

=
(
P̂ λ
)
f→i

(xi)max
xj

νj→f (xj)
wj→f

λj→f (xj)
wj→f

.

Next we take the logarithm of both sides to get that

log
(
P̂ ν
)
f→i

(xi) ≤ log
(
P̂ λ
)
f→i

(xi) + log

(
max
xj

νj→f (xj)
wj→f

λj→f (xj)
wj→f

)
= log

(
P̂ λ
)
f→i

(xi) + max
xj

log

(
νj→f (xj)

wj→f

λj→f (xj)
wj→f

)
≤ log

(
P̂ λ
)
f→i

(xi) + max
xj

∣∣∣∣ log νj→f (xj)
wj→f

λj→f (xj)
wj→f

∣∣∣∣
=⇒ log

(
P̂ ν
)
f→i

(xi)− log
(
P̂ λ
)
f→i

(xi) ≤ max
xj

∣∣∣∣ log νj→f (xj)
wj→f

λj→f (xj)
wj→f

∣∣∣∣.

106

Since this inequality holds when ν and λ are interchanged, we can take the absolute value of the

left hand side. Moreover, given that the above inequality holds for any xi ∈ Ω, then

max
xi

∣∣∣∣ log
(
P̂ ν
)
f→i

(xi)(
P̂ λ
)
f→i

(xi)

∣∣∣∣ ≤ max
xj

∣∣∣∣ log νj→f (xj)
wj→f

λj→f (xj)
wj→f

∣∣∣∣
≤ max

i∈V
max
j∈N (i)

max
xj

∣∣∣∣ log νj→f (xj)
wj→f

λj→f (xj)
wj→f

∣∣∣∣.
Since the edge {i, f} ∈ E was chosen arbitrarily from the beginning, this inequality holds for any

{i, f} ∈ E. The final result is obtained by taking the maximum of the left hand side over all the

edges in the graph.

max
i∈V

max
j∈N (i)

max
xi

∣∣∣∣ log
(
P̂ ν
)
f→i

(xi)(
P̂ λ
)
f→i

(xi)

∣∣∣∣ ≤ max
i∈V

max
j∈N (i)

max
xj

∣∣∣∣ log νj→f (xj)
wj→f

λj→f (xj)
wj→f

∣∣∣∣
=⇒ d(P̂ ν, P̂ λ) ≤ d(ν, λ).

Proposition 5.3.4. The operator Q̂ is a contraction with respect to the metric d.

Proof. Given any µ, λ ∈ K, then

d
(
Q̂µ, Q̂λ

)
= d
(
NP̂ T̂µ,NP̂ T̂λ

)
≤ 2 d

(
P̂ T̂ µ, P̂ T̂ λ

)
≤ 2 d

(
T̂ µ, T̂ λ

)
< γ d(µ, λ).

Theorem 5.3.1. The operator Q̂ has a unique fixed point µ⋆ ∈ K and the sequence of messages

defined by µ(n+1) := Q̂µ(n) converges to µ⋆ for any initialization µ(0) ∈ K. Furthermore, after n

iterations

d
(
Q̂(n)µ(0), µ⋆

)
≤ (2γ)nd(µ(0), µ⋆).

107

Proof. Given that Q̂ is a contraction by Proposition 5.3.4 and defined over a complete metric space

by Proposition 5.2.5, then the result holds by applying Banach’s Fixed Point Theorem.

5.4 Shortcomings of Convex Combination Belief Propagation

The main advantage of convex combination belief propagation is that it’s guaranteed to converge

to a unique fixed point on graphs with arbitrary topology. Although this algorithm has good

theoretical properties, one drawback is that the resulting beliefs may not be a good approximation

of the true marginals. This behavior should be anticipated because modifying the traditional

message passing operators by adding weights and a damping factor affects its fixed point. To

illustrate this issue with a concrete example, we use both belief propagation algorithms to obtain

a fixed point in the spin glass model from statistical physics.

Example 5.4.1. We applied convex combination and damped belief propagation to the graphical

model in Example 4.2.4 and show the results in 5.1. Convex combination belief propagation con-

verged after very few iterations, whereas damped belief propagation oscillated. The algorithm was

stopped after 1000 iterations and we show how the beliefs oscillate in the last 20 iterations in Figure

5.1.

Figure 5.1: Beliefs and exact marginals from Example 5.4.1. Damped belief prop-
agation failed to converge, the vertical lines show how the beliefs oscillate in the last

20 iterations.

108

In Example 5.4.1, damped belief propagation failed to converge and the oscillations are quite

dramatic despite the damping factor being large. Although convex combination belief propagation

converged in very few iterations, the beliefs are a poor approximation of the true marginals. There

are many examples where convex combination belief propagation obtains good approximations, but

there is no theoretical bound on the quality of this approximation.

Another drawback of convex combination belief propagation is that the quality of the approxi-

mation often depends upon the topology of the graph. As the size of the neighborhood of a node

increases, the magnitude of each weight placed on incoming messages gets closer to zero. In this

case, the beliefs are more likely to be a poor approximation of the true marginals. To illustrate this

issue with another concrete example, we use both belief propagation algorithms to compute the

exact marginals of joint distributions defined with respect to star factor graphs as shown in Figure

5.2.

Figure 5.2: The star graphs S4 and S10 are shown on the left and right, respectively.
Blue circles represent variables and gray squares represent factors.

Example 5.4.2. Let S4 and S10 be the star graphs shown in Figure 5.2. Let X = (X1, . . . , Xn)

be a random vector with either n = 4 or n = 10 and let Ω = {−1, 1}. The probability of each

configuration of the random vector is given by the joint distribution

P(X = x) =
1

Z
exp

(
−
∑
i

yixi −
∑
i,j

λijxixj

)
.

In this experiment, the local influence at each node is yi = 1 and λij was sampled from the normal

distribution N (1, 0.5).

109

Let wf→i = 1/
(
|N (i)|−1

)
and wi→f = 1/

(
|N (f)|−1

)
along with γ = 0.49 in convex combination

belief propagation. Let α = 0 in damped belief propagation since the graph is tree-structured and

belief propagation is guaranteed to converge. We used the initial set of messages µ
(0)
f→i = (1, 1). For

each belief propagation algorithm, we computed the beliefs along with the true marginals of the joint

distributions. In Figure 5.3, we show the value of these functions when xi = 1.

Figure 5.3: Beliefs obtains with belief propagation algorithms and exact marginals
from Example 5.4.2. The beliefs shown on the left correspond to the star shaped

graph S4, while the beliefs on the right correspond to S10.

In Figure 5.3, we see that damped belief propagation computes the exact marginal distribu-

tions since the underlying factor graphs are tree-structured. In contrast, the beliefs obtained with

convex combination belief propagation differ from the true marginals in both cases. The beliefs are

significantly less accurate in the case of the factor graph S10 due to the neighborhood of the center

node being large. Although the weights in convex combination belief propagation are the key to

the algorithm always converging, they are also the culprit behind the beliefs being inaccurate. This

problem inspired the development of an algorithm that utilizes the message passing operator from

convex combination belief propagation in a numerical homotopy continuation algorithm.

110

CHAPTER 6

Belief Propagation with Numerical

Homotopy Continuation

This chapter presents a new belief propagation algorithm that utilizes both convex combination

belief propagation and numerical homotopy continuation in a unified framework. In Section 6.1,

we discuss our motivations and describe related work in the literature. We present the sum-

product version of the numerical homotopy continuation algorithm in Section 6.2, then prove several

theoretical results in Section 6.3. In Section 6.4, we present a series of numerical experiments, then

discuss techniques that improve the performance in Section 6.5. Section 6.6 presents the max-

product version of the continuation algorithm. Lastly, we provide some discussion of the algorithm

and future work in Section 6.7

6.1 Introduction

Belief propagation is well-known for obtaining state of the art results in certain applications. How-

ever, the algorithm is also notorious for being unreliable when the underlying graph has complex

topology. This is problematic because many real world networks fall into this category. Although

there are alternative methods that are capable of performing inference in these settings, belief

propagation is very efficient when it converges. This problem is the main motivation behind the

developments in this thesis as well as many other works over the last few decades.

111

Convex combination belief propagation is our initial approach to this problem. The algorithm

has good theoretical properties, but the accuracy of the approximation is unreliable. The weights

in the message passing operator are the key to the algorithm converging, but also the culprit behind

a poor approximation. We improve upon this algorithm by systematically phasing out the weights

with homotopy continuation. This process is carried out with a homotopy operator that defines

a continuous mapping between the message passing operators in convex combination and damped

belief propagation. The result is a homotopy continuation algorithm which is significantly more

accurate than convex combination belief propagation. In addition, this method converges at a much

higher rate than damped belief propagation.

Homotopy continuation is a well-established numerical method that to solves high dimensional

systems of nonlinear equations. Instead of directly solving a target system of equations, the method

obtains a solution by first solving a simple system of equations. Then a homotopy operator gradually

deforms the simple system into the target system. As the system deforms, the solutions of the simple

system also gradually deform into solutions of the target system. The computational objective is

to track a path of solutions that originates at a solution of the simple system and terminates at a

solution of the target system.

There are a few related works which have applied similar techniques to this problem. Knoll et al.

(2017) present the numerical polynomial-homotopy-continuation which is capable of obtaining all

fixed points of belief propagation [50]. Their approach exploits that computing belief propagation

fixed points can be realized as solving a polynomial system of equations. In this case, more advanced

polynomial homotopy constructions can be applied. They use the polyhedral homotopy method by

Huber and Sturmfels (1995), which is especially well-suited for finding all isolated nonzero complex

solution [42]. This method obtains all belief propagation fixed points, but its very computationally

expensive and only practical for simple examples.

Knoll et al. (2018) introduced a homotopy continuation based approach called self-guided belief

propagation [51]. Their method interpolates between a pairwise model and a simplification of that

model with only unary potentials. One key advantage of our algorithm over self-guided belief

propagation is that it’s applicable to the most general graphical models and incorporates edge

information in the initial system.

112

6.2 Homotopy Continuation Algorithm

Next we present the sum-product version of a homotopy continuation algorithm that obtains a good

approximation. In Section 6.2.1, we provide a concise overview of homotopy continuation methods.

Section 6.2.2 presents the message passing scheme and a simple example where we compute the

path of fixed points. Lastly, we describe the implementation and present pseudo code in Section

6.2.3.

6.2.1 Basics of Homotopy Continuation

Homotopy continuation is a powerful computational tool that can be used to solve high dimensional

systems of nonlinear equations. Consider the system of equations given by

Fx = 0⃗, (6.1)

where F : Rn → Rm is a nonlinear operator. Although there are many computational methods

for solving systems of nonlinear equations (e.g. Newton’s method, conjugate-gradient methods),

continuation is often used when the system is difficult to solve and conventional methods fail.

The main idea behind this approach is to obtain a solution to the system by defining a homotopy

(or deformation) between the original system and another system Gx = 0⃗ with G : Rn → Rm which

can be easily solved. A standard homotopy H : Rn × [0, 1]→ Rm used in this method is

H(x, t) = (1− t)Gx+ tFx,

where H(x, 0) = Gx and H(x, 1) = Fx. Instead of directly solving the target system of equations

in (6.1), homotopy continuation indirectly solves this system by repeatedly solving

H(x, t) = 0⃗ (6.2)

as t is gradually varied from 0 to 1. Most continuation algorithms rely on an iterative scheme

(e.g. Newton’s method) to solve this system on each time step. In this case, the solution from the

previous time step is used as the initialization in the next time step.

113

As the time parameter t varies from 0 to 1, the simple system continuously deforms into the

target system in Equation 6.1. In conjunction, solutions of the homotopy system also continuously

deform in the process. This creates a path of solutions where each point belongs to the set

H−1
(
0⃗
)
=
{
(x, t) : H(x, t) = 0⃗

}
.

This path originates at a solution of the trivial system, then emanates from this point and often

bifurcates into distinct branches. Each branch eventually terminates at a solution of the target

system as t → 1. Continuation is often referred as a path-tracing method because this algorithm

traces one of these branches.

6.2.2 Message Passing with a Homotopy

Homotopy continuation is a natural fit for our problem because we have the following systems of

equations

ŜT̂ µ = µ and STµ = µ. (6.3)

The system on the left is trivial to solve with convex combination belief propagation. In contrast,

the system on the right can be very difficult to solve, especially when the topology of the underlying

graph is complex. Our solution is to define a homotopy between the two systems, then trace a path

of fixed points that originates at the unique fixed point of convex combination belief propagation

and terminates at a fixed point of loopy belief propagation.

Definition 6.2.1. The message passing operator Θ :M→M in the sum-product algorithm with

damping is given by

Θµ = (1− α)(NST)µ+ αµ

with α ∈ [0, 1].

Definition 6.2.2. The message passing operator H :M× [0, 1] → M in sum-product algorithm

with homotopy continuation is

H(µ, t) = (1− t)Θ̂µ+ tΘµ.

114

In order for numerical continuation to be feasible, the fixed points must form a continuous

path as t is varied from 0 to 1. Later in this chapter, we prove that the homotopy operator

in Definition 6.2.2 satisfies this property. In the meantime, we provide a concrete example of

analytically computing a path of fixed points for a simple graphical model.

Figure 6.1: Complete graph with 4 nodes.

Example 6.2.3. Let G = (V,E) be a complete graph with four nodes as shown in Figure 6.1. Let

X = (X1, . . . , X4) be a random vector and let Ω = {−1, 1} be a set of possible outcomes of each

random variable. The joint distribution of this system is

P(X = x) =
1

Z
exp

(
−

∑
{i,j}∈E

xixj

)
.

This system is simple enough to analytically compute the fixed point set of the homotopy oper-

ator. This involves using a symbolic algebra system to solve the fixed point equation

µ = (1− t)Θ̂µ+ tΘµ.

Although this is a high dimensional system of nonlinear equations, we can compute a subset of

fixed points by exploiting underlying symmetry in the system. In this approach, solving the fixed

point equation corresponding to a single pair of neighboring nodes is equivalent to solving the entire

system! In Figure 6.2, we show all of the solutions to the fixed point equation corresponding to an

arbitrary node and factor for all t ∈ [0, 1].

