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1 L-functions and modular forms

(Lecture 1: September 10, 2020)

1.1 Bureaucracy

These informal notes cover the first fifteen lectures of Junehyuk Jung’s topics in number theory course,

taught at1 Brown University in Fall 2020. These lectures contained an introduction to the GL2 aspects of

analytic number theory, and some connections to other fields. All errors in these notes are my own, feel free

to send corrections to ngillman@brown.edu.

1.2 Periodic functions
Definition 1.1

A function f : R → C is periodic of period 1 if f(x + n) = f(x) for all n ∈ Z. In other words, such

an f is invariant under the Z-action.

A periodic function can be identified with a function on the circle R/Z ∼= S1. How does one construct

a periodic function? Say g is a function on [0, 1). Then we can extend g periodically to R, by setting

f(x) := g({x}), where {x} := x − bxc is the fractional part of x. More generally, if g ∈ S(R) (Schwartz

space, which is the space of rapidly decreasing smooth functions on R; namely, for any fixed A > 0, we have

|g(x)| < |x|−A for |x| sufficiently large) then we can define

f(x) :=
∑
n∈Z

g(x+ n),

which is an (absolutely convergent) periodic function.

Notation 1.2

Throughout this course, we’ll take e(x) := e2πix.

Now we’ll discuss the Fourier transform. Define

SN (f) :=
∑

|n|≤N

ane(nx), where an := f̂(n) :=

∫ 1

0

f(x)e(−nx)dx.

1This course was conducted entirely via Zoom.
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Theorem 1.3

1. If f ∈ L2(S1), then SN (f) → f in L2.

2. If f ∈ Lp(S1) for p > 1, then SN (f) → f almost everywhere.

3. There exists an f ∈ L1(S1) such that SN (f) does not converge to f almost everywhere.

Theorem 1.4

If f ∈ L1 satisfies ∫ 1

0

∣∣∣∣f(x0 + t) + f(x0 − t)

2
− `

∣∣∣∣ dtt <∞,

then SN (f)(x0) → `.

The above finiteness condition clearly implies that the integrand converges to 0 at a rate O(t), as t→ 0.

In particular, the average value of f around x0 is `. Therefore, loosely speaking, this result says that “if f

behaves like ` (with some regularity) around x0, then the Fourier series of f at x0 indeed converges to `.”

This theorem yields the following results:

Corollary 1.5

1. If f ∈ C0,α for some α > 0, then SN (f) → f uniformly.

2. If f ∈ C and
∑

n∈Z |an| <∞, then SN (f) → f uniformly.

3. If f has bounded variation, then SN (f) → f pointwise.

4. There exists a continuous f such that SN (f)(x0) 6→ f(x0).

Next, one of the most important theorems in analytic number theory:

Theorem 1.6: Poisson summation formula

For g ∈ S(R), the following identity holds:∑
n∈Z

g(n) =
∑
n∈Z

ĝ(n).

Proof. Define f(x) :=
∑

n∈Z g(x+ n). If we denote an :=
∫ 1

0
f(x)e(−nx)dx, then we can compute that

an =

∫ 1

0

∑
m∈Z

g(x+m)e(−nx)dx =

∫ ∞

−∞
g(x)e(−nx)dx = ĝ(n),

so the n’th Fourier coefficient of f is the Fourier transform of g evaluated at n. Since f ∈ S(R) implies f

converges uniformly to its Fourier series, the above implies that∑
n∈Z

g(x+ n) = f(x) =
∑
n∈Z

ane(nx) =
∑
n∈Z

ĝ(n)e(nx).
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Specializing this to x = 0 yields the Poisson summation formula, as needed.

As a first application, we’ll see how Poisson summation can help us prove the analytic continuation and

functional equation for ζ(s).

Theorem 1.7

The Riemann zeta function

ζ(s) :=
∑
n≥1

1

ns
,

which converges absolutely for <(s) > 1, can be meromorphically continued to all of C.

Proof. Set g(y) := e−αy2

, so that ĝ(t) =
√

π
αe

−π2t2

α (see Lemma 1.2 below.) Applying Poisson summation

to g, with α = πx, yields ∑
n∈Z

e−n2πx =
1√
x

∑
n∈Z

e−
n2π
x .

The salient feature of this formula is that the x in the exponent on the LHS has been moved to the denom-

inator in the RHS. Set ψ(x) :=
∑

n≥1 e
−n2πx, so the above equation reads

1 + 2ψ(x) =
1√
x
(2ψ(1/x) + 1) . (1.1)

Now, apply to Γ(s/2) :=
∫∞
0
y

s
2−1e−ydy the variable transformation y = n2πx, yielding∫ ∞

0

x
s
2−1e−n2xπdx =

Γ(s/2)

nsπs/2
.

Summing this formula over n ∈ Z yields a ψ on the LHS and a ζ on the RHS, namely,

Γ(s/2)π−s/2ζ(s) =

∫ ∞

0

x
s
2−1ψ(x)dx.

Using (1.1), we can continue∫ ∞

0

x
s
2−1ψ(x)dx =

∫ 1

0

x
s
2−1ψ(x)dx+

∫ ∞

1

x
s
2−1ψ(x)dx

=

∫ 1

0

x
s
2−1

(
1√
x
ψ(1/x) +

1

2
√
x
− 1

2

)
dx+

∫ ∞

1

x
s
2−1ψ(x)dx

=

∫ 1

0

x
s
2−

3
2 − x

s
2−1

2
dx+

∫ 1

0

x
s
2−

3
2ψ(1/x)dx+

∫ ∞

1

x
s
2−1ψ(x)dx

= − 1

s(1− s)
+

∫ ∞

1

y
3
2−

s
2ψ(y)(−y−2dy) +

∫ ∞

1

x
s
2−1ψ(x)dx

= − 1

s(1− s)
+

∫ ∞

1

(
x

1−s
2 + x

s
2

)
ψ(x)

dx

x
.

In summary, we’ve shown that

Γ(s/2)π−s/2ζ(s) = − 1

s(1− s)
+

∫ ∞

1

(
x

1−s
2 + x

s
2

)
ψ(x)

dx

x
. (1.2)
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The integral is a holomorphic function in s since ψ(x) converges rapidly (in particular, it converges faster

than any x−A). And the rational function out front implies that the RHS has a simple pole at s = 0, 1. This

formula is invariant under s→ 1− s, which implies that

Γ(s/2)π− s
2 ζ(s) = Γ((1− s)/2)π− 1−s

2 ζ(1− s).

This relation tells us that ζ(s) is meromorphic on C, and has a simple pole only at s = 1 (note that there’s

no pole at s = 0 because of the pole of Γ(s) at s = 0.)

Lemma 1.8

The Fourier transform of the Gaussian g(y) := e−αy2

is

ĝ(t) =

√
π

α
e−

π2t2

α .

Proof. We compute

ĝ(t) =

∫ ∞

−∞
e−αy2

e(−ty)dy =

∫ ∞

−∞
e−αy2−2πitydy.

We complete the square and change variables to turn this into the standard Gaussian integral. Namely, since

−αy2 − 2πity = −
[
(
√
αy +

iπt√
α
)2 −

(
iπt√
α

)2 ]
,

we have

ĝ(t) = e−
π2t2

α

∫ ∞

−∞
e
−(

√
αy+ iπt√

α
)2
dy.

Applying the variable transformation x =
√
αy + iπt/

√
α yields

ĝ(t) =
1√
α
e−

π2t2

α

∫ ∞+ iπt√
α

−∞+ iπt√
α

e−x2

dx.

By Cauchy’s integral theorem, we can shift this contour down to the real line because the integral is small

over the segments [±T + iπt/
√
α] for large T . And the Gaussian integral has value

√
π, which one can show

by integrating two Gaussians against each other in polar coorinates. This finishes the proof.

Next, we’ll briefly prove other fundamental facts about zeros of ζ.

Proposition 1.9

ζ(s) doesn’t vanish when <(s) > 1.

Proof. Since µ ∗ 1 = ε (see below two results) we know that∑
n≥1

µ(n)

ns

∑
m≥1

1

ms
= 1.