115

Figure 6.2: Solutions of the fixed point equation for every t ∈ [0, 1]. There is
a unique fixed point of the homotopy operator when t ∈ [0, 0.1). Then the path

bifurcates into three distinct branches when t = 0.1.

In practice, our objective is solve the fixed point equation

µ = H(µ, t).

for some ascending sequence of time steps (t0, t1, . . . , tN) ⊂ [0, 1]. The initial time step is t0 = 0

since this system has a unique solution µ⋆0 ∈M that can be easily obtained with convex combination

belief propagation. The main computational objective of a continuation algorithm is to approximate

a solution at each time step, where µ⋆i ∈ M denotes a solution of the fixed point equation at time

ti.

There are many numerical schemes that can be used to solve this system of equations. In the

context of homotopy continuation, Newton’s method is most commonly used. Although this method

is well-understood and relatively simple to implement, one disadvantage is that it involves inverting

a matrix. This poses a major computational challenge because we are interested in tackling the

most difficult inference problems. In particular, our algorithm must be robust to high dimensional

systems and graphs with dense neighborhoods.

Instead we propose using fixed point iteration withH(·, t) due to its relatively low computational

overhead. This involves simultaneously performing damped belief propagation (fixed point iteration

with Θ) and convex combination belief propagation (fixed point iteration with Θ̂) at each time step,

116

then updating the current set of message via

µ
(n)
t := H(µ

(n−1)
t , t) = (1− t)Θ̂µ(n−1)

t + tΘµ
(n−1)
t

with t ∈ [0, 1]. Once the message µ
(n)
t converges to a fixed point, the time parameter t is updated

by t← t+dt with dt > 0 being the time step. (Note that the set of messages includes the subscript

t in order to clearly distinguish messages from distinct time steps.)

An underlying assumption of this algorithm (which is proven to be true) is that the fixed points

of H(µ, t) form a continuous path. One implication of this assumption is that the approximate

fixed point µ
(n)
t is near a fixed point of H(µ, t + dt) for sufficiently small dt > 0. Thus, we can

efficiently obtain this fixed point by defining the initial set of messages in the next time step as

µ
(0)
t+dt ← µ

(n)
t .

Example 6.2.4. Here we use the same graphical model from Example 4.2.4. Then we applied belief

propagation with homotopy continuation with dt = 0.1. Once fixed point iteration converged at each

time step, we compute the belief function

bt,1(1) =
∏

f∈N (1)

µf→1(1)

corresponding to node 1 at time t. The resulting belief function at each time is shown in Figure 6.3

along with the true marginal.

117

Figure 6.3: Single belief function evolving in time as t is varied from 0 to 1 with
time steps of dt = 0.1.

6.2.3 Implementation

Next we present pseudo code in Algorithm 1. There are several user-defined parameters that influ-

ence the performance of the algorithm. The purpose of this section is to discuss the implementation

and provide insight into choosing good parameter values.

An important aspect of any continuation algorithm is a time parameter that controls the de-

formation between the systems of nonlinear equations shown in Equation 6.3. In addition, there is

also a step size parameter dt that controls the rate at which this deformation occurs. In general,

continuation algorithms are more likely to converge at each time step when dt is small. However,

this also means that more time steps are necessary to reach the final time step, which may result

in longer running times.

We recommend setting dt = 0.1 and provide experimental results with this time step in Section

6.4. However, some very difficult problem instances may require a smaller time step in order to

obtain a good approximation. This potential issue can be addressed by using a subroutine that

adaptively updates the time step. If the algorithm fails to converge, then the adaptive step size

routine reverts to the last convergent time step, decreases the step size, and tries again. In order

to guarantee that the running time is finite, the step size must be bounded below by an additional

parameter δ > 0.

118

Algorithm 1 Belief Propagation with Homotopy Continuation

1: # Parameters
2: dt: time step
3: δ: lower bound on time step
4: ϵ: stopping threshold
5: max iter: maximum number of iterations
6: adaptive step: indication of whether to use an adaptive time stepping scheme
7: def HC BP(dt, δ, ϵ, max iter, adaptive step)

8: µ
(0)
0 ← initial set of messages

9: t← −dt
10: while t < 1:
11: # Update time and initialize msgs
12: t← min(t+ dt, 1)

13: µ
(0)
t ←EXTRAPOLATE MSGS({µt}, {t}) if t > 0 else 1⃗

14:

15: # Fixed point iteration
16: for n in range(max iter):

17: µn+1
t ← H(µ

(n)
t , t)

18: if dist(µ
(n+1)
t , µ

(n)
t) < ϵ:

19: break
20:

21: # Check stopping criteria

22: if dist(µ
(n+1)
t , µ

(n)
t) ≥ ϵ:

23: t← t− dt
24: dt, stop← UPD TIME STEP(dt, δ, adaptive step)
25: if stop:
26: return µt, t
27: return µt, t

28: def UPD TIME STEP(dt, δ, adaptive step)
29: if adaptive step:
30: dt← dt/2
31: stop← True if dt < δ else False
32: else:
33: stop← False
34: return dt, stop

119

The runtime can be optimized by using extrapolation to initialize the messages at each time

step (as suggested by [51]). On the first time step when t = 0, the messages are initialized as

µ
(0)
f→i = [1, 1]. In practice, any initialization can be used since convex combination belief propagation

converges regardless of the initialization. Once the algorithm converges with t < 1, the resulting

approximate fixed point µt is stored in an array {µt} along with approximate fixed points from all

previous time steps. Similarly, the corresponding time steps are also stored in an array denoted

by {t}. In the case when t > 0, the messages are initialized by passing the fixed points and times

steps into a cubic spline routine. Then extrapolation is used to obtain an approximation of the

next fixed point.

Next we provide a concrete example of using Algorithm 1 to approximate the marginals of the

Gibbs distribution.

Example 6.2.5. To evaluate the accuracy of belief propagation with numerical continuation, we

apply the algorithm to the graphical model in Example 4.2.4.Let dt = 0.1 be the time step and

let µ
(0)
f→i = [1, 1] be the initial set of messages. In Figure 6.4, we show the beliefs obtained with

homotopy continuation (fixed point iteration with H) along with the beliefs shown in Figure 4.14.

Figure 6.4: Beliefs obtained with belief propagation algorithms. Although convex
combination belief propagation and the homotopy continuation algorithm both con-

verged, the beliefs obtained with continuation are significantly more accurate.

120

6.3 Theoretical Analysis

In order for any numerical continuation algorithm to be feasible, there must be a continuous path

of fixed points that can be traced as t is varied from 0 to 1. In this section, we provide a rigorous

argument that this property holds for arbitrary graphical models. The structure of our argument

is to first prove that the homotopy has at least one fixed point for every t ∈ [0, 1] in Section 6.3.1,

then show that the fixed points form a continuous path in Section 6.3.2.

Figure 6.5: On the left, we see an example of a path with a hole when t = 0.65. A
continuation algorithm would fail on this example because there is no point on the
path that corresponds to this time step. On the right, we see an example of a path
with a discontinuity when t = 0.5. A continuation algorithm is likely to fail because

the starting point of the next time step is relatively far from the path.

6.3.1 Existence of Fixed Points

The existence of a solution at every time step is a necessary condition for any continuation algorithm

to be feasible. Otherwise, the algorithm is doomed to fail because we may reach a time step that

does not correspond to a point on the path of solutions (see Figure 6.5). In the next theorem,

we prove that the homotopy operator H satisfies this necessary property by using Brouwer’s fixed

point theorem.

Observation 6.3.1. Let ∆ be the 1-simplex and N = dimM, then ∆N is a closed and convex set.

121

Theorem 6.3.1. The homotopy operator H has at least one fixed point for every t ∈ [0, 1].

Proof. Given any µ ∈ ∆N , then H(µ, t) ∈ ∆N by

∑
xi

H(µ, t)f→i(xi) =
∑
xi

(
(1− t)(Θ̂µ)f→i(xi) + t(Θµ)f→i(xi)

)
= (1− t)

∑
xi

(Θ̂µ)f→i(xi) + t
∑
xi

(Θµ)f→i(xi)

= (1− t) + t

= 1.

Since H maps the closed and convex set ∆N into itself for any t ∈ [0, 1], H must have at least one

fixed point for every t ∈ [0, 1] by Brouwer’s fixed point theorem.

6.3.2 Continuity of Fixed Point

Next we show that the fixed point set of the homotopy operator forms a continuous path. We prove

this theorem by defining a set-valued function g that parametrizes the fixed point set. Given any

t ∈ [0, 1], this function returns the solution set of the fixed point equation H(µ, t) = µ. Under this

framework, proving that the fixed point set forms a continuous path is equivalent to showing that

g is continuous.

Definition 6.3.2. Let g : [0, 1]→ P(M) be the set-valued function given by

g(t) = {µ ∈M : H(µ, t) = µ},

where P(M) denotes the power set ofM.

Definition 6.3.3. A set-valued function F : Rn ⇒ Rm is continuous if it is both inner and outer

semicontinuous at each x0 ∈ Rn meaning that

lim sup
x→x0

F (x) ⊂ F (x0) and F (x0) ⊂ lim inf
x→x0

F (x).

Next we establish that g is continuous by using that each fixed point is continuously dependent

upon t. It is natural to use the implicit function theorem to obtain this result. However, an

122

underlying assumption of this classical theorem is that the Jacobian of the corresponding system

of equations is nonsingular. In our case, this condition would be difficult to verify for arbitrary

graphical models. Instead we can circumvent this condition by using a generalization of the implicit

function theorem to non-differentiable functions (see Theorem 6.3.2). In this generalization, local

strict monotonicity is sufficient in one dimension. In more general systems, it has been proven that

the local injectivity is necessary and sufficient [55].

Theorem 6.3.2. Suppose that F : D ⊂ Rn × Rm → Rn is a continuous map with

F (x0, y0) = 0.

Assume there exist open neighborhoods A ⊂ Rn and B ⊂ Rm of x0 and y0, respectively. Then if

F (·, y) : A → Rn is locally one-to-one for all y ∈ B, there exist open neighborhoods A0 ⊂ A and

B0 ⊂ B of x0 and y0, respectively, such that the

F (x, y) = 0

has a unique solution x = Gy ∈ A0 and the mapping G : B0 → Rn is continuous [55].

Theorem 6.3.3. g is a continuous set-valued function.

Proof. The set-valued function g being inner semi-continuous is equivalent to g−1(O) being open

for every open set O ⊂M. Choose any open set O ⊂M and without loss assume that g−1(O) ̸= ∅,

hence there exists at least one µ ∈ M such that H(µ, t) = µ for some t ∈ [0, 1]. Given any pair

(µi, ti) ⊂ O × [0, 1] satisfying the equation

H(µi, ti)− µi = 0, (6.4)

the mapping F (·, ti) := H(µ, ti) − µ is locally one-to-one and so Theorem 6.3.2 implies that there

exists open neighborhoods Ai ⊂ O and Bi of µi and ti, respectively, such that

H(µ, t)− µ = 0

123

has a unique solution µ = g̃i(t) ∈ Ai for all t ∈ Bi and the mapping g̃ : B → M is continuous.

Given that g̃−1
i is continuous, then the inverse image g̃−1

i (Ai) must be open. Thus, this implies

that g−1(O) must also be open because it can be written in the form

g−1(O) =
⋃
i

g̃−1
i (Ai).

The set-valued function g being outer semi-continuous is equivalent to its graph G(g) = {(t, µ) :

H(µ, t) = µ} being closed [17]. Given any sequence
{
(tn, µn)

}
⊂ G(g) with (tn, µn)→ (t, µ) being

some limit point, it’s clear that t ∈ [0, 1] because the unit interval is closed and µ is a fixed point

of H by ∥∥H(µ, t)− µ
∥∥ ≤ ∥∥H(µ, t)−H(µn, tn)

∥∥+ ∥µn − µ∥ → 0

as n→∞ because H is continuous and µn → µ by assumption.

Corollary 6.3.4. The homotopy operator H has a continuous path of fixed points as t is varied

from 0 to 1.

6.4 Numerical Experiments

In this section, we present two numerical experiments that compare the performance of the belief

propagation algorithms. In particular, our focus is to consider difficult problem instances where

damped belief propagation fails to converge. We measure the quality of the beliefs return by each

algorithm by computing the mean square error (MSE) between the beliefs and true marginals. In

addition, we introduce several other metrics to evaluate the overall performance of the algorithms.

6.4.1 Experimental Settings

Let G = (V,E) be an undirected graph with V = {1, . . . , 10}. Let X = (X1, . . . , X10) be a random

vector and let Ω = {−1, 1} be the set of outcomes for each random variable. The probability of a

configuration of the random vector is given by

P(X = x) =
1

Z
exp

(
−
∑
i∈V

xiyi −
∑

{i,j}∈E

λijxixj

)
.

124

Each yi is uniformly sampled from Ω and λij is independently sampled from a uniform distribution.

The magnitude of this parameter controls how strongly neighboring states are coupled and the sign

determines whether neighbors prefer to be aligned or misaligned.

For each belief propagation algorithm, we use the initialization µ
(0)
ij = [1, 1] for all {i, j} ∈ E and

update the messages in parallel. Let N = 103 be the maximum number of iterations. Let ϵ = 10−5

be a threshold that indicates when the messages have sufficiently converged. In damped belief

propagation, we use the damping factor α = 0.9 to prioritize convergence since we consider difficult

problem instances. In convex combination belief propagation, we use the damping factor γ =

0.49 and set the weights uniformly. Since our continuation algorithm utilizes the message passing

operators from damped and convex combination belief propagation, we use the same damping

factors and weights in the homotopy operator.

We compare the performance of our algorithm to another homotopy continuation algorithm

referred to as self-guided belief propagation (see [51]). The main idea behind this method is to

use the time parameter to gradually incorporate the pairwise potentials. We also analyze the

performance of these algorithms with respect to different time stepping schemes. In this section, a

fixed time stepping scheme is used in both algorithms. Then we provide a side-by-side comparison

of using fixed versus adaptive time stepping scheme in Section 6.5.

6.4.2 Varying the Coupling Factor

Belief propagation is known to fail when the corresponding system of equations has multiple fixed

points with some being attractive while others being repulsive. In this case, the dynamics of message

passing are often unstable for any damping factor. We can simulate this scenario by sampling the

coupling factors λij from a distribution centered about zero. As the magnitude of the coupling

factors increases, the system becomes more unstable as the repulsive and attractive forces intensify.

We consider models where the coupling factors are sampled from a uniform distribution where

λij ∼ Unif(−σ, σ) with σ ≥ 0. In this experiment, the magnitude of σ is varied from 0 to 5 with

increments of ∆σ = 0.5. For each value of σ, we generate 100 Markov random fields by sampling

λij ∼ Unif(−σ, σ). In addition, we consider models where the underlying graph is a complete

125

graph and an Erdös-Renyi graph in which pairs of nodes are connected by an edge with probability

p = 0.5.

In this experiment, we compare the performance of the homotopy continuation algorithms with

the fixed time step dt = 0.1. The performance of each algorithm is determined by the accuracy of the

resulting beliefs, runtime, and rate of convergence or average stopping time (depending on whether

the algorithm uses continuation). The runtime is measured by the number of iterations until

convergence for damped and convex combination belief propagation. In the case of the continuation

algorithms, the runtime is the average number of iterations until the algorithm stops. We show the

results of this experiment in terms of these performance metrics in Figures 6.6 and 6.7.

Figure 6.6: Erdos-Renyi Graphs with p = 0.5

126

Figure 6.7: Complete Graphs

6.4.3 Varying the Graph Connectivity

Belief propagation is also known to either fail to converge or return a poor approximation when

the topology of the graph is complex. In particular, the performance of the algorithm suffers

when the graph contains cycles because this structure creates message passing feedback loops. In

this experiment, we compare the performance of the belief propagation algorithms while gradually

increasing the connectivity of the graph.

We consider Markov random fields where the underlying graph is an Erdös-Renyi random graph.

The edge appearance probability p is varied from 0 to 1 with increments of ∆p = 0.1. For each

value of p, we obtain 100 problem instances by generating an Erdös-Renyi graph and sampling

127

λij ∼ Unif(−5, 5) for each problem instance. Similar to the previous experiment, we use the fixed

time step dt = 0.1 in the homotopy continuation algorithms. Lastly, the results of this experiment

in terms of the previously defined performance metrics are shown in Figure 6.8.

Figure 6.8: Erdos-Renyi Graphs with p = 0.5

6.5 Performance Enhancement

In this section, we present numerical techniques that enhance the performance of the homotopy

continuation algorithm in terms of the accuracy and runtime. We describe a series of experiments

that compare the performance of our algorithm with a fixed versus adaptive time stepping routine

in Section 6.5.1. Then Section 6.5.2 discusses experiments where the algorithm is stopped at a time

128

steps t′ < 1. This practice significantly improves the runtime with a slight decrease in the accuracy

of the beliefs.

6.5.1 Adaptive Time Step

Determining a good step size is a potential challenge associated with any homotopy continuation

algorithm. The method is more likely to reach a time close to t = 1 when the step size is small.

However, there is often a trade-off with the runtime because a large number of iterations may be

required. Even if the algorithm converges quickly at each time step, the total number of iterations

can still be very large. For example, when the step size is dt = 10−n, the number of iterations is

bounded below by 10n.

The main purpose of an adaptive time stepping routine is to obtain good results without explic-

itly determining an optimal fixed step size. The results in the previous section were obtained with

a good step size, which is determined by repeatedly running the algorithm with various time steps.

In this experiments, we use a step size that has been predetermined to be too big, then compare

the performance of the continuation algorithm with a fixed versus adaptive time stepping scheme.

Let dt = 0.25 be the initial time step for time stepping schemes. Let δ = 0.01 be the lower

bound on the time step in the adaptive time stepping routine. Now we repeat the exact same

experiment described in Section 6.6. The only difference is that we compare the performance of the

homotopy continuation algorithms with a fixed versus adaptive time stepping scheme. The results

of this experiment in terms of the previously defined performance metrics are shown in Figure 6.9.

129

Figure 6.9: Erdos-Renyi Graphs with p = 0.5

6.5.2 Stopping Early

Although our algorithm obtains a good approximation, these experiments highlight that one disad-

vantage of numerical continuation methods is that they may require a large number of iterations.

In this particular application, the runtime may suffer due to fixed point iteration becoming unsta-

ble when t ≈ 1. We address this potential issue with the simple solution of stopping early which

drastically reduces the runtime while still resulting in a good approximation.

In difficult problem instances where loopy belief propagation fails to converge, we have observed

that the number of iterations until convergence at each time step often grows exponentially as t→ 1

(see Figure 6.10). Meanwhile, the approximation error between the beliefs and true marginals

improves. Thus, there is often a trade-off between the approximation error and runtime when the

algorithm is applied to a difficult problem instance. In order to understand the nature of this trade-

off, we perform an experiment where the stopping time τ is varied from 0.5 to 1 with increments

of dτ = 0.05.

We generated 100 Markov random fields with each consisting of a distinct Erdös-Renyi graph

with 10 nodes and potentials λij ∼ Unif(−5, 5). Then we performed our homotopy continuation

algorithm in addition to convex combination and damped belief propagation as a comparison. We

measure the performance of the algorithm by tracking the total number of iterations that were

130

required to reach each stopping time between 0.5 and 1. In addition, we also compute the mean

square error and convergence rate (i.e. the percentage of runs that reach a given stopping time).

Figure 6.10: Erdos-Renyi Graphs with p = 0.5

The nature of this relationship is shown in Figure 6.10. We see that the approximation error

gradually decreases, while the runtime exponentially increases. Thus, stopping early drastically

improves the runtime, which only resulting in a marginally less accurate approximation

131

6.6 Max-Product Algorithm

In this section, we present the max-product version of the homotopy continuation algorithm. The

message passing operators in this algorithm are defined analogously. In addition, the main results

from the previous section hold in this version of the algorithm.

Definition 6.6.1. The message passing operator Q :M →M in max-product belief propagation

with damping is given by

Qµ = (1− α)Pµ+ αµ

with α ∈ [0, 1].

Definition 6.6.2. The message passing operator H̃ : M × [0, 1] → M in max-product belief

propagation with homotopy continuation is

H̃(µ, t) = (1− t) Q̂µ+ tQµ

with t ∈ [0, 1].

The continuation algorithm is performed in the exact same manner as the sum-product version.

The messages are initialized with µ(0) ∈ M and the time parameter is set to t = 0. Then fixed

point iteration is performed with the homotopy operator H̃(·, t). Similar to the sum-product case,

an underlying assumption of this algorithm is that the fixed points form a continuous path as t is

varied from 0 to 1. The same result holds in this section by using that H̃ is also a bounded and

continuous operator.

Corollary 6.6.3. The solution set of the fixed point equation H̃(µ, t) = µ form a continuous path

as t is varied from 0 to 1.

Proof. This result follows by adapting the arguments provided in Theorems 6.3.1 and 6.3.3.

132

6.7 Conclusion

In this chapter, we present a new belief propagation algorithm that utilizes convex combination

belief propagation and homotopy continuation in a unified framework. Convex combination belief

propagation obtains an initial approximation, then homotopy continuation improves the accuracy

of this approximation. This algorithm is supported by several theoretical results, the first being

that convex combination belief propagation is guaranteed to converge to a unique fixed point

on arbitrary graphical models. This result ensures that the homotopy continuation algorithm is

guaranteed to converge to a unique initial solution on the first time step. In addition, there is a

continuous path of fixed points that emanates from this initial fixed point and converges to a fixed

point of traditional belief propagation. We have also shown that this algorithm obtains a good

approximate across many difficult problem instances.

One important future direction is to understand the convergence behavior of this algorithm.

This is a complex issue because it is also dependent upon the magnitude of the time step. Although

the algorithm converges at a much higher rate than traditional belief propagation, there is no

guarantee of convergence. In the cases when the algorithm fails to converge, it generally reaches a

time step very close to 1. Thus, we believe that there may exist certain graphical models (containing

loops) in which the algorithm is guaranteed to converge.

133

CHAPTER 7

Application: Approximate Inference

in the QMR Network

This chapter discusses using belief propagation with homotopy continuation to perform inference

in a medical diagnostic network called the QMR network. Section 7.1 broadly introduces the QMR

network, then provides a concise overview of related works. Then Section 7.2 focuses on a technical

introduction to the QMR network and the inference problem. In Section 7.3, we discuss using

belief propagation to perform inference and present numerical experiments in Section 7.4. Lastly

we provide local stability analysis in Section 7.5.

7.1 Introduction

Diagnostic inference is both a difficult and important problem that has attracted much attention in

the last few decades. The ultimate goal is to design an intelligent system that assists in diagnosing

patients who present with a set of observed findings (or symptoms) in a clinical setting. The com-

putational engine behind this system must incorporate both statistical and expert knowledge into

a systematic framework that performs inference. Bayesian networks are a natural fit for this task

due to their ability to encode causal relationships and statistical information into a computational

model. In addition, they are highly interpretable which is a vital quality in this type of medical

application.

134

This chapter focuses on a medical diagnostic network called the Quick Medical Reference (QMR)

network. This Bayesian network models relationships between diseases and findings on a directed

bipartite graph that consists of a set of disease and finding nodes. The edges are directed from

disease to finding nodes in order to reflect the causal relationship between these variables. The QMR

network is a probabilistic model where each disease and finding pair has a corresponding conditional

probability that represents the likelihood of the disease causing the finding to be present. This

probability captures that findings may be highly correlated with certain diseases. The inference

task is then to estimate the conditional probability of individual diseases being present given a set

of observed findings. The outcome of this calculation is a probabilistic explanation of the cause

behind the observed findings. Exact inference is computationally intractable because this problem

has been proven to be NP-hard [16]. Heckerman (1989) used the unique structure of the QMR

network to derive a more efficient method called the quickscore algorithm that performs exact

inference [36]. However, this algorithm is limited to small cases because the runtime is exponential

in the number of positive findings.

Due to the computational complexity of this problem, most efforts have centered around devel-

oping approximation algorithms. There was progress made on this problem in the early 1990s by

using more classical techniques such as stochastic simulation and heuristic search-based methods.

Shwe and Cooper (1990) developed an algorithm known as “likelihood-weighted sampling” that

uses importance sampling to estimate the marginals of each disease [73]. Sampling-based methods

are notoriously slow since determining effective proposal distributions is often difficult [71]. Shwe

and Cooper improve the convergence rate of their method by using Markov blanket scoring and

self-importance sampling where samples are drawn from an adaptive proposal distribution. Henrion

(1991) developed a search-based algorithm that reduces the search space by using heuristics such

as hypotheses with more than a few diseases are improbable and powerful pruning rules applica-

ble to multi-layer networks [38]. Although search-based methods obtain excellent results in small

networks, this approach generally doesn’t scale well to large networks.

More modern approaches to this problem have focused on methods that are applicable to large-

scale networks. Jaakola and Jordan (1999) developed a variational method that uses convex duality

to obtain upper and lower bounds on the distribution of interest (see [45], [46]). Their experiments

135

show that their method is more accurate and converges much faster than likelihood-weighted sam-

pling. Yu et al. (2007) used a Lagrangian relaxation algorithm that involves minimizing an upper

bound via sub-gradient descent (see [87], [88]). Their method is fast and applicable to very large

cases (e.g. 1000 positive findings). Murphy et al. (2013) published an empirical study on ap-

proximate inference with loopy belief propagation where they evaluate its performance on several

difficult inference tasks, including a large-scale QMR network with 600 diseases and 4000 findings

[62]. They found that the algorithm computed very accurate estimates in every problem except

two cases where loopy belief propagation oscillated.

The developments in this chapter are most closely related to the work by Murphy et al. Sim-

ilarly, we also use belief propagation to perform inference, but this work differentiates itself by

incorporating homotopy continuation. We present numerical experiments which show that the al-

gorithm obtains accurate estimates and converges on every problem. Prior to performing these

experiments, we did not anticipate that the algorithm would always converge. This observation has

lead to a conjecture that this inference problem may have additional structure which guarantees

that belief propagation with homotopy continuation always converges. At the end of this chapter,

we include a section on local stability analysis that provides some insight into this behavior. Our

initial our analysis focuses on the structure of the Jacobian which leads to an understanding of how

the topology of the graph affects stability. Then we analyze the contents of the Jacobian which

leads to an understanding of how the parameters in the QMR network affect the stability.

7.2 QMR-Network

This section presents the QMR network and describes the inference task. In Sections 7.2.1 and

7.2.2, we formally define the QMR network and describe the underlying assumptions in this model.

Section 7.2.3 introduces the inference task and motivates the need for approximation algorithms.

In addition, we provide a concrete example of a simple QMR network that models a few diseases

and findings.

136

7.2.1 Probabilistic Framework

The QMR network is a directed bipartite graph G = (D ∪ F , E), where D = {1, . . . , n} is a set

of disease nodes and F = {n + 1, . . . ,m} is a set of finding nodes. The set E is a collection of

directed edges (i, j) ∈ E such that i ∈ D and j ∈ F , where the direction of the edge reflects that

findings are dependent upon diseases. Each disease i ∈ D has a set of children nodes denoted

by Ch(i) = { j : (i, j) ∈ E } ⊂ F . Similarly, each finding j ∈ F has a set of parent nodes

Pa(j) = { i : (i, j) ∈ E } ⊂ D.

Figure 7.1: Example of an arbitrary QMR network. Orange circles represent dis-
eases and blue circles represent findings. Edges are directed from diseases to findings

as indicated by the arrows.

Let D = (D1, . . . , Dn) and F = (Fn+1, . . . , Fm) be random vectors that represent the set of

disease and finding nodes, respectively. Let Ω = {0, 1} be the set of outcomes of each random

variable. Assume the convention that Di = 1 (or Fi = 1) indicates the presence of a disease (or

finding), while Di = 0 (or Fi = 0) indicates the absence of a disease (or finding). A configuration

of the random vector is denoted by (d, f) = (d1, . . . , dn, fn+1, . . . , fm) ∈ Ωm. The likelihood of a

configuration is given by the joint distribution

P(F = f,D = d) =
1

Z

∏
i

P(Fi = fi|Pa(D))
∏
j

P(Di = dj).