Both series converge absolutely for <(s) > 1 (observe that the first is bounded termwise by the second),

therefore neither Dirichlet series can have a pole in this half-plane.
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Theorem 1.10

If the Dirichlet series

F (s) =
∑
n≥1

f(n)

ns
, G(s) =

∑
n≥1

g(n)

ns

both converge absolutely at s, then so does

H(s) =
∑
n≥1

(f ∗ g)(n)
ns

.

Furthermore, in this case we have that F (s)G(s) = H(s).

Proof. See Theorem 4.1 here.

Lemma 1.11

We have that µ ∗ 1 = ε, where

ε(n) =

1 if n = 1

0 if n > 1

.

Proof. We can compute

(µ ∗ 1)(n) =
∑
d|n

µ(n) · 1(n/d) =
∑
d|n

µ(n).

If n > 1, then we can write n = pe11 · · · pemm , so∑
d|n

µ(n) =
∑

d|p1···pm

µ(n) = 0,

since half of the subsets of {p1, . . . , pm} have even cardinality and half have odd cardinality (e.g. one can

define an involution on this set by removing or adding p1, and such an involution has no fixed points.)

Corollary 1.12

For <(s) < 0, the only zeros of ζ(s) are s = −2n, for n ∈ Z.

Proof. By the Proposition, Γ(s/2)π−s/2ζ(s) has no zero or pole for <(s) > 1. Therefore the same is true

for Γ((1 − s)/2)π−(1−s)/2ζ(1 − s). By change of variable from s to 1 − s, this implies Γ(s/2)π−s/2ζ(s) has

no zero or pole for <(s) < 0. We know that Γ has simple poles precisely at the non-positive integers. So

whenever Γ hits a pole in this region, ζ has to hit a zero to compensate. It follows that for <(s) < 0, ζ(s)

has simple zeros precisely at the negative even integers.

Those zeros are referred to as “the trivial zeros” of ζ(s). Riemann showed that the prime number theorem

follows from ζ(1 + it) 6= 0 for 0 6= t ∈ R.

6
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Theorem 1.13: Prime number theorem

# {p < x : p prime} ∼ x/ log x.

This is an example of how analytic properties of ζ tell you things about prime numbers. Riemann

conjectured:

Conjecture 1.14: Riemann Hypothesis

Every non-trivial zero of ζ(s) is of the form 1
2 + it for some t ∈ R.

Finally we state without proof some fundamental results about Γ that will be needed throughout this

course:
Proposition 1.15

Facts about the Γ function:

1. Γ is meromorphic on C with simple poles at the non-positive integers.

2. Γ(n+ 1) = n!, for n ∈ Z≥0.

3. zΓ(z) = Γ(z + 1).

4. Γ(1− z)Γ(z) = π/ sin(πz), which implies the first point..

(Lecture 2: September 15, 2020)

1.3 Elliptic functions

Elliptic functions are a natural source of modular forms. Let Λ ⊆ C be a lattice, i.e., Λ is a discrete subgroup

of C of rank 2. This means Λ = ω1Z + ω2Z for some R-linearly independent complex numbers ω1, ω2. For

example, taking ω1 = 1 and ω2 = i, we get Λ = Z[i].

Definition 1.16

A function f : C → C is elliptic with respect to Λ if and only if

1. f is meromorphic on C

2. f is periodic with periods in Λ, i.e. f(u+ ω) = f(u) for all ω ∈ Λ and any u ∈ C.

Proposition 1.17

Fix a lattice Λ. Then the set E(Λ) of elliptic functions with respect to Λ is a field, and this field is

isomorphic to the field of meromorphic functions on the torus C/Λ.

7



Proof. The product/sum/difference of meromorphic functions is clearly meromorphic, and the reciprocal of

a meromorphic functions is also meromorphic.

Proposition 1.18

If f is an elliptic function with no poles, then f is a constant function.

Proof. If f has no poles, then by Liouville’s theorem, f is a bounded function on the entire plane (since its

values in C are determined by its values in a compact neighborhood of a fundamental parallelogram.)

Proposition 1.19

Let P be the set of poles in a fundamental parallelogram. Then,∑
ω∈P

Resf (ω) = 0.

Proof. We can shift the fundamental parallelogram so that the edges intersect no poles/zeros (since the set

of poles/zeros is discrete, or else f is constant.)

On one hand, we know that 1
2πi

∫
γ
f(z)dz = 0 by periodicity (namely, the integral along opposite edges

cancel each other.) But on the other hand, this integral is the sum of the residues.

Corollary 1.20

No f ∈ E(Λ) has exactly one simple pole in the fundamental parallelogram.

Proof. If f had one simple pole, then
∑

ω∈P Resf (ω) would be the (nonzero) residue of that pole.

Definition 1.21

Let f ∈ E(Λ), and let ω ∈ C. The order m := mf (ω) of f at ω is the unique m ∈ Z such that

f(u)(u− ω)−m has no zero or pole at u = ω.

For example, if f has a simple pole at ω, then f(u)(u − ω) has no zero or pole at u = ω, which implies

that the order of f at ω is mf (ω) = −1.
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Proposition 1.22

Fix a lattice Λ, and let S be a fundamental parallelogram for C/Λ. Then∑
ω (mod Λ)

mf (ω) =
∑
ω∈S

mf (ω) = 0.

Proof. Apply the previous proposition to the elliptic function f ′/f .

Proposition 1.23

For any ω ∈ C, we have ∑
ω (mod Λ)

ω ·mf (ω) ≡ 0 (mod Λ).

Proof. Let us consider a fundamental parellelogram S which has no poles or zeros on its boundary.

It is sufficient to show the following:

1. 1
2πi

∫
∂S

uf ′(u)
f(u) du =

∑
ω∈S ω ·mf (ω)

2. 1
2πi

∫
∂S

uf ′(u)
f(u) du = 0

The first point is clear, as every (nonzero) residue of uf ′(u)/f(u) corresponds to a pole or zero ω of f(u),

and its residue is ω ·mf (ω). For the second point, by symmetry it suffices to show that

1

2πi

∫
[t,t+ω1]

uf ′(u)

f(u)
du+

1

2πi

∫
[t+ω1+ω2,t+ω2]

uf ′(u)

f(u)
du ∈ Λ.

Applying the transformation v = u− ω2 to the second integral shows that this sum is precisely

1

2πi

∫
[t,t+ω1]

uf ′(u)

f(u)
du+

1

2πi

∫
[t+ω1+ω2,t+ω2]

uf ′(u)

f(u)
du

=
1

2πi

∫
[t,t+ω1]

uf ′(u)

f(u)
du+

1

2πi

∫
[t+ω1,t]

(v + ω2)f
′(v + ω1)

f(v + ω1)
dv

= − ω2

2πi

∫
[t,t+ω1]

f ′(u)

f(u)
du

= − ω2

2πi
(log f(t+ ω1)− log f(t))

= 0.
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The salient point here is that we applied periodicity repeatedly. Note that this computation returns 0, rather

than some other element of the lattice, because we summed over a set of representatives for ω (mod Λ) from

a connected parallelogram.

Definition 1.24

Let f ∈ E(Λ). The order of f , denoted rf , is the sum of the orders of zeros modulo Λ. That is,

rf :=
∑

ω (mod Λ)

max {mf (ω), 0} =
∑

ω (mod Λ)

−min {mf (ω), 0}

The second equality follows from the fact that
∑

ω (mod Λ)mf (ω) = 0.

Proposition 1.25

No f ∈ E(Λ) has order 1.

Proof. We argued above that no f ∈ E(Λ) has exactly one simple pole in the fundamental parallelogram, so

the result follows from
∑

ω (mod Λ)mf (ω) = 0.

The simplest elliptic function that one can come up with is the Weierstrass ℘-function. As we’ll see, this

function is fundamental to the theory.

Definition 1.26

For a lattice Λ, the Weierstrass ℘-function is defined to be

℘(u) =
1

u2
+
∑′

ω∈Λ

(
1

(u− ω)2
− 1

ω2

)
.