There are a number of underlying assumptions in this model that allow the joint distribution to

be written in this form. Before discussing these assumptions, we present a concrete example of a

simple QMR network that we develop throughout this section.

137

Example 7.2.1. Let G = (D ∪ F , E) be a bipartite graph with D = {1, 2} and F = {3, 4, 5} as

shown in Figure 7.2. The cold and flu are represented by disease nodes 1, 2 ∈ D, respectively.

When a patient has the flu, some possible findings (in this model) include a high temperature, sore

throat and runny nose which are represented by finding nodes 3, 4, 5 ∈ F , respectively. Inference

is challenging because different diseases can cause similar findings. In this example, we see that a

patient with a cold may also present with a sore throat and runny nose.

Figure 7.2: Simple QMR network from Example 7.2.1.

7.2.2 Assumptions in the Model

There are several underlying assumptions in this model whose purpose is to make probabilistic

inference tractable.

1. Marginal Independence. The distribution over diseases is

P(D = d) =
n∏

i=1

P(Di = di). (7.1)

2. Conditional Independence. The conditional distribution over findings is

P(F |D) =

m∏
i=n+1

P(Fi = fi|D = d). (7.2)

Both of these assumptions are inherent to the bipartite structure of the network. For example, the

marginal independence assumption is implied by the lack of edges between disease nodes. This as-

sumption drastically reduces the complexity of the model since the probability of any configuration

of the random vector D can be computed from individual disease priors.

138

Although the conditional independence assumption also simplifies the joint distribution, the

state of each individual finding is conditioned upon the state of the random vector D. This im-

poses a computational challenge because we must specify 2n distributions corresponding to each

finding node. To overcome this limitation, Pearl and Kim (1983) introduce the notion of causal

independence in which the parents of a finding contribute independently to its state (see [37], [48]).

3. Causal Independence. This relationship is expressed with the leaky-OR model,

P(Fi = 0|D = d) = P(Fi = 0|D = 0)
∏

j∈Pa(i)

P(Fi = 0|Dj = dj)

= (1− pi0)
∏

j∈Pa(i)

(1− pij)dj . (7.3)

The leak probability pi0 := P(Fi = 1|D = 0) is the probability that a finding is caused by a means

other than a disease included in the network. The inhibit probability (1− pij) := P(Fi = 0|Dj = 1)

is the probability that a finding is absent despite disease j ∈ D being present. Under this set of

assumptions, the probability of any configuration of the random vector can be computed from the

disease priors, conditional probabilities pij , and leak probabilities pi0.

Example 7.2.2. Next we further develop the QMR network from Example 7.2.1 by defining the

disease priors, conditional probability table, and leak probability. Let P(Di = 1) = 10−3 be the

disease prior for all i ∈ D and let pi0 = 0.01 be the leak probability for all i ∈ F . Lastly, the

conditional probabilities pij are shown in the conditional probability table (CPT) shown in Figure

7.3.

Figure 7.3: Conditional Probability Table (CPT)

139

7.2.3 Probabilistic Inference

Probabilistic inference in the QMR network involves computing posterior marginal distributions,

which refer to the marginal distributions conditioned on some observed findings. Let F+ and F− be

vectors that consist of observed positive and negative findings. In general, the number of observed

findings tends to be much smaller than the total number of findings in the network. Unobserved

findings have no effect on the posterior marginals, so these nodes are discarded from the network

prior to performing inference.

The main objective is to compute the posterior marginal distribution of each disease. These

quantities can be computed as

P(Di = di |F+, F−) =
1

Z

∑
dD\i

P(D = d |F+, F−)

∝
∑
dD\i

P(F+ |D = d)P(F− |D = d)
n∏

i=1

P(Di = di).

Although this is a difficult computational objective, there are some simplifications that can be

made by exploiting the structure of the leaky-OR model. In this model, a finding is negative if

none of its parent diseases cause it to be present and the leak does not cause it to be present. This

implies that P(F−|D) and P(D) both factorize over the diseases (see Equations (7.1) and (1.3)),

so the negative evidence can be absorbed into the disease priors. This simplification can be carried

out in linear time by performing the update

P(Di)← P(Di|F−) (7.4)

with normalization.

For the remainder of this chapter, we assume that negative evidence has already been absorbed

into the disease priors. In this case, the main objective is to compute

P(Di = di |F+) ∝
∑
dD\i

P(F+ |D = d)
n∏

i=1

P(Di = di). (7.5)

This calculation involves summing over all possible configurations of the disease vector which grows

140

exponentially in the number of diseases. However, this objective can be further simplified by

exploiting factorizations within this expression. Heckerman used this approach to develop an exact

inference method called the quickscore algorithm. Although the runtime of quickscore is exponential

in the number of positive findings, this is a significant improvement over Equation 7.5 because the

number of positive findings is generally significantly less than the number of diseases in the network

[36]. However, the quickscore algorithm is limited to roughly 20 positive findings.

Example 7.2.3. Next we perform exact probabilistic inference in the QMR network from Examples

7.2.1 and 7.2.2. Let F4 = 1 and F3 = 0 be observed findings, then we use the quickscore algorithm

to compute the marginals shown in Figure 7.4.

Figure 7.4: On the left, we see an illustration of observed findings from a QMR
network. The blue node indicates that the patient does not have a high temperature
(i.e. negative finding). The red node indicates that the patient has a sore throat
(i.e. positive finding). The node corresponding to a runny nose is left uncolored to
represent that it is unobserved. On the right, we see the exact posterior marginals

computed with the quickscore algorithm.

7.3 Efficient Belief Propagation

Next we discuss using belief propagation to perform approximate inference in the QMR network.

Section 7.3.1 describes transforming this network into a factor graph, then Sections 7.3.2 and 7.3.3

present efficient message passing operators for this application.

141

7.3.1 Factor Graph Model

Next we transform this network into a factor graph, then perform inference [23]. This transforma-

tion involves creating a factor node i′ corresponding to each node i in the Bayesian network. This

factor node i′ is then connected to node i and the parents of node i (see Figure 7.5).

Let G = (V ∪K,E) be an undirected bipartite graph with a set of variables nodes V and factor

nodes K. We assume that G is the equivalent factor graph representation of the QMR network

G = (D ∪ F , E). Under this assumption, the variables nodes are V = D ∪ F and factor nodes are

K = (D ∪ F)′, where the notation X ′ denotes a copy of the set X. The set E is a collection of

undirected edges {i, g} ∈ E such that i ∈ V and g ∈ K.

Example 7.3.1. Let G = (D∪F , E) be the QMR network from Examples 7.2.1-7.2.3 in the previous

section. Let G = (V ∪ K,E) be the equivalent factor graph representation, where V = {1, . . . , 5}

and K = {1′, . . . , 5′}. Each factor node i′ ∈ K is a copy of node i ∈ D ∪ F from the original

Bayesian network. These nodes are connected by an edge so that {i, i′} ∈ E. In addition, there is

also an edge drawn between i′ and the parents of node i so that
{
{i′, j} : j ∈ Pa(i)

}
⊂ E.

Figure 7.5: On the left, we see the QMR network from the previous section. On
the right, we see an equivalent factor graph representation of this network.

In order to fully transform the QMR network into a factor graph, we must also specify the

potential functions which compose the joint distribution. Due to the structure of the joint distri-

bution (see Equation 7.2.1), this model consists of two types of potential functions, namely those

corresponding to diseases and findings. Let i′ ∈ K is a factor node that corresponds to a finding,

142

then the potential function Ψi′ is given by

Ψi′
(
fi, dD(i′)

)
=


(1− pi0)

∏
j∈D(i′)

(1− pij)dj , if fi = 0

1− (1− pi0)
∏

j∈D(i′)

(1− pij)dj , if fi = 1

where D(i′) = {i : i ∈ N (i′) ∩ D} is the set of disease nodes directly connected to i′ ∈ K. When

the factor j′ ∈ K corresponds to a disease, the potential function is given by

Ψj′(dj′) = P(Dj′ = dj′).

7.3.2 Traditional Message Passing

Although belief propagation dramatically improves the computational complexity of performing

inference, it has a bottleneck that can be problematic. When the factor i′ corresponds to a finding,

the message passing operator S contains a sum over all possible states of the vector xN (i′) with

i′ ∈ K. In the case of the QMR network, the complexity of this operation is O
(
2N (i′)

)
since each

random variable may be either positive or negative. However, we can derive more efficient message

passing equations by exploiting the structure of the leaky-OR model.

Proposition 7.3.2. Let i′ ∈ K be a factor node which corresponds to the finding node i ∈ V , then

the message passing operator S can be simplified as

(Sν)i′→i(0) = (1− pi0)
∏

j∈D(i′)

(
1− pijνj→i′(1)

)
(Sν)i′→i(1) = 1− (Sν)i′→i(0).

Proof. See appendix.

Proposition 7.3.3. Let i′ ∈ K be a factor node which corresponds to the finding node i ∈ V .

Assume that node j ∈ N (i′) corresponds to a disease node, then the message passing operator S

143

can be simplified as

(Sν)i′→j(0) = κ νi→i′(1)

(
1− (1− pi0)

∏
k\j

(
1− pikνk→i′(1)

))

(Sν)i′→j(1) = κ νi→i′(1)

(
1− (1− pi0)(1− pij)

∏
k\j

(
1− pikνk→i′(1)

))
,

where κ is used to denote the normalization factor.

Proof. See appendix.

Figure 7.6: Illustration of messages sent by a factor that corresponds to a finding.
This factor node sends messages to the corresponding variable node and the neighbor-
ing disease nodes as shown on the left and right. The indices used in this illustration

match the notation in Propositions 7.3.2 and 7.3.3.

7.3.3 Convex Combination Message Passing

Next we present two simplifications of the message passing operator Ŝ. These simplifications are

analogous to the ones introduced in Propositions 7.3.2 and 7.3.3. Similarly, the runtime can also

be reduced from being exponential to linear in the size of a neighborhood of the factor.

Proposition 7.3.4. Let i′ ∈ K be a factor node which corresponds to the finding node i ∈ V , then

the message passing operator Ŝ can be simplified as

(Ŝν)i′→i(0) = (1− pi0)
∏

j∈D(i′)

(
1− pijνj→i′(1)

wj→i′
)

(Ŝν)i′→i(1) = 1− (Ŝν)i′→i(0).

144

where
∑

j∈N (i′)

wj→i′ = 1 for all i′ ∈ K and i ∈ N (i′).

Proof. This result holds by adapting the argument used to prove Proposition 7.3.2.

Proposition 7.3.5. Let i′ ∈ K be a factor node which corresponds to the finding node i ∈ V .

Assume that node j ∈ N (i′) corresponds to a disease node, then the message passing operator Ŝ

can be simplified as

(Ŝν)i′→j(0) = κ νi→i′(1)

(
1− (1− pi0)

∏
k\j

(
1− pikνk→i′(1)

wk→i′
))

(Ŝν)i′→j(1) = κ νi→i′(1)

(
1− (1− pi0)(1− pij)

∏
k\j

(
1− pikνk→i′(1)

wk→i′
))

where κ denotes a normalization factor and
∑

k∈N (i′/j)

wk→i′ = 1 for all i′ ∈ K and j ∈ N (i′)\i.

Proof. This result holds by using the argument used to prove Proposition 7.3.3.

In Chapter 6, we discuss the limitations of convex combination belief propagation, namely that

the accuracy may suffer on certain problems. The QMR network is an extreme example where this

algorithm returns very inaccurate approximations. In fact, this is the exact problem that inspired

the development of the homotopy continuation algorithm. Next we provide an example of a simple

QMR network and inference problem where convex combination belief propagation returns a very

poor approximation.

Example 7.3.6. Let G = (D∪F , E) be a QMR network with D = {1, . . . , 5} and F = {6, . . . , 25}.

The edges are generated randomly so that a given disease and finding are connected with probability

0.5. Let P(Di = 1) = 10−3 be the disease prior and let pj0 = 0.01 be the leak probability. The

conditional probabilities associated to the findings are sampled as pji ∼ Unif(0, 1).

To generate a problem, we do not set the observed findings by sampling from the joint distri-

bution. All of the findings would be negative due to the small disease priors, and inference would

be trivial. Instead we randomly select two diseases to be positive, then generate positive and nega-

tive findings by sampling the conditional distributions. Using this methodology, we obtain a sample

where the hidden state of the disease vector is D = (0, 0, 0, 1, 1) and the observed findings consist

of 10 positive and 5 negative findings.

145

Figure 7.7: On the left, we see the beliefs obtained with damped and convex com-
bination belief along with the true marginals. On the right, we see the ROC curve
corresponding to each algorithm. Damped belief propagation (dmp BP) provides a
good approximation and accurately predicts the hidden state of the diseases. In con-
trast, convex combination belief propagation (cc BP) obtains a poor approximation.
It is interesting to see that although the beliefs are a poor approximation, the corre-

sponding ROC curve is optimal.

We perform inference by transforming the network into a factor graph, then apply both damped

and convex combination belief propagation to this example. In convex combination belief prop-

agation, we use γ = 0.49 and set the weights uniformly. We used the initial set of messages

µ
(0)
g→i = (1, 1) and perform fixed point iteration with Θ̂ and Θα where α = 0.5. In order to deter-

mine the accuracy of the resulting beliefs, we use quickscore to compute the true marginals. The

results are shown in Figure 7.7, which shows the belief of each disease being positive (i.e. bi(1) for

all i ∈ D).

Although convex combination belief propagation fails in certain settings, the algorithm re-

deems itself by being a vital component of the homotopy continuation algorithm. Despite convex

combination belief propagation returning very poor results on the QMR network, the homotopy

continuation algorithm has exceptional performance on this inference task. This algorithm obtains

significantly more accurate results that convex combination belief propagation and exhibits much

better convergence properties than traditional belief propagation. In fact, we conjecture that belief

propagation with homotopy continuation may be guaranteed to converge on this problem. This

conjecture is based on the experimental results in the next section.

146

7.4 Experiments

Next we describe a series of experiments that compare the performance of the three belief propa-

gation algorithms discussed in this thesis. We apply each algorithm to a large number of problems,

then evaluate the results with several performance metric. Each experiment is designed to push

the limits of damped belief propagation, while also providing insight on how the parameters affect

the inference task.

7.4.1 Experimental Settings

The main idea behind these experiments is to vary some parameter which influences the difficulty

of performing inference. In order to maintain a controlled experiment, every parameter (except the

one being varied) is kept constant across all problems. The purpose of this section is to describe

how problems are generated and define the performance metrics used to evaluate the algorithms.

Problem Generation

Let G = (D ∪ F , E) be a directed bipartite graph with the vertex sets D = {1, . . . , 100} and

F = {101, . . . , 300}. The edge set E is generated by connecting any given i ∈ D and j ∈ F with

probability p = 0.5. The number of disease and finding nodes are kept constant in each problem,

whereas edges are randomly generated for every problem. Each Bayesian network G is transformed

into a factor graph G = (V ∪K,E) in order to perform belief propagation.

The disease priors are initialized as P(Di = 1) = 10−3 for all i ∈ D. Let pj0 = 0.01 be the leak

probability for all j ∈ F . Let pji ∼ Unif(0.5, 1) be the conditional probability associated with each

disease and finding pair. These probabilities are then used to generate the findings corresponding

to a problem. We do not set the findings by directly sampling from the joint distribution because

all of the findings would be negative due to the small disease priors. Instead we randomly select

two diseases to be positive, then generate findings by sampling the conditional distributions.

Let N+ and N− be the number of observed positive and negative findings. N+ must be bounded

because quickscore is used to compute the true marginals for each problem. Since this algorithm

becomes unstable when N+ > 20, the number of observed positive findings is limited to N+ = 18.

147

Although the observed negative findings do not impose a computational challenge, they do influence

the performance of belief propagation. Inference becomes more trivial as the number of observed

negative findings increases. Since we are interested in difficult problem instances, the number of

observed negative findings is limited to N− = 10.

Belief Propagation Parameters

For each belief propagation algorithm, we use the initialization µ
(0)
g→i = (1, 1) and update the mes-

sages in parallel. Let M = 103 be the maximum number of iterations. Let ϵ = 10−2 be a threshold

that indicates when the messages have sufficiently converged. In damped belief propagation, we

use the damping factor α = 0.9 to prioritize convergence over runtime since we consider difficult

problems. In convex combination belief propagation, we use γ = 0.49 and set the weights uniformly.

Since our continuation algorithm utilizes the message passing operators from damped and convex

combination belief propagation, we use the same damping factors and weights in the homotopy

operator. Let dt = 0.1 be the time step used in the homotopy continuation algorithm.

Performance Metrics

The performance of each algorithm is determined by the accuracy of the beliefs, rate of convergence,

and average number of iterations until convergence. The accuracy of the beliefs is measured by

the Kullback–Leibler (KL) divergence and average top-10 accuracy. Given that each problem is

generated by two hidden diseases, we are interested in seeing whether the resulting beliefs can

identify which diseases generated the observed findings. The average top-10 accuracy is the rate at

which the beliefs corresponding to the hidden diseases are among the top-10 highest beliefs.

7.4.2 Varying Number of Negative Findings

It is well-known that small disease priors (typically on the order of 10−3) tend to cause damped

belief propagation to oscillate [62]. In this experiment, we use the number of observed negative

findings N− to indirectly vary the magnitude of the priors, as opposed to varying the interval

from which the priors are sampled. Given that negative findings are absorbed into the priors (see

Equation 7.4), a large number of negative findings results in smaller priors.

148

In this experiment, we vary N− from 0 to 20 in increments of ∆N− = 2. For each value

of N−, we generate 100 distinct problems where all other parameters were initialized with the

default settings described in Section 7.4.1. The performance of each belief propagation algorithm

is determined by using the metrics described in Section 7.4.1.

Figure 7.8: Convergence and run time of belief propagation algorithms

Figure 7.9: Accuracy of the belief propagation algorithms

The results shown in Figures 7.8 and 7.9 provide insight on how the inference task as a whole

is affected by the number of negative findings. As expected, the convergence rate of damped

belief propagation suffers as the number of negative findings increases. In conjunction, the runtime

149

increases linearly with respect to this parameter. It is surprising to see that both the runtime and

convergence rate of the homotopy continuation algorithm appear unaffected when this parameter

is significantly varied.

An interesting outcome of this experiment is the effect upon the KL divergence and average 10-

top accuracy. Given that belief propagation is more likely oscillate when there are a large number

of negative findings, it is not surprising that the KL divergences increase as the number of negative

findings increase. In contrast, the average top-10 accuracy improves as the number of negative

findings increases. Intuitively, this outcome makes sense because more observed findings provides

more useful information in determining which diseases generated the observation. This result is

interesting because approximating the marginals becomes more challenging, while inferring which

positive diseases generated the problem becomes more trivial.

7.4.3 Varying the Inhibit Probabilities

Next our aim is to understand how the inhibit probabilities affect the difficulty of the inference

task. Murphy et al. conjectured that small inhibit probabilities may cause oscillations in the QMR

network. The theory is that a problem with many positive findings would be very untypical in this

parameter regime. As a result, belief propagation may oscillate since determining a probabilistic

explanation is difficult.

We tested this hypothesis by varying the interval from which the inhibit probabilities were

sampled. Let m be an upper bound on the inhibits so that (1 − pij) ∼ Unif(0,m). In this

experiment, we vary m from 0.1 to 1 with increments of ∆m = 0.1. For each value of m, we

generate 100 distinct problems and carried out the experiment in the same manner as the previous

ones. The results of this experiment in terms of the performance metrics are shown in Figures 7.10

and 7.11.

150

Figure 7.10: Convergence and run time of belief propagation algorithms

Figure 7.11: Accuracy of belief propagation algorithms

The results of this experiment confirm the hypothesis posed by Murphy et al., namely that small

inhibit probabilities cause oscillations. Although this is a theory that may intuitively explain why

this phenomena occurs, this explanation lacks a mathematical basis. One outcome of this chapter

is that we relate the magnitude of the priors to the stability of belief propagation fixed points. We

show that small priors cause fixed points to be less likely to satisfy a local stability condition.

151

7.4.4 Varying the Connectivity of the Graph

Belief propagation is also known to either fail to converge or return a poor approximation when

the graph contains many cycles. In this experiment, we compare the performance of the belief

propagation algorithms while gradually increasing the connectivity of the graph. We generate

graphs with the Erdös-Renyi random graph model and vary the edge appearance probability p

from 0 to 1 in increments of ∆p = 0.1.

Figure 7.12: Convergence and run time of belief propagation algorithms

Figure 7.13: Accuracy of belief propagation algorithms

152

The results shown in Figures 7.12 and 7.13 confirm that loopy belief propagation is more likely

to fail on graphs with complex topology. In Figure 7.12, we see that the algorithm converged for

nearly all 100 problem instances when p < 0.6. As the edge appearance probability grows closer to

1, the algorithm rarely converges as expected. In contrast, we see that the homotopy continuation

algorithm converges on all 100 problem instances for every value of p. This outcome is surprising

since there is no theoretical guarantee that the algorithm converges.

The accuracy of the belief propagation algorithms is shown in Figure 14. As the edge appearance

probability increases, the KL divergence also increases for all of the algorithms. It is interesting to

see that although the continuation algorithm always converges, the KL divergence also increases

with respect to the edge appearance probability. We hypothesize that there are many fixed points

when p is large. Since the graph is very connected, there could be several highly probable ways

to explain the observed findings. As a result, we see that the top-10 accuracy decreases because

the algorithm converged to a fixed point which corresponds to an alternative explanation of the

observed findings.

7.5 Local Stability Analysis

The main objective of this section is to analyze the local stability of belief propagation fixed points

in the case of the QMR network. In Sections 7.5.3 and 7.5.4, our analysis focuses on the structure

of the Jacobian which leads to an understanding of how the topology of the graph affects stability.

Section 7.5.5 focuses on the contents of the Jacobian which leads to an understanding of how the

parameters in the QMR network affects stability.

7.5.1 Convergence Conjecture

The most surprising outcome of our numerical experiments is that belief propagation with homotopy

continuation converged1 on every problem. We have performed additional experiments on larger

networks in more difficult parameter regimes and observed the same convergence phenomena. These

1Note the homotopy continuation algorithm is said to converge if it converges on every time step, including the
final time step when t = 1.

153

results raise the question of whether the QMR network is a special case where our continuation

algorithm always converges.

Conjecture 7.5.1. Belief propagation with homotopy continuation is guaranteed to converge when

performing approximate inference in the QMR network.

This conjecture is interesting because our algorithm is almost certainly not guaranteed to con-

verge on arbitrary graphical models. In Chapter 6, we use this algorithm to perform approximate

inference in the spin glass models from statistical physics [33]. This graphical model is generally

used as a test case for alternative local message passing algorithms since loopy belief propagation

often oscillate on this problem. In our experiments with spin glass models, belief propagation with

homotopy continuation generally converges up to the time step t = 0.95, but the algorithm certainly

does not always converge or even reach the final time step. One possible explanation is that the

algorithm fails when it tracks a path of fixed points that becomes unstable. For our purposes, it is

important to distinguish between global versus local stability.

Definition 7.5.2. A fixed point x⋆ of an operator F : X → X is globally stable if F (n)(x0)→ x⋆

as n→∞ for any x0 ∈ X.

Definition 7.5.3. A fixed point x⋆ of an operator F : X → X is locally stable if there exists an

ϵ > 0 such that F (n)(x0)→ x⋆ as n→∞ for any x0 ∈ X such that ∥x⋆ − x0∥ < ϵ.

One possible explanation of Conjecture 7.5.1 is that belief propagation fixed points are locally

stable in the case of the QMR network. Under this assumption, numerical homotopy continuation

would converge (in theory) because this implies the existence of a small enough time step such that

the current approximate fixed point lies in the basin of attraction of a fixed point from the next

time step. It is possible that belief propagation fixed points are locally stable, but the experiments

in Section 7.4 suggest that the fixed points are not globally stable since damped belief propagation

did not always converge. Thus, our analysis focuses on local stability of belief propagation fixed

points.

154

7.5.2 Overview of General Approach

Our general approach is to consider belief propagation as a dynamical system, then utilize ideas from

the theory of dynamical systems to understand the stability of this system. From this perspective,

the conventional approach is to analyze the eigenvalues of the Jacobian of the operator. One

well-known result is that a belief propagation fixed point is locally stable if the Jacobian at this

point has all eigenvalues with modulus strictly smaller than one [60]. Conversely, a fixed point is

unstable if at least one eigenvalue has a modulus strictly greater than 1. In the case of damped

belief propagation, the stability criteria is much less strict as shown in Figure 7.14.

Figure 7.14: Eigenvalue spectrum of the Jacobian of the operator from loopy belief
propagation. Loopy belief propagation without damping is locally stable when all
eigenvalues are in the green region. Damped belief propagation is locally stable when
all eigenvalues lie in the green and yellow regions. Both algorithms are unstable when

the eigenvalues lie in the orange region2.

Although this approach (in theory) leads to a conclusive understanding of when a fixed point is

locally stable, this technique is difficult to apply to high-dimensional systems because the Jacobian

is also very high dimensional. In the case of belief propagation, the dimension of the Jacobian is

O(|E|), so this type of analysis is intractable. However, the unique structure of the QMR network

can be exploited to drastically simplify the Jacobian and computation of its eigenvalues. One of

the main results in this section is that this calculation can be reduced to computing eigenvalues of

2This figure was originally created by Christian Knoll in his PhD thesis [49].

155

a submatrix within the Jacobian with dimension O(|F+|), where |F+| is the number of observed

positive findings.

Our approach to obtaining this result is based upon a paper from 2012 by Martin, Lasgouttes,

and Furtlehner [60]. In this work, they study the local stability of belief propagation with multiple

fixed points. One of their main contributions is establishing a connection between the structure

of the Jacobian and topology of the graph underlying the model. We apply some of their ideas to

prove that the Jacobian consists of nested triangular matrices in the case of the QMR network.

This fact can then be leveraged to drastically reduce the complexity of computing its eigenvalues.

7.5.3 Oriented Line Graphs

Let L(G) = (V, E) be a directed graph referred to as the oriented line graph of the factor graph

G = (V ∪K,E). The vertex set is V := E, where node gi ∈ V corresponds to the edge {g, i} ∈ E.

The set E is a collection of directed edges in which gi is connected to hj if j ∈ N (g) with i ̸= j and

h ∈ N (j) with h ̸= g such that i, j, g, h ∈ V . Thus, the entries in the adjacency matrix A are

Agi
hj := 1{j∈N (g), j ̸=i}1{h∈N (j), h ̸=g}.

Oriented line graphs are a natural tool for studying stability because they provide an equivalent

graphical representation of the non-zero entries in the Jacobian. This is an important realization

because the non-zero entries play a critical role in determining when a fixed point is locally stable.

Each entry in the Jacobian of the operator Θ is a partial derivative of the form:

∂(Θ̂µ)g→i(xi)

∂µh→j(xj)
=

∂

∂µh→j(xj)

(
κ
∑
xN (g)

Ψg(xN (g))
∏

j∈N (g)\i

∏
f∈N (j)\g

µf→j(xj)

)
,

where {g, i}, {h, j} ∈ E and κ is a normalization factor. The partial derivative is non-zero if and

only if the message µh→j(xj) appears in the update (Θµ)g→i(xi). Due to the structure of the

message passing operator, the partial derivative being non-zero depends entirely on the topological

relationship between the edges {g, i}, {h, j} ∈ E in the factor graph or, equivalently, vertices

gi, hj ∈ V in the oriented line graph.