The prime indicates that the sum is restricted to nonzero elements of the lattice.

(Why do we subtract 1/ω2? One can show that, without this term, the sum doesn’t converge absolutely.

See Apostol for a proof that this series converges absolutely.) One might expect from this expression that ℘

has a pole at 0 of order 2. Since the series converges absolutely, it follows that this is the only pole, hence

the order of ℘ is 2.

Here we collect some results about the ℘-function.

1.

Proposition 1.27

r℘ = 2, and in particular, for any c ∈ C we have r℘−c = 2.

Proof. We already saw that r℘ = 2, so ℘ has two poles in any fundamental domain. This implies that

for any c ∈ C, ℘− c also has two poles in any fundamental domain. Since
∑

ω (mod Λ)mf (ω) = 0, we

conclude that ℘− c has two zeros counted with multiplicity, so by definition r℘−c = 2.
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2.

Proposition 1.28

℘ is an even function, i.e. ℘(u) = ℘(−u).

Proof. This follows immediately from the definition of ℘ (rearrange the series via ω 7→ −ω).

3.

Proposition 1.29

℘(u) = ℘(w) if and only if u = ±w (mod Λ).

Proof. We combine the previous two results. Specifically, fix w. Then r℘(∗)−℘(w) = 2, so ℘(u)−℘(w) =

0 only at two possible values. Clearly w works, but also ℘(w) = ℘(−w), hence −w works as well.

4.

Proposition 1.30

Fix w ∈ C/Λ. Then, ℘(u)− ℘(w) has a double zero at u = w if and only if w ≡ −w (mod Λ),

which happens if and only if 2w ≡ 0 (mod Λ).

Proof. By the previous proposition, ℘(u) − ℘(w) = 0 if and only if u = ±w. These two zeros are

actually a double zero if and only if these are the same, i.e., if w ≡ −w (mod Λ).

Observe that the only the only 2-torsion points on the torus C/Λ are the three points ω1/2, ω2/2, and

(ω1 + ω2)/2.

5.

Proposition 1.31

The values of ℘ at the 2-torsion points of Λ,

e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘((ω1 + ω2)/2),

are distinct. In particular, the discriminant is nonzero:

∆ := 16(e1 − e2)
2(e2 − e3)

2(e3 − e1)
2 6= 0.
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Proof. We’ll argue that e1 6= e2. By the previous proposition, on one hand ℘(u) − e1 has a double

zero at ω1/2, and on the other hand ℘(u) − e2 has a double zero at ω2/2. So if e1 = e2, this implies

℘(u)− e1 = ℘(u)− e2 has two double poles, since ω1/2 and ω2/2 are distinct points of the torus C/Λ.

This contradicts r℘−e1 = 2. The other two cases follow similarly.

It turns out ℘ and its derivative generate all elliptic functions on C/Λ.

Theorem 1.32

For any lattice Λ, we have E(Λ) = C(℘, ℘′).

Proof. If f ∈ E(Λ), then f(−u) ∈ E(Λ) as well. So we may decompose f into even and odd elliptic functions

as follows:

f(u) =
f(u) + f(−u)

2
+
f(u)− f(−u)

2
=: g(u) + h(u).

We’ll show that the even part is a rational function in ℘, and the odd part a rational function in ℘′. Consider

the product

g(u)
∏

w (mod Λ)

(℘(u)− ℘(w))
−mf (w)

,

which is a finite product since mf (w) is nonzero only for finitely many w. One can check that this is an

elliptic function without poles (since the poles of g(u) are killed by the product), which means it has to be

a constant function, by Liouville’s theorem. Therefore,

g(u) = c
∏

ω (mod Λ)

(℘(u)− ℘(w))
mf (ω)

,

which is a polynomial in ℘(u). A similar argument gives that h(u) is a rational function in the ℘′, which is

odd.

The previous result shows that ℘ and ℘′ are related in that they together generate all ellptic functions

for a given lattice. The next theorem says that, in fact, ℘ and ℘′ are algebraically related.

Theorem 1.33

Fix a lattice Λ. Then, ℘′ is algebraically related to ℘ via

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3).

Proof. The RHS has double zeros at ω1/2, ω2/2, (ω1 + ω2)/2, so

℘(u)− ℘(ω1/2) = (z − ω1/2)
2h(z),

for some h(z) which doesn’t vanish at ω1/2. So taking the derivative of both sides implies

℘′(z) = (z − ω1/2) · something.
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Therefore, the LHS has double zeros at these three points as well. Now, consider

f =
(℘′)2

4(℘− e1)(℘− e2)(℘− e3)
.

We just verified that the zeros of the RHS don’t create any poles when we divide the LHS by the RHS,

hence f may only have a pole at u = 0, coming from the numerator. But one can show that, as u → 0,

℘′(u) ∼ −2u−3 (this follows directly from differentiating ℘ term by term) so in fact f has a triple pole at 0,

whereas ℘(u) ∼ u−2, and therefore f(u) ∼ 1 as u → 0. Thus f is an elliptic function with no poles, and is

therefore holomorphic on all of C. By Liouville’s theorem, it has to be constant, hence, f(u) = 1.

Next, we’ll talk about the power series expansion of ℘. First, recall the expansion

1

u− w
= −

1
w

1− u
w

= − 1

w
− u

w2
− u2

w3
− · · · .

Differentiating with respect to w on both sides yields

1

(u− w)2
=

1

w2
+

2u

w3
+

3u2

w4
+ · · · .

Plugging this into the definition of ℘ as the lattice average, we get a power series expansion for ℘:

℘(u) =
1

u2
+
∑′

ω∈Λ

(
1

(u− ω)2
− 1

ω2

)
=

1

u2
+
∑′

ω∈Λ

(
2u

ω3
+

3u2

ω4
+

4u3

ω5
+ · · ·

)
=

1

u2
+
∑
m≥1

(m+ 1)Gm+2u
m,

whereGk =
∑′

ω∈Λ ω
−k. (The point: collecting the coefficients of um picks up a term of the form (m+1)/ωm+2

for every ω ∈ Λ∗.) Note that when k is odd, Gk vanishes by symmetry in the sum. Also, in the expansion,

we won’t see G2 since the expansion starts from G3. We summarize:

Proposition 1.34

Fix a lattice Λ. The power series expansion of ℘ at 0 is

℘(u) =
1

u2
+
∑
m≥1

(m+ 1)Gm+2u
m,

where Gk = Gk(Λ) :=
∑′

ω∈Λ ω
−k.

If we differentiate this with respect to u, we get

℘′(u) = − 2

u3
+
∑
m≥1

m(m+ 1)Gm+2u
m−1.

13



Proposition 1.35

Fix a lattice Λ, and set g2 := 60G4 and g3 := 140G6. Then

(℘′)2 = 4℘3 − g2℘− g3.

Proof. One can check explicitly that the power series expansion for (℘′(u))2 − 4℘(u)3 + g2℘(u)+ g3 has only

positive powers of u, so it must vanish.

Corollary 1.36

Fix a lattice Λ. Then the collection {(℘(u), ℘′(u)) : u ∈ C/Λ} lies on the elliptic curve given by

y2 = 4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3).

Moreover, this gives a complete parameterization. Further, the discriminant of this elliptic curve is

∆ = g32 − 27g23 .

1.4 Modular functions

One can regard an elliptic function f(u) as a function of lattices as well. Write

f(u) := f(u;ω1, ω2),

where ω1, ω2 are the generators of Λ.

Proposition 1.37

For any λ 6= 0, we have ℘(λu;λω1, λω2) = λ−2℘(u;ω1, ω2) and ℘′(λu;λω1, λω2) = λ−3℘(u;ω1, ω2)

Proof. The first equality follows from the definition of ℘, and the second taking from the derivative term by

term.

Definition 1.38

We say f ∈ E(Λ) is homogeneous in u and Λ of degree −k if, for every λ 6= 0,

f(λu;λω1, λω2) = λ−kf(u, ω1, ω2).

Note: the functions ℘ and ℘′ natural building blocks for such homogeneous lattice functions, since

(2, 3) = 1.

Let f ∈ E(Λ) be homogeneous of degree −k, and let

f(u) =
∑
m

Fm(ω1, ω2)u
m−k

14



be the power series expansion in u around 0. Without loss of generality, assume =(ω1/ω2) > 0 > =(ω2/ω1).

Then, ∑
m

Fm(ω1, ω2)u
m−k = λkf(λu, λω1, λω2) =

∑
m

λmFm(λω1, λω2)u
m−k.

Because the power series expansion is unique, these coefficients must match, meaning

Fm(ω1, ω2) = λmFm(λω1, λω2) = ω−m
2 Fm(ω1/ω2, 1) = ω−m

2 Fm(z),

where we specialized to λ = ω−1
2 and wrote z = ω1/ω2. Next, we note that, by homogeneity of Fm, we

have Fm(ω′
1, ω

′
2) = Fm(ω1, ω2) if ω′

1 = aω1 + bω2 and ω′
2 = cω1 + dω2 with ad − bc = ±1 (we’ll show on

the homework that choosing a lattice basis is well-defined up to a PSL2(Z)-action.) If =(ω1/ω2) > 0 and

=(ω′
1/ω

′
2) > 0, then one can show that γz = z′ for some γ ∈ SL2(Z), where z = ω1/ω2 and z′ = ω′

1/ω
′
2.

Here, γz := az+b
cz+d . From this, it’s clear that

Fm(z)ω−m
2 = Fm(z′)ω′−m

2 = Fm(γz)ω′−m
2 .

This implies that

Fm(z) = Fm(γz)(ω′
2/ω2)

−m = Fm(γz)((cω1 + dω2)/ω2)
−m = Fm(γz)(cz + d)−m.

These are the modular functions!! And notice how such Fm generalize the Eisenstein series, which

are the power series coefficients of ℘ and satisfy the same homogeneity property that leads to

the slighly messier modular transformation law above.

Definition 1.39

A function F : H → C satisfying

Fm(γz) = (cz + d)mFm(z)

is called a modular function of weight m.

Proposition 1.40

The weight m must be even for F to not vanish.

Proof. Taking γ =

−1 0

0 −1

, we get Fm(z) = Fm(z)(−1)−m, which forces Fm to vanish everywhere.

(Note: that proposition also generalizes the Eisenstein case.)

Example: the Eisenstein series. For a lattice Λ generated by ω1 and ω2, we defined

Gk(ω1, ω2) =
∑

(m,n)6=(0,0)

1

(mω1 + nω2)k
,

which leads us to define

Gk(z) :=
∑

(m,n)6=(0,0)

1

(mz + n)k
=

(
1

1k
+

1

2k
+

1

3k
+ . . .

) ∑
(m,n)=1

1

(mz + n)k
= 2ζ(k)Ek(z),
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where the 1/`k terms comes from factoring out ` = (m,n) from the lattice sum.

Definition 1.41

Gk is the Eisenstein series, and Ek is the normalized Eisenstein series.

As we’ve seen, Ek(z) is a modular function of weight k, hence ∆(z) is a modular function of weight 12.

1.5 Modular forms
Definition 1.42

A modular function which is meromorphic on H and at ∞ is called a modular form.

Unpacking this definition: if we take γ =

1 1

0 1

, then γz = z + 1, so the modular transformation law

says that F (z) = F (z+1). Now, consider the map that sends z 7→ e(z). This maps the strip <(z) ∈ (1/2, 1/2]

to the punctured complex plane. In order to achieve the point 0, you’d need to go to “all the way to i∞”.

If we write F (z) = G(e(z)) for some function G on C∗, then what we mean by “F is meromorphic at i∞” is

just that G is meromorphic at 0, which means that G has a power series expansion

G(q) =
∑

n≥−M

anq
n

which starts at some finite lower index. In this case, we have a Fourier expansion of F (z)

F (z) =
∑

n≥−M

ane(nz)

because q = e(z) here.

(Lecture 3: September 17, 2020)

Proposition 1.43

We have

sinπz = πz
∏
n≥1

(
1− z

n

)(
1 +

z

n

)
.
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We’ll use this fact from complex analysis to find a Fourier expansion of Eisenstein series. By taking the

logarithmic derivative of this equation, we find that

π
cosπz

sinπz
=

1

z
+
∑
n≥1

(
1

z − n
+

1

z + n

)
.

We can continue

π
cosπz

sinπz
= π

eiπx + e−iπx

eiπx − e−iπx
= πi

e(z) + 1

e(z)− 1
= πi+

2πi

e(z)− 1
= πi− 2πi

∑
d≥0

e(dz),

which implies
1

z
+
∑
n≥1

(
1

z − n
+

1

z + n

)
= πi− 2πi

∑
d≥0

e(dz).

Differentiating this k − 1 times, with k ≥ 2, yields

∞∑
n=−∞

(z − n)−k =
(−2πi)k

(k − 1)!

∑
d≥1

dk−1e(dz)

because of the identities

dk−1

dzk−1
(z ± n)−1 = (k − 1)!(−1)k−1(z ± n)−k,

dk−1

dzk−1
e2πidz = (2πid)k−1e2πidz.

Using this, we compute

Gk(z) =
∑

(m,n) 6=(0,0)

1

(mz + n)k

= 2ζ(k) + 2

∞∑
m=1

∞∑
n=−∞

1

(mz + n)k

= 2ζ(k) +
(2πi)k

(k − 1)!

∞∑
d,m=1

dk−1e(dmz)

= 2ζ(k) +
(2πi)k

(k − 1)!

∞∑
n=1

∑
d|n

dk−1e(nz)

= 2ζ(k) + 2
(2πi)k

Γ(k)

∑
n≥1

σk−1(n)e(nz),

where in the final step, we made the substitution dm = n, so the summation turns to
∑

d|n d
k−1 =: σk−1(n)

(Remark: you can also compute the Fourier expansion just from the definition.)

Proposition 1.44

For k even,

ζ(k) = − (2πi)k

2 · (k!)
Bk,

where Bk is the kth Bernoulli number.

Note: understanding the case where k is odd is a notoriously hard problem.
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Corollary 1.45

The normalized Eisenstein series Ek = Gk/2ζ(k) has Fourier expansion

Ek(z) = 1− 2kB−1
k

∑
n≥1

σk−1(n)e(nz).

Recall that the modular discriminant corresponding to the lattice Λ is ∆(z) = g2(z)
3 − 27g3(z)

2. In a

homework problem, we’ll show that this has a Fourier expansion of the form

∆(z) = (2π)12
∑
n≥1

τ(n)e(nz)

with the τ(n) integers and τ(1) = 1; to verify this, we’ll apply the expansion of Ek(z).

1.6 Modular surface
Definition 1.46

We define PSL2(Z) := SL2(Z)/ {±I}.

Theorem 1.47

PSL2(Z) = 〈T, S〉, with T =

1 1

0 1

 and S =

0 −1

1 0

.

Proof. We compute

S

a b

c d

 =

−c −d

a b

 , Tn

a b

c d

 =

a+ cn b+ dn

c d

 .

If c 6= 0, then for a suitable choice of n1 ∈ Z, applying Tn1 on the left has the effect of reducing the left

upper entry to 0 ≤ a < |c|. Then apply S to swap the top and bottom rows, and apply another suitable

Tn2 , etc. This eventually yields a matrix having c = 0, which must be of the form ±

1 m

0 1

. Applying

T−m then yields ±I, and we’re done once we solve for the original matrix in the resulting equation.

Next we’ll discuss fundamental domains. As a motivating example, recall that we identified R/Z ∼= S1.

But if we want to realize R/Z on the real line, then we could take for example [0, 1). We’ll do a similar thing

for the SL2(R) action on H. Recall that SL2(R) acts on H by fractional transformations,a b

c d

 : z 7→ az + b

cz + d
.