156

Observation 7.5.4. The partial derivative of the message passing operator Θ given by

∂(Θµ)g→i(xi)

∂µh→j(xj)
(7.6)

is non-zero if and only if j ∈ N (g) with i ̸= j and h ∈ N (j) with h ̸= g.

Figure 7.15: Edges involved in the partial derivative in Equation 7.6. This pair of
edges corresponds to a non-zero partial derivative and an edge in the oriented line

graph.

Topology of Oriented Line Graphs

The condition for the partial derivatives being non-zero is identical to the condition that specifies

when vertices in the oriented line graph are connected. Thus, we can determine the structure of

the Jacobian by equivalently analyzing the topology of this graph. One of the main results in this

section is that the oriented line graph has modular structure when the factor graph corresponds

to a QMR network. Note that we use the term modular to refer to a network that is composed of

distinct components (i.e. subgraphs). Modularity is a useful property because it can be leveraged

to prove that the Jacobian is a composition of nested triangular matrices. This is a useful property

of the Jacobian because it drastically reduces the complexity of computing eigenvalues.

Next we provide a concrete example of determining the oriented line graph of a simple QMR

network in order to describe its modular structure.

157

Example 7.5.5. Let G = (V ∪ K,E) be the factor graph3 of the QMR network from Example

7.3.1. In order to determine the oriented line graph of this factor graph, we first draw the vertices

of the oriented line graph which correspond to edges in the factor graph (see Figure 7.16).

Figure 7.16: On the left, we see the factor graph from Example 7.3.1. On the right,
we see the vertices of the corresponding oriented line graph. The colors represent the
correspondence between types of edges in the factor graph and types of vertices in

the oriented line graph.

The QMR network is a directed bipartite graph which leads to a multi-level factor graph consist-

ing of four levels of nodes. This structure translates to three distinct types of nodes in the oriented

line graph. Due to structure of the factor graph, it is only possible to have connections between

certain types of vertices in the oriented line graph, which results in the modular structure shown in

Figure 7.17.

3Note that we use different labels for the factor nodes.

158

Figure 7.17: Modular structure of an oriented line graph. Each cell contains a sub-
graph (or module) and the oriented line graph is the superposition of these subgraphs.

In this example, we see that the modular structure of the oriented line graph stems from the

QMR network being bipartite. The modularity of this graph results in an adjacency matrix that

consists of nested triangular block matrices, where the blocks are formed by the three different

types of vertices in the oriented line graph.

Definition 7.5.6. Let V1 be the set of vertices in an oriented line graph that correspond to edges

between disease variable nodes and factor nodes.

Definition 7.5.7. Let V2 be the set of vertices in an oriented line graph that correspond to edges

between disease variable nodes and finding factor nodes.

Definition 7.5.8. Let V3 be the set of vertices in an oriented line graph that correspond to edges

between finding variable nodes and factor nodes.

159

Note that the three different types of vertices are highlighted in Figure 7.16. The set V1

corresponds to the green vertices, V2 corresponds to orange, and V3 corresponds to blue.

Next we provide a simple example of computing the adjacency matrix of the oriented line graph

in Example 7.5.5. The purpose of this example is to show that the adjacency matrix consists

of nested triangular matrices. Although this is a simple example of a more general result to be

presented later, we start with this simple case because it illustrates most of the underlying ideas

without getting involved with the additional technicalities of the general case.

Example 7.5.9. Let L(G) = (V, E) be the oriented line graph from Example 7.5.5. The adjacency

matrix A of this graph is given by

A =



a1 b2 c1 d1 e1 d2 e2 c3 d4 e5

a1 0 0 0 0 0 0 0 0 0 0

b2 0 0 0 0 0 0 0 0 0 0

c1 0 0 0 0 0 0 0 0 0 0

d1 0 1 0 0 0 1 1 0 0 0

e1 0 1 0 0 0 1 0 0 0 0

d2 1 0 1 0 0 0 0 0 0 0

e2 1 0 1 0 0 0 0 0 0 0

c3 1 0 0 1 1 0 0 0 0 0

d4 1 1 1 0 0 0 1 0 0 0

e5 1 1 1 1 0 1 0 0 0 0


where the blue characters indicate how the matrix is indexed by the vertices of the graph. The solid

lines within this matrix specify a partition of A into four submatrices. Two of these submatrices

are identically zero, so the adjacency matrix is a lower triangular block matrix,

A =


V1 V2 ∪ V3

V1 0 0

V2 ∪ V3 A B

.

160

The dashed lines in the adjacency matrix specify a partition of B into four submatrices. Similarly,

B is also a lower triangular block matrix,

B =


V2 V3

V2 B11 0

V3 B21 0

.
This example shows that the adjacency matrix of the oriented line graph from Example 7.5.5

consists of two nested triangular matrices. Although this is a simple example, every oriented line

graph corresponding to the factor graph of a QMR network has this exact same structure. Next

we prove this fact by first defining the set Ek.ℓ which consist of edges from vertices in Vk to Vℓ with

k, ℓ ∈ {1, 2, 3}. Then we prove that only four of these subsets are non-empty, which then implies

that the oriented line graph of a QMR network is modular.

Definition 7.5.10. Let L(G) = (V, E) be an oriented line graph and define the set

Ek,ℓ =
{
{gi, hj} ∈ E : gi ∈ Vk, hj ∈ Vℓ

}
with k, ℓ ∈ {1, 2, 3}.

Lemma 7.5.11. Given any oriented line graph L(G) = (V, E) of the factor graph G = (V ∪K,E)

of a QMR network, then E1,1 ∪ E1,2 ∪ E1,3 ∪ E2,3 ∪ E3,3 = ∅.

Lemma 7.5.12. Given any oriented line graph L(G) = (V, E), then E = E2,1∪E2,2∪E3,1∪E3,2 and

there exists an L(G) in which these subsets are non-empty.

Proof. Lemma 7.5.11 implies the first equality and Example 7.5.5 provides an example of an oriented

line graph where these sets are non-empty.

Next we prove that the oriented line graph of a factor graph corresponding to a QMR network

consists of two nested triangular matrices. The main idea behind this argument is to define a

partition of the matrix, then use Lemmas 7.5.11 and 7.5.12 to show that certain submatrices in

this partition are always zero matrices. Note that the proof of this result bears a close resemblance

to Example 7.5.9.

161

Theorem 7.5.1. The adjacency matrix A of the oriented line graph of a factor graph corresponding

to a QMR network is a lower triangular block matrix with the form:

A =


V1 V2 ∪ V3

V1 0 0

V2 ∪ V3 A B

, (7.7)

where the blue characters specify the partition used to obtain this block matrix. B is also a lower

triangular block matrix with the form:

B =


V2 V3

V2 B11 0

V3 B21 0

. (7.8)

Proof. To begin, we define a partition of the adjacency matrix A in the exact same manner as

Example 7.5.5. Let the upper left block be indexed by V1×V1 and the lower right block be indexed

by (V2 ∪ V3) × (V2 ∪ V3). Given that E1,1 = ∅ by Lemma 7.5.11, this implies that the upper left

block is a zero matrix. Similarly, the upper right block must also be a zero matrix because both

E1,2 and E1,3 are also empty by Lemma 7.5.11. These two facts imply that the adjacency matrix

A must be lower triangular and that the identity in Equation 7.7 holds.

Given the partition of A, the submatrix B is indexed by the set (V2 ∪ V3) × (V2 ∪ V3). Now

we define a partition of B such that the upper left block B11 is indexed by V2 × V2 and the lower

right block is indexed by V3 × V3. Given that both E2,3 and E3,3 are empty by Lemma 7.5.11, the

upper and lower right blocks are zero matrices. The lower right block is also a zero matrix due to

the set also being empty. This implies that B is be lower triangular and also verifies the identity

in Equation 7.8.

7.5.4 Jacobian of Belief Propagation

The main objective of this section is to draw a direct connection between the structure of the

Jacobian and the adjacency matrix of the corresponding oriented line graph. This relationship

162

can then be leveraged to infer that the Jacobian also consists of nested triangular matrices which

significantly reduces the computational complexity of computing its eigenvalues.

Structure of Jacobian

Let JΘ denote the Jacobian of the message passing operator Θ from loopy belief propagation.

Recall that each entry in JΘ is a partial derivative of the form:

∂(Θµ)g→i(xi)

∂µh→j(xj)
=

∂

∂µh→j(xj)

(
κ
∑
xN (g)

Ψg(xN (g))
∏

j∈N (g)\i

∏
f∈N (j)\g

µf→j(xj)

)
.

The Jacobian is indexed the set of edges in the factor graph. One important realization is that the

Jacobian can be equivalently indexed by vertices in the corresponding oriented line graph. This

observation is useful because it draws a connection between the Jacobian JΘ and adjacency matrix

A of the corresponding oriented line graph.

The precise relationship between these matrices is that individual entries in the adjacency matrix

correspond to 2 × 2 blocks in the Jacobian. Given any entry Agi,hj in the adjacency matrix, this

entry corresponds to the following 2× 2 block in the Jacobian,

J{g,i},{h,j} :=


∂(Θµ)g→i(0)

∂µh→j(0)

∂(Θµ)g→i(0)

∂µh→j(1)

∂(Θµ)g→i(1)

∂µh→j(0)

∂(Θµ)g→i(1)

∂µh→j(1)

. (7.9)

Agi,hj acts as an indicator function that indicates whether the 2× 2 block in Equation 7.9 has any

non-zero entries. This relationship is useful because it implies that the 2× 2 block is a zero matrix

when Agi,hj = 0 due to Observation 7.5.4.

Lemma 7.5.13.

J{g,i},{h,j} =


∂(Θµ)g→i(0)

∂µh→j(0)

∂(Θµ)g→i(0)

∂µh→j(1)

∂(Θµ)g→i(1)

∂µh→j(0)

∂(Θµ)g→i(1)

∂µh→j(1)

Agi,hj .

Proof. This fact is a direct consequence of Observation 7.5.4.

163

The result in Lemma 7.5.13 draws an important connection between the structure of the Ja-

cobian and topology of the oriented line graph. There are two corollaries that follow from this

Lemma. First, each entry in the adjacency matrix can be identified with a 2 × 2 block in the

Jacobian. Since these matrices are indexed by equivalent sets, the Jacobian can be partitioned in

the exact same manner described in Theorem 7.5.1. Second, Lemma 7.5.13 draws a correspondence

between zero-valued entries in the adjacency matrix and zero submatrices in the Jacobian. This

relationship can be leveraged to prove that the Jacobian has the exact same nested triangular

structure as the adjacency matrix.

Theorem 7.5.2. The Jacobian JΘ of the operator Θ is a lower triangular block matrix with the

form

JΘ =

0 0

C D

 (7.10)

where D is also a lower triangular block matrix with the form

D =

D11 0

D21 0

 (7.11)

Proof. The Jacobian JΘ is indexed by the edges in the corresponding factor graph. Since edges in

the factor graph are identical to vertices in its oriented line graph, the Jacobian can equivalently

be indexed by these vertices. Let JΘ be partitioned into the 2× 2 block matrix given by

JΘ =

A B

C D

,
where A is a composition of 2× 2 submatrices indexed by V1 ×V1 and D is a composition of 2× 2

submatrices indexed by (V2 ∪ V3) × (V2 ∪ V3). Note that this is the exact same partition of the

adjacency matrix A used in Theorem 7.5.1.

The matrix A is composed of the submatrices J{g,i},{h,j} such that gi, hj ∈ V1. Given that

Agi,hj = 0 for all gi, hj ∈ V1 by Theorem 7.5.1, this implies that A is a zero matrix. In addition, B

is also a zero matrix by a similar argument. Thus, these two facts imply that the Jacobian is lower

block triangular and verify the identity in Equation 7.10.

164

Let be D partitioned into a 2× 2 block matrix such that

D =

D11 D12

D21 D22

,
whereD11 andD22 are compositions of 2×2 submatrices indexed by V2×V2 and V3×V3, respectively.

D12 andD22 are both zero matrices because the corresponding blocks in Equation 7.8 from Theorem

7.5.1 are zero matrices.

Eigenvalues of Jacobian

Next we prove the main result of this section, namely that the complexity of computing eigenvalues

of the Jacobian can be drastically simplified. The key to proving this result is to use that the

Jacobian is a triangular block matrix. In this case, the eigenvalues of the entire matrix are a subset

of eigenvalues of a submatrix within this matrix.

Definition 7.5.14. Let A be an n×n real-valued matrix and let σ(A) denote the set of eigenvalues

of this matrix.

Lemma 7.5.15. Let M be the following lower block triangular matrix

M =

M11 0

M21 M22

,
then σ(M) ⊂ σ(M11) ∪ σ(M22).

Corollary 7.5.16. σ(JΘ) ⊂ σ(D11) ∪ {0}, where D11 is the matrix from Theorem 7.5.2.

Proof. Given that JΘ is lower triangular, then σ(JΘ) ⊂ σ(D)∪{0} by Lemma 7.5.15. Similarly D

is also lower triangular and so σ(D) ⊂ σ(D11) ∪ {0}. These two facts imply the final result

σ(JΘ) ⊂ σ(D) ∪ {0} ⊂ σ(D11) ∪ {0}.

165

The main implication of this result is that the eigenvalues of the Jacobian can be obtained

by computing the eigenvalues of the submatrix D11. This is a significant improvement of the

computational complexity of this problem because the Jacobian has dimension O(|E|) and D11 has

dimension O(|F+|). For example, if we consider the QMR network that Murphy et al. discuss

in [62], then dim(D11) ≤ 2 · 20 since they consider problems in which quickscore is applicable. In

contrast, the dimension of the Jacobian is roughly dim(JΘ) ≈ 3640. Since their paper does not

report the number of edges between diseases and findings, we assume that any disease and finding

pair is connected with probability 0.1 in this estimate. In our experiments, this probability is 0.5

which leads to dim(JΘ) ≈ 13, 240 in this calculation.

7.5.5 Local Stability Condition

The objective of this section is to use Corollary 7.5.16 to derive a local stability condition. We

compute the entries of the Jacobian, then use Gershgorin’s circle theorem to obtain an upper bound

on the eigenvalues.

Computation of Jacobian

Next we compute the entries in the Jacobian. The

The main focus of this subsection is compute the Jacobian’s entries. Since the ultimate is goal to

bound the eigenvalues of the Jacobian, the calculation can be simplified by only computing entries

in the submatrix D11 since σ(JΘ) ⊂ σ(D11) by Corollary 7.5.16. Each entry in this submatrix is

given by

∂(Θµ)i′→j(xj)

∂µh′→ℓ(xℓ)
,

where i′, h′ ∈ K correspond to findings and j, ℓ ∈ V correspond to diseases.

The analysis can be simplified by making the following change of variables:

λi′→j := µi′→j(1)− µi′→j(0).

166

Some elementary algebraic manipulations show that the message update can be written as

λ̃i′→j :=

pij
∏
k\j

(
1− pikϕk→i′

)
2− (2− pij)

∏
k\j

(
1− pikϕk→i′

) ,

where ϕk→i′ :=
∏
g\i′

λg→k + 1

2
.

Under this change of variables, each entry in the Jacobian is given by

∂λ̃i′→j

∂λh′→ℓ
= cij pih

∏
k\{j,h}

(
1− pikϕk→i′

)
(7.12)

where cij is given by

cij =
pij(

2− (2− pij)
∏
k\j

(1− pikϕk→i′)
)2 . (7.13)

Stability Condition

Next we derive a local stability condition that provides insight on how the parameters of the

QMR network affect belief propagation fixed points. Recall that a belief propagation fixed point is

locally stable if the Jacobian at this point has all eigenvalues with modulus strictly less than one

[60]. Conversely, a fixed point is unstable if at least one eigenvalue has a modulus strictly greater

than 1 (see Figure 7.14).

Thus, we derive a local stability condition by obtaining an upper bound on the modulus of the

eigenvalues of the Jacobian. The key to deriving this bound is to use Gershgorin’s circle theorem

(see Theorem 7.5.3), which provides an upper bound on the eigenvalues of a matrix in terms of

sums over individual rows [29].

Theorem 7.5.3. Let A be an n× n matrix with entries denoted by aij. Then the eigenvalues of

A lie within at least one of the Gershgorin discs D(aii, Ri) = {x ∈ C : |x− aii| < Ri}, where Ri is

given by

Ri =
∑
i ̸=j

|aij |.

167

Proof. See [29] for the proof.

Now this theorem can be immediately applied to the submatrix D11. One important detail

is that all of the diagonal entries of D11 are zero because the factor graph does not contain any

self-loops.

Lemma 7.5.17. Let cij be the constant in Equation 7.13, then cij ≤ 1.

Proof. Let αkj =
∏
k\j

(1− pikϕk→i′) so that

cij =
pij(

2− (2− pij)αkj

)2 .
The denominator of this expression is bounded below by

(
2− (2− pij)αkj

)2
= 4− 2(2− pij)αkj + (2− pij)2αkj

≥ 4− 2(2− pij) + (2− pij)2αkj

= 2pij + (2− pij)2α2
kj .

Consider the case when pij ≥ 1/2, then the denominator can be further bounded below by

2pij + (2− pij)2α2
kj ≥ 1 + (2− pij)2α2

kj ≥ 1.

=⇒ cij ≤ pij ≤ 1 if pij ≥
1

2
.

In the case when pij < 1/2, the desired inequality holds by

2pij + (2− pij)2α2
kj ≥ 2pij

=⇒ cij ≤
pij
2pij

≤ 1

2
if pij <

1

2
.

168

Theorem 7.5.4. Let µ be a belief propagation fixed point, then this fixed point is locally stably if

max
i′∈F+

max
j∈D(i′)

{
cij

∑
h∈F(j)

pih
∏

k\{j,h}

(
1− pikϕk→i′

)}
< 1 (7.14)

where F(j) ⊂ K denotes the set of findings connected to j and cij ≤ 1.

Proof. This statement holds by applying Theorem 7.5.3 to the Jacobian computed in the previous

section. Then Lemma 7.5.17 proves that cij ≤ 1

169

APPENDIX A

Efficient Message Passing Equations

This appendix includes a derivation of efficient belief propagation message passing equations that

can be used to perform inference in the QMR network.

Lemma A.0.1. Let f(x) = (f1(x1), . . . , fn(xn)) be a vector-valued function with fi : {0, 1} → [0, 1]

and assume that fi(0) + fi(1) = 1 for all i = 1, . . . , n. Then

∑
x∈P(n)

n∏
i=1

fi(xi) =
n∏

i=1

∑
xi

fi(xi) = 1,

where P(n) denotes the power set of binary sequences with length n.

Proof. We use induction to prove this claim. The base case when n = 1 holds trivially, so assume

that the claim is true in the case when f is an n-dimensional vector. Then the inductive step holds

by

∑
x∈P(n+1)

n+1∏
i=1

fi(xi) =
∑

x∈P(n+1)
xn+1=0

n+1∏
i=1

fi(xi) +
∑

x∈P(n+1)
xn+1=1

n+1∏
i=1

fi(xi)

= fn+1(0)
∑

x∈P(n)

n∏
i=1

fi(xi) + fn+1(1)
∑

x∈P(n)

n∏
i=1

fi(xi)

=
(
fn+1(0) + fn+1(1)

) ∑
x∈P(n)

n∏
i=1

fi(xi)

=

(∑
xn+1

fn+1(xn+1)

) ∑
x∈P(n)

n∏
i=1

fi(xi)

170

Next we use the inductive hypothesis to obtain the final result

=

(∑
xn+1

fn+1(xn+1)

) n∏
i=1

∑
xi

fi(xi)

=
n+1∏
i=1

∑
xi

fi(xi)

= 1.

Lemma A.0.2. Let f(x) = (f1(x1), . . . , fn(xn)) be a vector-valued function with fi : {0, 1} → [0, 1]

and assume that fi(0)+ fi(1) = 1 for all i = 1, . . . , n. Given any vector q = (q1, . . . , qn) ∈ Rn, then

∑
x∈P(n)

n∏
i=1

(1− qi)xifi(xi) =

n∏
i=1

(
1− qifi(1)

)

where P(n) denotes the power set of binary sequences with length n.

Proof. We use induction to prove this claim and begin with the base case n = 1 which holds by

∑
x∈P(1)

(1− qi)xifi(xi) = f1(0) + (1− q1)f1(1)

= 1− f1(1) + (1− q1)f1(1)

= 1− q1f1(1).

171

Now suppose the claim holds when f is an n-dimensional vector-valued function, then the inductive

step holds by

∑
x∈P(n+1)

n+1∏
i=1

(1− qi)xifi(xi) =
∑

x∈P(n+1)

∏
i

xi=0

(1− qi)xifi(xi)
∏
i

xi=1

(1− qi)xifi(xi)

=
∑

x∈P(n+1)

∏
i

xi=0

fi(0)
∏
i

xi=1

(1− qi)fi(1)

= fn+1(0)
∑

x∈P(n)

∏
i\n+1
xi=0

fi(0)
∏
i

xi=1

(1− qi)fi(1)

+ (1− qn+1)fn+1(1)
∑

x∈P(n)

∏
i

xi=0

fi(0)
∏

i\n+1
xi=1

(1− qi)fi(1)

=
(
1− qn+1fn+1(1)

) ∑
x∈P(n)

n∏
i=1

(1− qi)xifi(xi)

=
n+1∏
i=1

(
1− qifi(1)

)
,

where the final line holds by using the inductive hypothesis.

Proposition A.0.3. Let i′ ∈ K be a factor node which corresponds to the finding node i ∈ V , then

the message passing operator S can be simplified as

(Sν)i′→i(0) = (1− pi0)
∏

j∈D(i′)

(
1− pijνj→i′(1)

)
(Sν)i′→i(1) = 1− (Sν)i′→i(0).

Proof. By definition, the message passing operator is

(Sν)i′→i(τ) = κ
∑
dD(i′)

Ψi′(τ, dD(i′))
∏

j∈D(i)

νj→i′(dj),

172

where κ is used to denote the normalization factor. Consider the case when τ = 0, then the message

passing operator can be simplified as

(Sν)i′→i(0) = κ
∑
dD(i′)

Ψi′(0, dD(i′))
∏
j

νj→i′(dj)

= κ
∑
dD(i′)

(1− pi0)
∏
j

(1− pij)dj
∏
j

νj→i′(dj)

= κ (1− pi0)
∑
dD(i′)

∏
j

(1− pij)djνj→i′(dj)

= (1− pi0)
∏

j∈D(i′)

(
1− pijνj→i′(1)

)
.

Next, consider the case when τ = 1 and the claim holds by

(Sν)i′→i(1) = κ
∑
dD(i′)

Ψi′(1, dD(i′))
∏
j

νj→i′(dj)

= κ
∑
dD(i′)

(
1−Ψi′(0, dD(i′))

)∏
j

νj→i′(dj)

= κ
∑
dD(i′)

∏
j

νj→i′(dj)− κ
∑
dD(i′)

Ψi′(0, dD(i′))
∏
j

νj→i′(dj)

= κ− κ
∑
dD(i′)

Ψi′(0, dD(i′))
∏
j

νj→i′(dj),

where the simplification on the last line holds by Lemma A.0.1. Now we conclude by using the

definition of the operator so that

= κ− κ (Sν)i′→i(0)

= κ
(
1− (Sν)i′→i(0)

)
.

Then final result is attained by setting κ = 1.

173

Proposition A.0.4. Let i′ ∈ K be a factor node which corresponds to the finding node i ∈ V .

Assume that node j ∈ N (i′) corresponds to a disease node, then the message passing operator S

can be simplified as

(Sν)i′→j(0) = κ νi→i′(1)

(
1− (1− pi0)

∏
k\j

(
1− pikνk→i′(1)

))

(Sν)i′→j(1) = κ νi→i′(1)

(
1− (1− pi0)(1− pij)

∏
k\j

(
1− pikνk→i′(1)

))

where κ is used to denote the normalization factor.

Proof. By definition, the message passing operator is

(Sν)i′→j(τ) = κ
∑
dD(i′)
dj=τ

∑
fi∈{0,1}

Ψi′(fi, dD(i′)) νi→i′(fi)
∏
k\j

νk→i′(dk)

= κ νi→i′(1)
∑
dD(i′)
dj=τ

Ψi′(1, dD(i′))
∏
k\j

νk→i′(dk),

which holds by using that all observed findings are positive because negative findings are absorbed

into the prior. Then this expression can be further simplified as

= κ νi→i′(1)
∑
dD(i′)
dj=τ

(
1−Ψi′(0, dD(i′))

) ∏
k\j

νk→i′(dk)

= κ νi→i′(1)

(∑
dD(i′)
dj=τ

∏
k\j

νk→i′(dk)− (1− pi0)
∑
dD(i′)
dj=τ

∏
k

(1− pik)dk
∏
k\j

νk→i′(dk)

)

= κ νi→i′(1)

(
1− (1− pi0)

∑
dD(i′)
dj=τ

∏
k

(1− pik)dk
∏
k\j

νk→i′(dk)

)
,

where the last line holds by Lemma A.0.1.

174

Now assume that τ = 0, then the first simplified equation holds by

(Sν)i′→j(0) = κ νi→i′(1)

(
1− (1− pi0)

∑
dD(i′)
dj=0

∏
k

(1− pik)dk
∏
k\j

νk→i′(dk)

)

= κ νi→i′(1)

(
1− (1− pi0)

∑
dD(i′)
dj=0

∏
k\j

(1− pik)dk νk→i′(dk)

)

= κ νi→i′(1)

(
1− (1− pi0)

∏
k\j

(
1− pikνk→i′(1)

))
,

where the last line holds by Lemma A.0.2.

Now assume that τ = 1, then the second simplified equation holds by

(Sν)i′→j(1) = κ νi→i′(1)

(
1− (1− pi0)

∑
dD(i′)
dj=1

∏
k

(1− pik)dk
∏
k\j

νk→i′(dk)

)

= κ νi→i′(1)

(
1− (1− pi0)(1− pij)

∑
dD(i′)
dj=0

∏
k\j

(1− pik)dk νk→i′(dk)

)

= κ νi→i′(1)

(
1− (1− pi0)(1− pij)

∏
k\j

(
1− pikνk→i′(1)

))
,

where the last line holds by Lemma A.0.2.

175

Bibliography

[1] S. Au and J. Beck. A new adaptive importance sampling scheme for reliability calculations.

Structural Safety, 21(2):135–158, 1999.

[2] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt. An application of combinatorial

optimization to statistical physics and circuit layout design. Operations Research, 36(3):493–

513, 1988.

[3] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal junction

trees. In UAI, 1996.

[4] V. Berinde. Iterative Approximation of Fixed Points. Springer, 2007.

[5] C. Berrou and A. Glavieux. Near optimum error correcting coding and decoding: Turbo-codes.

IEEE Trans. Commun., 44:1261–1271, 1996.

[6] A. Blake and A. Zisserman. Visual Reconstruction. The MIT Press, 1987.

[7] E. Boros and P. Hammer. Network flows and minimization of quadratic pseudo-boolean func-

tions. Technical report, RRR 17-1991, RUTCOR Research Report, 1991.

[8] E. Boros and P. Hammer. Pseudo-boolean optimization. Discrete applied mathematics, 123(1-

3):155–225, 2002.

[9] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[10] T. Bullmore and D. Bassett. Brain graphs: graphical models of the human brain connectome.

Annual review of clinical psychology, 7:113–40, 2011.

176

[11] J. Chen and M. Fossorier. Near optimum universal belief propagation based decoding of low-

density parity check codes. IEEE Transactions on communications, 50(3):406–414, 2002.

[12] S. Chen, H. Tong, Z. Wang, S. Liu, M. Li, and B. Zhang. Improved generalized belief propa-

gation for vision processing. Mathematical Problems in Engineering, 2011.

[13] J. Chua and F. Felzenszwalb. Scene grammars, factor graphs, and belief propagation. Journal

of the ACM, 19, 2020.

[14] G. Cooper. The computational complexity of probabilistic inference using bayesian belief

networks. Artificial Intelligence, 42:393–405, 1990.