Furthermore, SL2(Z) acts on H discontinuously, just like how Z acts on R discontinuously. So it makes sense

to talk about the fundamental domain of H/ SL2(Z).
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Definition 1.48

Let Γ be a discrete subgroup acting on H. A fundamental domain of Γ\H is an open region F ⊆ H

such that, for every z ∈ H, there exists a γ ∈ Γ such that γz ∈ F , and for any z1 6= z2 ∈ F , Γz1 63 z2.

Theorem 1.49

The region

F := {z : |<z| < 1/2, |z| > 1}

is a fundamental domain for SL2(Z)\H.

(See the proof in Iwaniec 1.5.) An illustration of the fundamental domain for SL2(Z)\H:

A priori, PSL2(R) acts as bijections on H. But we can say more if we allow ourselves to use the language

of differential geometry. Namely, PSL2(R) is an isometry group of H when it’s equipped with the hyperbolic

metric, which makes the constant curvature of H equal to −1. We can classify the different elements of

PSL2(R) according to their geometric idiosyncrasies:

Definition 1.50

A transformation γ ∈ PSL2(R) is called:

1. elliptic if |Tr γ| < 2;

2. parabolic if |Tr γ| = 2;

3. hyperbolic if |Tr γ| > 2.
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Proposition 1.51

The transformation γ ∈ PSL2(Z) is:

1. elliptic iff γ has a fixed point on H;

2. parabolic iff γ has exactly one fixed point on ∂H = R ∪ {i∞};

3. hyperbolic iff γ has two fixed points on ∂H.

We won’t prove this, but we will illustrate it.

1. Elliptic case: an isometry with a fixed point necessarily rotates everything around that fixed point.

One can show that any elliptic element is conjugate to one of

 0 1

−1 0

 and

 1 1

−1 0

.

2. Parabolic case: suppose i∞ is fixed, as is the case for

1 ∗

0 1

. Then the whole plane is just translated

horizontally:

But what if the fixed point is located on R? If we draw a circle touching that point, then γ is going to

move any point on the circle along the same direction on the circle.
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Essentially, these two illustrations are the same, from different reference points. These circles touching

the boundary are horocycles; in the former picture, these are conceptualized as “horizontal lines touching

i∞.” The point is that parabolic transformations move points along horocycles.

3. Hyperbolic case: Suppose γ fixes two points on R. Draw a semicircle between those points; things will

move along that direction. Other points will move “parallel” to it, but not along a half-circle. These

half-circles are exactly the geodesics on H equipped with the hyperbolic metric.

One can compute that any PSL2(R) action sends these half-circles to one another, which justifies calling

them isometries.
Proposition 1.52

On F , there are three elliptic fixed points, given by
ρ = −1+i

√
3

2

ρ′ = 1+i
√
3

2

i

fixed by


ST

ST−1

S

Proof. First, observe that elliptic fixed points would necessarily lie on the boundary of F (otherwise, by the

definition of fundamental domain, they would necessarily be mapped outside of the fundamental domain.)

Next, if |cz + d| = 1 for z 6= 0, so c, d ∈ Z with c 6= 0, then:

1. First case: z = ± 1
2 + iy with y ≥

√
3/2. In this case, we have 1 = |d± c/2|2 + c2y2 ≥ 1/4 + 3/4 = 1,

so for equality, we need y =
√
3/2. This falls in to one of the first two cases.
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2. Second case: |z| = 1 implies 1 = |cz+d|2 = c2+2cd+d2 ≥ c2−|cd|+d2. If cd = 0, then by assumption

d = 0, so we have

z =

a −1

1 0

 z =
az − 1

z
= a− 1

z
,

which implies z2 − az + 1 = 0, and <z = a/2 has modulus ≤ 1/2, hence a = 1, 0,−1. This falls into

one of the three claimed cases. If cd 6= 0, then it must be x = ±1/2. This case falls in to one of the

three cases.

Hence we have only three elliptic fixed points on the boundary of F , and this classifies all the elliptic fixed

points.

Suppose we have an elliptic element which fixes z, and get some γz that moves it into the fundamental

domain.

If βz = z, then (γβγ−1)γz = γz, so finding all the elliptic points is equivalent (via conjugation) to finding

all the elliptic points inside the fundamental domain. So we’re done with classifying elliptic fixed points!

(Lecture 4: September 22, 2020)

1.7 Zeros of modular forms

Theorem 1.53

Let f 6= 0 be a modular form of weight k ≥ 0, and write mf (w) to be the order of f at w. Define
m(w) = 1 if w ∈ H is not an elliptic fixed point

m(w) = 2 if w = i

m(w) = 3 if w = ± 1
2 + i

√
3
2 .

.

Then, the following identity holds: ∑
ω (mod SL2(Z))

mf (w)

m(w)
=

k

12
.
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Proof. Consider our fundamental domain F for SL2(Z)\H, and draw a horizontal line high enough so that

the only zero above it is at i∞. (Why is this possible? We assumed meromorphcity at i∞, which means

zeros and poles can’t accumulate at i∞.) Draw a line down the left side, diverting around it when we hit a

zero at the boundary. When we hit the elliptic point ρ, wrap around it in an arc. We do the same thing at

i, and then also at ρ′. This process yields a counterclockwise contour. Furthermore, we can do this so that

the countours on the LHS and RHS are identical (by x 7→ x + 1 periodicity, the zeros are the same on left

and right boundary of F .) Label the contours I, II, IIIρ, IV, IVi, IV ′, IIIρ′ , and call this region P .

Then

1

2πi

∫
∂P

f ′

f
(z)dz =

∑
w∈P

mf (w),

so we can write the Fourier expansions

f(z) =

∞∑
n=mf (i∞)

ane(nz), f ′(z) =

∞∑
n=mf (i∞)

2πinane(nz),

which implies that
f ′

f
(z) =

∑
`≥0

b`e(`z)

with b0 = 2πimf (∞), which follows from just checking the power series expansion.

• Computing integral over contour I: using this expansion, we compute that

1

2πi

∫
I

f ′

f
(z)dz = −mf (i∞)

since all the b`>0 vanish in the integral.
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• Computing integral over contour II: Next, we compute

1

2πi

∫
II

f ′

f
(z)dz = 0

since these contours down the left and right side are the same contour in the opposite direction (recall

automorphy factor (cz + d)k is trivial for Tx = x+ 1.)

• Computing integral over contour IIIρ: Here we’re integrating over the arc γρ:

Around w we can write f(z) = (z − w)mf (w)h(z), where h is holomorphic with no zeros at z = w. As

f ′(z) = (z − w)mf (w)h′(z) +m(z − w)mf (w)−1h(z), this gives

f ′

f
(z) =

mf (w)

z − w
+
h′

h
(z),

where (h′/h) is holomorphic near z = w. Therefore,

1

2πi

∫
γp

f ′

f
(z) =

µ(γp)

2π
mf (w)

where µ(γp) is the arc angle of the circle. This implies

1

2πi

∫
IIIρ∪IVi∪IIIρ′

f ′

f
(z)dz =

mf (ρ)

2m(ρ)
+
mf (ρ

′)

2m(ρ′)
+
mf (i)

m(i)

=
mf (ρ)

m(ρ)
+
mf (i)

m(i)

since µ(i) = 1/m(i) and µ(ρ) = µ(ρ′) = 1/2m(ρ). Note: from a quick sketch, we can see that the arc

angles are π/3:

• Computing integral over contours IV and IV ′: By automorphy, f(Sz) = zkf(z) and f ′(Sz)z−2 =

kzk−1f(z) + zkf ′(z), hence
f ′

f
(Sz)z−2 =

k

z
+
f ′

f
(z).
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Finally we get
1

2πi

∫
IV ′

f ′

f
(z)dz = − 1

2πi

∫
IV

f ′

f
(z)(Sz)d(Sz)

thinking about the action of S geometrically (or just doing change of variable) which yields

− 1

2πi

∫
IV

(
k

z
+
f ′

f
(z)dz

)
.

Therefore,
1

2πi

∫
IV ∪IV ′

f ′

f
=

1

2πi

∫
IV ∪IV ′

k

z
dz =

k

12
.

as the angle for this arc of integration is π/6:

The result follows from combining all these computations.

Remark: this theorem is a simple consequence of Riemann-Roch for the Riemann surface SL2(Z)\H.

But the proof we provided has nothing to do with Riemann-Roch, since we’re trying to keep this course

self-contained.
Remark 1.54

Recall that the three elliptic fixed points are i, ρ, ρ′, and in the theorem above, we’re defining m(w) to

be the order of the elliptic fixed point. Recall that S fixes i, and # 〈S〉 = 2. In this case, i has order

two. And we can check that other fixed points are of order three. In general, w is an elliptic fixed

point of Γ means there is a subgroup of Γ which fixes w, and the order of this subgroup

is defined to be the order of w. So m(w) is just the order of the elliptic fixed point on H.

Here’s the takeaway from this: the total quantity of zeros of a modular form of weight k on the full

modular surface is exactly k/12.

The grand definition of modular forms:

Definition 1.55

f is a modular form of weight k on Γ\H (in our case, Γ = PSL2(Z)) if

1. f is holomorphic on H and i∞

2. f(γz) = (cz + d)kf(z)
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Digression: f isn’t properly defined on Γ\H, but we say f is a modular form on Γ\H because its values on

the fundamental domain determine its values everywhere else. But given a modular form f on Γ\H, we can

use the Iwasawa decomposition to realize a function truly defined on Γ\PSL2(R), namely, we consider the

function F (h) := f(z)yk/2eikθ; then, F (h) is actually invariant on SL2(Z), so this is the “real” automorphic

form living on Γ\H.

1.8 The space of modular forms

Definition 1.56

1. Mk is the linear space of modular forms of weight k ≥ 0.

2. M = ⊕k evenMk is the graded algebra of modular forms.

Proposition 1.57

∆(z) 6= 0 if z ∈ H, and ∆ has a simple zero at i∞.

Proof. We constructed ∆ as the discriminant of the elliptic curve y2 = 4(x− e1)(x− e2)(x− e3) where the

ei’s are the values of the Weierstrass ℘ function at its half-periods, and we argued (using the fact that ℘ has

only two zeros and poles on any fundamental parallelogram) that this function has nonzero discriminant.

Proposition 1.58

MkMl ⊆Mk+l, which justifies calling M a graded algebra.

Now we’ll compute the dimension of Mk, for each k, using our theorem from earlier.

1. If k = 0, them mf (w) = 0 for all w ∈ H (since modular forms can’t have poles in the fundamental

domain) which means that f has to be identically zero.

2. If k = 2, then since 1/2, 1/3, and 1 can’t add up in any combination to get the 1/6 in the theorem

(note: no negative terms are allowed since there are no poles for modular forms as we’ve defined them),

then no f can satisfy the equation, hence M2 = 0.

3. If k = 4, then by ∑
ω (mod SL2(Z))

mf (w)

m(w)
=

1

3
,

the only combinations of 1/2, 1/3, and 1 that can sum to 1/3 is just 1/3. This implies that mf (ρ) = 1,

and mf (z) = 0 for z 6≡ ρ (mod Γ). We already know E4 is a modular form of weight 4, which implies

that E4 will satisfy this condition too, by the theorem. We know from the Fourier expansion that

E4(i∞) = 1, which implies that for any f ∈M4, there exists some c so that (f − cE4)(i∞) = 0, hence
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f − cE4 is identically zero (because by the theorem, f − cE4 can have a zero at ρ and nowhere else.)

This means f = cE4, so M4 = 〈E4〉.

4. If k = 6, then by ∑
ω (mod SL2(Z))

mf (w)

m(w)
=

1

2
,

mf (i) = 1 (since everything has to add up to 1/2, and the only way to get that is using i because

m(i) = 2) and every other mf (z) = 0. So by the same reasoning as before, M6 = G6C.

5. If k = 8, then from the sum needing to equal 2/3, we get mf (ρ) = 2 and mf (z) = 0 otherwise. In fact,

using the same reasoning as before, we get M8 = G4(z)
2C = G8(z)C. So by considering the constant

term, one can actually show E4(z)
2 = E8(z) (which yields some cool identities about summations of

powers of divisors.)

6. If k = 10, then the sum needs to equal 5/6, and the only way this can happen is via 1/2 + 1/3, which

implies that mf (i) = 1 and mf (ρ) = 1, and mf (z) = 0 otherwise. By the same reasoning as above,

this implies M10 is one-dimensional, hence M10 = G4G6C.

7. If k ≥ 12, then for all f ∈Mk, there exists a unique c ∈ C such that f(z)− cGk(z) vanishes at i∞. It

follows that the quotient
f(z)− cGk(z)

∆(z)
∈Mk−12

must be a holomorphic function with weight k− 12. This implies that every f ∈Mk can be written as

f(z) = f̃(z)∆(z) + cGk where f̃(z) ∈Mk−12. Therefore,

Mk = ∆(z)Mk−12 ⊕GkC.

Using this, we can now compute the dimension of Mk for every k by induction.

Theorem 1.59

For k ≥ 2 even, we have

dimMk =

bk/12c k ≡ 2 (mod 12)

bk/12c+ 1 otherwise.

Proof. For the base cases, we computed above

dimM0 = 0, dimM2 = 0, dimM4 = 1, dimM6 = 1, dimM8 = 1, dimM10 = 1.

We showed that for k ≥ 12, we have

dimMk = dimMk−12 + 1.

This finishes the proof.
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Proposition 1.60

M is generated by G4 and G6.

Proof. UseGa
4G

b
6 instead ofGk in our direct sum decomposition forGk above. I.e., we know ∆ is a polynomial

in G4, G6, now just apply Mk = ∆(z)Mk−12 ⊕ GkC, and the base cases that M0,M2,M4,M6,M8,M10 are

generated by G4 and G6 (as we computed above.)

Proposition 1.61

G4 and G6 are algebraically independent.

Proof. Assume P (G4, G6) = 0 with degP minimal. Then we have either

Gm
4 +G6Q(G4, G6) = 0, or Gm

6 +G4(Q(G4, G6) = 0,

for if there is no leading term like this, then we can divide out by the Eisenstein series and constant term out

front. But G6(i) = 0, which means the first option is impossible since G4(i) 6= 0; as for the second option,

G4(ρ) = 0 6= G6(ρ).

Corollary 1.62

M = C[G4, G6]

Definition 1.63

f ∈Mk is a cusp form if it vanishes at i∞. So we can decompose

Mk = EkC⊕ Sk,

where Sk is the space of cusp forms.

Proposition 1.64

There is no cusp form of weight ≤ 10 on SL2(Z)\H.

Proof. We proved this using our case work above.

Using 1-dimensionality, it’s clear that:

Corollary 1.65

E2
4 = E8 and E4E6 = E10 and E6E8 = E4E10 = E14 and E2

6 − E12 = c∆.

If we compute what c has to be by comparing the first coefficients in this last relation, we get that
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Corollary 1.66

τ(n) =
65

756
σ11(n) +

691

756
σ5(n)−

691

3

∑
0<m<n

σ5(m)σ5(n−m).

Theorem 1.67: (Niebar)

τ(n) = n4σ(n)− 24
∑

0<m<n

m2f(m,n)σ(n)σ(n−m),

where f(mn) = 35m2 − 52mn+ 18n2.

Why the name “cusp form”? If we draw the fundamental domain like a geometer, then it looks like a

funnel, since the higher you go up the closer points get to each other (which provides intuition for why

geodesics are those strange semicirles that go perpendicular to R! Namely, traveling horizontally close to R

is very expensiive, whereas traveling horizontally far away is much cheaper) so that the “point” at the very

end is just a cusp.

(Lecture 5: September 24, 2020)

1.9 Modular forms on congruence subgroups

If you’re doing number theory, then most modular forms you concern yourself live on a congruence subgroup

of SL2(Z).

Definition 1.68

Let N be a positive integer. The principal congruence subgroup of level N is

Γ(N) :=


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡

1 0

0 1

 (mod N)

 ,

i.e., Γ(N) is the kernel of the projection map SL2(Z) → SL2(Z/NZ).