[15] G. Cross and A. Jain. Markov random field texture models. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1:25–39, 1983.

[16] P. Dagum and M. Luby. Approximating probabilistic inference in bayesian belief networks is

np-hard. Artificial intelligence, 60(1):141–153, 1993.

[17] A. Daniilidis and C. Pang. Continuity and differentiability of set-valued maps revisited in the

light of tame geometry. Journal of the London Mathematics Society, 83:637–658, 2011.

[18] R. Devaney. An Introduction To Chaotic Dynamical Systems, Second Edition. Avalon Pub-

lishing, 1989.

[19] P. Felzenszwalb and D. Huttenlocher. Efficient belief propagation for early vision. In Pro-

ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, volume 1, 2004.

[20] P. Felzenszwalb and B. Svaiter. Diffusion methods for classification with pairwise relationships.

Quarterly of Applied Mathematics, 77:793–810, 2019.

[21] M. Fossorier, M. Mihaljevic, and H. Imai. Reduced complexity iterative decoding of low-

density parity check codes based on belief propagation. IEEE Transactions on communications,

47(5):673–680, 1999.

[22] B. Frey. Graphical models for machine learning and digital communication. MIT press, 1998.

177

[23] B. Frey. Extending factor graphs so as to unify directed and undirected graphical models. In

UAI, 2003.

[24] B. Frey and D. Dueck. Clustering by passing messages between data points. Science,

315(5814):972–976, 2007.

[25] B. Frey and D. MacKay. A revolution: Belief propagation in graphs with cycles. In Advances

in Neural Information Processing Systems, volume 10. MIT Press, 1997.

[26] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. Bayesian Data Analysis,

third edition. Chapman & Hall, 2013.

[27] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restora-

tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–

741, 1984.

[28] H. Georgii. Gibbs measures and phase transitions. de Gruyter, 2011.

[29] S. Gerschgorin. Über die abgrenzung der eigenwerte einer matrix. Izv. Akad. Nauk. USSR

Otd. Fiz.-Mat. Nauk, 7:749–754, 1931.

[30] J. Gibbs. Elementary Principles in Statistical Mechanics: Developed with Especial Reference

to the Rational Foundation of Thermodynamics. Yale University Press, 1902.

[31] A. Granas and J. Dugundji. Fixed Point Theory. Springer, 2003.

[32] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for binary

images. Journal of the Royal Statistical Society: Series B (Methodological), 51(2):271–279,

1989.

[33] A. Grim and F. Felzenszwalb. Belief propagation algorithms on factor graphs with numerical

homotopy continuation. Preprint, 2022.

[34] G. Grimmett. Probability on graphs: random processes on graphs and lattices, volume 8.

Cambridge University Press, 2018.

178

[35] T. Hazan and A. Shashua. Norm-product belief propagation: Primal-dual message-passing for

approximate inference. IEEE Transactions on Information Theory, 56(12):6294–6316, 2010.

[36] D. Heckerman. A tractable inference algorithm for diagnosing multiple diseases. In UAI, 1989.

[37] D. Heckerman and J. Breese. Causal independence for probability assessment and inference

using bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics - Part A:

Systems and Humans, 26(6):826–831, 1996.

[38] M. Henrion. Search-based methods to bound diagnostic probabilities in very large belief nets.

In UAI, 1991.

[39] T. Heskes. Stable fixed points of loopy belief propagation are local minima of the bethe free

energy. In NIPS, 2002.

[40] T. Heskes. On the uniqueness of loopy belief propagation fixed points. In Neural Computations,

volume 16, pages 2397–2413, 2004.

[41] M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of

Machine Learning Research, 2013.

[42] B. Huber and B. Sturmfels. A polyhedral method for solving sparse polynomial systems.

Mathematics of computation, 64(212):1541–1555, 1995.

[43] A. Ihler, J. Fisher III, A. Willsky, and D. Chickering. Loopy belief propagation: convergence

and effects of message errors. Journal of Machine Learning Research, 6(5), 2005.

[44] Hiroshi Ishikawa. Exact optimization for markov random fields with convex priors. IEEE

transactions on pattern analysis and machine intelligence, 25(10):1333–1336, 2003.

[45] T. Jaakkola and M. Jordan. Variational probabilistic inference and the qmr-dt network. Jour-

nal of Artificial Intelligence Ressearch, 10:291–322, 1999.

[46] M. Jordan, Z. Ghahramani, T. Jaakkola, and L Saul. An introduction to variational methods

for graphical models. Machine Learning, 37:183–233, 1999.

179

[47] M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. arXiv preprint

arXiv:1301.2281, 2013.

[48] J. Kim and J. Pearl. A computational model for causal and diagnostic reasoning in inference

engines. Proc. 8th Int. Joint Conf. on Artificial intelligence, 1983.

[49] C. Knoll. Understanding the Behavior of Belief Propagation. PhD thesis, Graz University of

Technology, 2019.

[50] C. Knoll, D. Mehta, T. Chen, and F. Pernkopf. Fixed points of belief propagation—an analysis

via polynomial homotopy continuation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(9):2124–2136, 2017.

[51] C. Knoll, Ad. Weller, and F. Pernkopf. Self-guided belief propagation–a homotopy continuation

method. arXiv preprint arXiv:1812.01339, 2018.

[52] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.

[53] V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions with graph cuts-a review.

IEEE transactions on pattern analysis and machine intelligence, 29(7):1274–1279, 2007.

[54] P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge

potentials. NIPS, 2011.

[55] S. Kumagai. An implicit function theorem. Journal of Optimization Theory and Applications,

31:285–288, 1980.

[56] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for

segmenting and labeling sequence data. ICML, 2001.

[57] S. Li. Markov random field models in computer vision. In European Conference on Computer

Vision, pages 361–370. Springer, 1994.

[58] S. Li. Markov Random Field Modeling in Image Analysis. Springer Science & Business Media,

2009.

180

[59] A. Markov. Wahrscheinlichkeitsrechnung. 1912.

[60] V. Martin, M. Lasgouttes, and C. Furtlehner. Local stability of belief propagation algorithm

with multiple fixed points. In Frontiers in Artificial Intelligence and Applications, volume 241,

pages 180–191, 2012.

[61] M. McCoy and T. Wu. The Two-Dimensional Ising Model. Harvard University Press, 2013.

[62] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference:

An empirical study. In UAI, 1999.

[63] L. Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition.

Physical Review, 65:117–149, 1944.

[64] J. Pearl. Probabilistic Reasoning in Intelligent Systems: networks of Plausible Inference. Mor-

gan Kauffman, 1988.

[65] J. Pearl. Causality: Models. Cambridge University Press, 2009.

[66] R. Peierls. On ising’s model of ferromagnetism. 1936.

[67] W. Petryshyn. Construction of fixed points of demicompact mappings in hilbert space. Journal

of Mathematical Analysis and Applications, 14(12):276–284, 1966.

[68] N. Peyrard and S. et al. Givry. Exact and approximate inference in graphical models: Variable

elimination and beyond. ArXiv, abs/1506.08544, 2015.

[69] M. Pretti. A message-passing algorithm with damping. Journal of Statistical Mechanics:

Theory and experiment, 2005.

[70] G. Rebane and J. Pearl. The recovery of causal poly-trees from statistical data. Proceedings,

3rd Workshop on Uncertainty in AI, page 222–228, 1987.

[71] B. Ripley. Stochastic Simulation. John Wiley & Sons, Inc., 1987.

[72] T. Roosta, M. Wainwright, and S. Sastry. Convergence analysis of reweighted sum-product

algorithms. IEEE Transactions on Signal Processing, 56(9):4293–4305, 2008.

181

[73] M. Shwe and G. Cooper. An empirical analysis of likelihood-weighting simulation on a large,

multiply-connected belief network. Computers and biomedical research, an international jour-

nal, 24:453–75, 1991.

[74] J. Sun, N. Zheng, and H. Shum. Stereo matching using belief propagation. IEEE Transactions

on pattern analysis and machine intelligence, 25(7):787–800, 2003.

[75] S. Tatikonda. Convergence of the sum-product algorithm. In Proceedings 2003 IEEE Infor-

mation Theory Workshop, pages 222–225, 2003.

[76] S. Tatikonda and M. Jordan. Loopy belief propagation and gibbs measures. In Proceedings

of the Eighteenth Conference on Uncertainty in Artificial Intelligence, page 493–500. Morgan

Kaufmann Publishers Inc., 2002.

[77] M. Wainwright, T. Jaakkola, and A. Willsky. Tree-reweighted belief propagation algorithms

and approximate ml estimation by pseudo-moment matching. In AISTATS, 2003.

[78] M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the log partition

function. IEEE Transactions on Information Theory, 51(7):2313–2335, 2005.

[79] Y. Watanabe and K. Fukumizu. Graph zeta function in the bethe free energy and loopy belief

propagation. In NIPS, 2009.

[80] Y. Weiss. Belief propagation and revision in networks with loops. Technical Report, 1997.

[81] Y. Weiss. Correctness of local probability propagation in graphical models with loops. Neural

computation, 12(1):1–41, 2000.

[82] Y. Weiss and W. Freeman. Correctness of belief propagation in gaussian graphical models of

arbitrary topology. Neural Computation, 13:2173–2200, 2001.

[83] M. Welling. On the choice of regions for generalized belief propagation. In Proceedings of the

20th Conference on Uncertainty in Artificial Intelligence, page 585–592. AUAI Press, 2004.

[84] S. Wright. Correlation and causation. Journal of Agriculture Research, 20:162–177, 1921.

182

[85] J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. Advances in neural

information processing systems, 13, 2000.

[86] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations and gener-

alized belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):2282–

2312, 2005.

[87] F. Yu, F. Tu, H. Tu, and K. Pattipati. Multiple disease (fault) diagnosis with applications to

the qmr-dt problem. In SMC’03 Conference Proceedings. 2003 IEEE International Conference

on Systems, Man and Cybernetics), volume 2, pages 1187–1192, 2003.

[88] F. Yu, F. Tu, H. Tu, and K. Pattipati. A lagrangian relaxation algorithm for finding the map

configuration in qmr-dt. IEEE Transactions on Systems, Man, and Cybernetics - Part A:

Systems and Humans, 37(5):746–757, 2007.

[89] A. Yuille. A double-loop algorithm to minimize the bethe free energy. In EMMCVPR, 2001.

[90] A. Yuille and A. Rangarajan. The concave-convex procedure. Neural Comput., 15(4):915–936,

2003.

[91] Y. Zhang, M. Brady, and S. Smith. Segmentation of brain mr images through a hidden

markov random field model and the expectation-maximization algorithm. IEEE Transactions

on Medical Imaging, 20(1):45–57, 2001.

[92] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation.

Technical Report CMU-CALD-02-107, 2002.

	CV
	Acknowledgements
	Introduction
	Motivations
	Main Contributions
	Approximation Algorithms
	Theoretical Analysis
	Experimental Evaluation
	Real-World Applications

	Thesis Overview

	Background
	Introduction
	Graph Theory
	Graphical Models
	Bayesian Networks
	Markov Random Fields
	Energy-Based Models
	Factor Graphs

	Probabilistic Inference
	Exact Algorithms
	Exact Inference
	Variable Elimination
	Belief Propagation
	Junction Trees
	Graph Cuts

	Approximate Algorithms
	Stochastic Simulation
	Energy-Based Methods
	Belief Propagation

	Applications
	Ising and Spin Glass Model
	Image Analysis
	Medical Diagnostic Networks

	Belief Propagation Algorithms
	Max-Product Algorithm
	Exact MAP Inference
	Simple Derivation of Messages
	Markov Random Fields
	Factor Graphs

	Min-Sum Algorithm
	Energy-Based MAP Inference
	Message Passing Algorithm

	Sum-Product Algorithm
	Marginal Inference
	Markov Random Fields
	Factor Graphs

	Literature Review
	Convergence
	Stability of Fixed Points
	Alternative Belief Propagation Algorithms

	Convex Combination Belief Propagation on Pairwise Models
	Introduction
	Min-Sum Algorithm
	Theoretical Settings
	Message Passing Operator
	Convergence

	Characterization of Beliefs
	Tree-Structured Graphs
	Simple Cycles
	Finite Unwrapped Graphs
	Infinite Unwrapped Graphs

	Image Restoration
	Sum-Product Algorithm
	Theoretical Settings
	Message Passing Operator
	Convergence of the Algorithm

	Discussion
	Conclusion

	Convex Combination Belief Propagation on Factor Graphs
	Theoretical Settings
	Sum-Product Algorithm
	Message Passing Operators
	Message Passing in a Metric Space
	Lipschitz Continuity of the Normalization Operator
	Convergence

	Max-Product Algorithm
	Message Passing Operators
	Convergence

	Shortcomings of Convex Combination Belief Propagation

	Belief Propagation with Numerical Homotopy Continuation
	Introduction
	Homotopy Continuation Algorithm
	Basics of Homotopy Continuation
	Message Passing with a Homotopy
	Implementation

	Theoretical Analysis
	Existence of Fixed Points
	Continuity of Fixed Point

	Numerical Experiments
	Experimental Settings
	Varying the Coupling Factor
	Varying the Graph Connectivity

	Performance Enhancement
	Adaptive Time Step
	Stopping Early

	Max-Product Algorithm
	Conclusion

	Application: Approximate Inference in the QMR Network
	Introduction
	QMR-Network
	Probabilistic Framework
	Assumptions in the Model
	Probabilistic Inference

	Efficient Belief Propagation
	Factor Graph Model
	Traditional Message Passing
	Convex Combination Message Passing

	Experiments
	Experimental Settings
	Problem Generation
	Belief Propagation Parameters
	Performance Metrics

	Varying Number of Negative Findings
	Varying the Inhibit Probabilities
	Varying the Connectivity of the Graph

	Local Stability Analysis
	Convergence Conjecture
	Overview of General Approach
	Oriented Line Graphs
	Topology of Oriented Line Graphs

	Jacobian of Belief Propagation
	Structure of Jacobian
	Eigenvalues of Jacobian

	Local Stability Condition
	Computation of Jacobian
	Stability Condition

	Efficient Message Passing Equations