Definition 1.69

Γ ⊆ SL2(Z) is a congruence subgroup if it contains Γ(N) for some N . The least such N is the level

of Γ.

Examples:

1. Γ(1) = SL2(Z).
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2. Γ0(N) :=


a b

c d

 ∈ Γ(1) : c ≡ 0 (mod N)

. For some analytic number theorists, this is maybe the

only congruence subgroup they’ll ever see in their research.

3. Γ1(N) :=


a b

c d

 ∈ Γ(1) :

a b

c d

 ≡

1 ∗

0 1

 (mod N)

.

4. So Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z)

Note: we only care about subgroups Γ ⊆ SL2(Z) such that vol(Γ\H) < ∞, or equivalently, finite index

subgroups; this equivalence is due to the identity

vol(Γ\H) = [SL2(Z) : Γ)] vol(SL2(Z)\H).

The volume here is integration of the fundamental domain against the hyperbolic metric. (Remark: since

SL2(R) is the isometry group of H, every fundamental domain has the same volume.)

Proposition 1.70

Γ(N)E Γ1(N) and Γ1(N)E Γ0(N).

Proof. Consider the map

Γ1(N) → Z/nZ :

a b

c d

 7→ b (mod N).

This has kernel Γ(N). Next, consider the map

Γ0(N) → (Z/nZ)∗ :

a b

c d

 7→ d (mod N).

This has kernel Γ1(N).

Grand definition number two of modular forms:
Definition 1.71

Let Γ be a congruence subgroup of SL2(Z). Then f : H → C a modular form of weight k with respect

to Γ if:

1. f is holomorphic;

2. f(γz) = (cz + d)kf(z) for any γ ∈ Γ;

3. f(αz) is holomorphic at z = i∞ for any α ∈ SL2(Z).

We say f is a cusp form if, in addition,

4
∫ nα

0
f(αz)dx = 0 for all α ∈ SL2(Z), where nα is the width of the cusp.
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Why the third condition? In the full modular surface, the only cusp was at i∞, but these congruence

subgroups can come with more cusps! For example, on Γ0(2)\H, there is a cusp at i∞ and another at 0. For

example, taking α =

 0 1

−1 0

, then α : i∞ → 0, so asking for f(αz) to be holomorphic at i∞ is the same

thing as asking for f to be holomorphic at 0. In other words, this third condition is equivalent to saying

there are no negative terms in the Fourier expansion of f at any cusp (compare to our go-to expansion,

at the cusp i∞.) And the fourth requirement is equivalent to saying that there is no constant term in the

Fourier expansion at each cusp.

1.10 Theta series

We are concerned with the problem of counting the number of representations of n as a sum of k squares.

Towards this, we define

r(n, k) := #
{
(r1, . . . , rk) ∈ Zk : n = r21 + · · ·+ r2k

}
.

A combinatorial correspondence:

Proposition 1.72

We have

r(n, i+ j) =
∑

`+m=n

r(`, i)r(m, j).

Proof. Representing ` as a sum of i squares and m as a sum of j squares, adding these together yields `+m

as a sum of i+ j squares. This gives all representations.

Definition 1.73

The theta series is

ϑ(τ, k) :=
∑
n≥0

r(n, k)qn,

where q = e(τ) and τ ∈ H.

Fact 1.74

For τ ∈ H, ϑ(τ, k) converges absolutely.

Proof. If r21 + · · ·+ r2k = n then each |ri| ≤
√
n, which gives an upper bound

r(n, k) ≤ (2
√
n+ 1)k ≤ (3

√
n)k ≤ 3knk/2,

so writing τ = x+ iy, we have ∑
n≥0

r(n, k)|qn| ≤ 3k
∑
n≥0

nk/2(e−2πy)n.
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Finally, observe that the summands are eventually bounded termwise by Rn for any fixed R ∈ (e−2πy, 1),

since

nk/2(e−2πy)n ≤ Rn ⇐⇒ nk/2 ≤
(

R

e−2πy

)n

,

which eventually holds because the RHS grows exponentially in n whereas the LHS grows polynomially.

Corollary 1.75

ϑ(τ, i+ j) = ϑ(τ, i)ϑ(τ, j)

Proof. We consider the power series expansions:

∑
n≥0

r(n, i+ j)qn =

∑
`≥0

r(`, i)qn

∑
m≥0

r(m, j)qn

 .

We multiply out (justified by absolute convergence) and apply our combinatorial proposition.

We now investigate transformation properties of ϑ. Note that

ϑ(τ) := ϑ(τ, 1) =
∑
n≥0

r(n, 1)qn =
∑
n∈Z

qn
2

,

since r(n, 1) = 2 is n is a square, and 0 otherwise. Note: we saw this function when we found the analytic

continuation of ζ; in fact, we found a functional equation using Poisson summation. We bootstrap that

result to show the following:

Lemma 1.76

ϑ

0 −1

4 0

 τ

 =
√
−2iτϑ(τ). (1.3)

Proof. Recalling the first lecture, if we define ψ(x) =
∑

n≥1 e
−n2πx, we showed that

1 + 2ψ(x) =
1√
x
(2ψ(1/x) + 1).

As ψ(−2iτ) =
∑

n≥1 e
2πin2τ , we get that

ϑ(τ) = 2ψ(−2iτ) + 1.

So by the transformation law with x = −2iτ , we get

1 + 2ψ(−2iτ) = − 1√
−2iτ

(
2ψ(

1

−2iτ
+ 1)

)
.

The LHS is clearly ϑ(τ), and on can compute that parenthesis on the RHS contain the term ϑ(−1/4τ).
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Now, because 1 0

4 1

 =

 0 1/4

−1 0

1 −1

0 1

0 −1

4 0

 ,

we have

ϑ

1 0

4 1

 τ

 = ϑ

 0 1/4

−1 0

 τ ′

 , τ ′ :=

1 −1

0 1

0 −1

4 0

 τ = − 1

4τ
− 1.

We can compute that

ϑ

 0 1/4

−1 0

 τ ′

 =
√
−2iτ ′ϑ(τ ′)

=
√
2i(1/4τ + 1)ϑ

1 −1

0 1

0 −1

4 0

 τ


=
√
2i(1/4τ + 1)ϑ

0 −1

4 0

 τ


=
√
2i(1/4τ + 1)(−2iτ)ϑ(τ)

=
√
4τ + 1ϑ(t),

where we used the fact that ϑ(τ) = ϑ(τ + 1). What’s the point?

We can use this to get the transformation law for θ(τ, n) for n ≥ 1, as follows:

Fact 1.77

We have

ϑ

1 0

4 1

 τ, 4

 = (4τ + 1)2ϑ(τ, 4).

Thus, ϑ(τ, 4) is a modular form of weight 2 with respect to the subgroup

Γϑ :=

〈
−I,

1 0

4 1

 ,

1 1

0 1

〉 .

Proof. By our corollary, ϑ(τ, 4) = ϑ(τ)4, hence

ϑ

1 0

4 1

 τ, 4

 = ϑ

1 0

4 1

 τ, 1

4

= (4τ + 1)2ϑ(τ, 1)4 = (4τ + 1)2ϑ(τ, 4).

And ϑ clearly transforms as it ought to with respect to the other two generators.

It turns out that this group is one of our congruence subgroups:

Proposition 1.78

In fact, we have Γϑ = Γ0(4).
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Proof. Take

a b

c d

 ∈ Γ0(4). We first compute that

a b

c d

1 n

0 1

 =

a b′

c nc+ d

 ,

a b

c d

 1 0

4n 1

 =

 a′ b

c+ 4nd d


The point: each step can make min{|c|, 2|d|} strictly smaller if c, d 6= 0. This must stop when c or d equals

zero. But then no

a b

c d

 ∈ Γ0(4) satisfies d = 0 (since c ≡ d ≡ 0 (mod 4) implies the determinant is zero

modulo 4) hence

a b

c d

 is a product of

1 n

0 1

’s and

 1 0

4n 1

’s with some

∗ ∗

0 ∗

 ∈ Γ0(4), but this

matrix is necessarily some

1 m

0 1

. It follows that Γϑ ⊇ Γ0(4). The other direction is clear.

To be fully rigorous in verifying that ϑ is a modular form on Γ0(4), one needs to check the Fourier

expansion at each cusp. As there are three cusps, one needs to check the other two. This is super tedious,

but not very difficult.

1.11 The weight two Eisenstein series

Now, we’ll define weight two Eisenstein series. We showed (using the valence formula) that there is no weight

2 modular form on the whole modular surface. However, we define the next best thing here:

Definition 1.79

The weight two Eisenstein series is

G2(z) :=
∑
c∈Z

∑
d∈Z′

c

1

(cz + d)2
,

where Z′
c = Z− {0} if c = 0, and Z′

c = Z otherwise.

This series actually conditionally converges. But since we don’t have absolute convergence, something

weird happens. One can show, with some effort:

Proposition 1.80

G2(γz)(cz + d)−s = G2(z)− 2πic
cz+d .

Although G2(z) is not a modular form on the full modular group, but we can fix it:

Proposition 1.81

The function G2,N (z) := G2(z)−NG2(Nz) is a modular form in M2(Γ0(N)).

Proof. Follows directly from previous proposition.
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This yields:

Proposition 1.82

G2,2, G2,4 ∈M2(Γ0(4))

One can compute dimM2(Γ0(4)) using the same method as before, but this technique becomes unweildy

with contour integration on these congruence subgroups, so the better way to go is to use Riemann Roch

(see Diamond-Sherman 3.9.)

Corollary 1.83

ϑ(τ, 4) = − 1
π2G2,4(τ).

Proof. This can be seen by comparing Fourier expansions (we only need to compare the first three Fourier

coefficients to see that they’re equal, since this is 2-dimensional space.)

By comparing Fourier coefficients, we get:

Corollary 1.84

8
∑

d|n,4-d d = r(n, 2) for n ≥ 1.

This is one way to prove the four-square theorem, which says we can represent every integer as a

sum of four squares. This is one very nice application of modular forms to a problem in elementary number

theory. There is a guiding principle that modular forms encode a lot of arithmetic information, despite

the fact that their origin is very analytic and geometric. The motivation for continuing Eisenstein series to

weight 2 was to try to explore this.

It turns out G2 has a Fourier expansion very similar to Gk≥4.

Proposition 1.85

We have

G2(τ) = 2ζ(2)− 8π2
∑
n≥1

σ1(n)q
n.

Furthermore,

E2(τ) :=
G2(τ)

2ζ(2)
= 1− 24

∑
n≥1

σ1(n)q
n.

And these converge absolutely.

This implies
1

τ2
E2(−1/τ) = E2(τ) +

12

2πiτ
.
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Definition 1.86

The Dedekind eta function is

η(τ) := e(τ/24)
∏
n≥1

(1− qn).

Proposition 1.87

S(τ) :=
∑

n≥1 log(1 − qn) converges absolutely and uniformly on compact subsets of H, hence η(τ)

is holomorphic on H.

Proposition 1.88

We have

η(−1/τ) =
√
−iτη(τ).

Proof. We compute

η′

η
(τ) =

d

dτ
log η(τ)

=
d

dτ

e(τ/24) +∑
n≥1

(1− qn)


=
πi

12
− 2πi

∑
d≥1

dqd

1− qd

=
πi

12
− 2πi

∑
d≥1

d
∑
m≥1

qdm

=
πi

12
− 2πi

∑
m≥1

∑
d≥1

dqdm

=
πi

12
− 2πi

∑
n≥1

σ1(n)q
n

=
πi

12
E2(τ),

which implies that
d

dτ
(log(η(−1/τ))) =

πi

12
τ−2E2(−1/τ).

This in turn implies that

d

dt
(log(

√
−iτη(τ))) = 1

2τ
+
πi

12
E2(τ) =

πi

12
(E2(τ) +

12

2πiτ
),

so we can infer that

η(−1/τ) = c
√
−iτη(τ)

for some c ∈ C. Set z = i, we get that c = 1 and the proposition follows.
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Corollary 1.89

Clearly, η24(τ) is invariant under τ 7→ τ + 1, and τ24(−1/τ) = τ12η24(τ). Therefore η24 ∈ S12(Γ(1)).

Hence ∆ = η24, since this space is 1 dimensional (just compare Fourier coefficients.) This proves the

famous product formula

∆ = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn.

In the 19th century, people were obsessed with understanding elliptic integrals, which is why all these

things were defined. Coincidentally, they found these mysterious expressions.

So what are θ(τ) and η(τ)? These are modular forms of weight 1/2, which are called half-integral weight

modular forms. These are very mysterious, and understanding these has been a huge industry since the

1980s. Iwaniec had a breakthrough of estimating Fourier coefficients, which led to a breakthough on Linnik’s

conjecture on equidistribution on the unit sphere of solutions to quadratic equations. Since then, Duke has

had many beautiful results in this area. It turns out that every time you investigate half-integral weight

modular forms, you get a random associated beautiful result in geometry/number theory.

(Lecture 6: September 29, 2020)

1.12 The Hecke operators

We proved that M = C[G4, G6], which on one hand, might be evidence that the space of modular forms isn’t

so interesting. However, the addition of Hecke operators acting on this space makes everything much more

interesting.

We will first consider the general situation. Suppose we have a group G acting on a space X. (We

can think of SL2(R) y H; the aim here is to define Hecke operators acting on L2(Γ\H).) Then a discrete

subgroup Γ ≤ G acts discontinuously on X.

Definition 1.90

The commensurator subgroup Γ of G is defined to be

COM(Γ) :=
{
g ∈ G : Γ ∩ g−1Γg has finite index both in Γ and g−1Γg

}
.

(Note that COM(Γ) ⊇ Γ.)

For g ∈ COM(Γ), let Γg := Γ∩g−1Γg. As Γg\Γ is a finite collection of cosets, always write Γ as a disjoint

union

Γ =
⊔

j∈Fg

Γgδj ,

where Fg is some set of indices, #Fg = [Γ : Γg], and δj are the right coset representatives for right cosets of
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Γg in Γ. Correspondingly, we define the operator

Tg : L2(Γ\X) → L2(Γ\X) : f(−) 7→
∑
j∈Fg

f(gδj−).

We need to check that Tg is well-defined, when acting on L2(Γ\X). By hypothesis, this is a finite sum, so

we only need to show that if f : X → X is Γ-invariant, then Tgf is as well.

Proposition 1.91

If f ∈ L2(Γ\X), then for any g ∈ COM(Γ), we have Tgf ∈ L2(Γ\X) as well.

Proof. By definition,

(Tgf)(γx) =
∑
j∈Fg

f(gδjγx).

Since γ ∈ Γ, we have δjγ = δ′jδπ(j) for some permutation π on Fg, and some δj ∈ Γg (to see this, act by γ

on the right of the coset decomposition.) This implies∑
j∈Fg

f(gδjγx) =
∑
j∈Fg

f(gδ′jδπ(j)x)

=
∑
j∈Fg

f(g(g−1µjg)δπ(j)x) where µj ∈ Γ, since δj ∈ g−1Γg

=
∑
j∈Fg

f(µjgδπ(j)x)

=
∑
j∈Fg

f(gδπ(j)(x))

= (Tgf)(x),

hence Tgf is invariant under the Γ-action.

It only remains to show that Tgf is square-integrable on the fundamental domain. As Tgf is a finite sum

of square integrable functions, this is clear using the triangle inequality.

Remark: one can show that Tg commutes with every invariant differential operator. So we can consider

joint eigenfunctions of Tg and all invariant differential operators, which we’ll see are parameterized by Maass

forms, if we’re working on SL2(R).

Now, let us restrict to the case Γ = PSL2(Z) and G = PSL2(R). This isn’t exactly the case of

modular forms on H, but we’ll see in the next proposition precisely how it is equivalent. In

this case, set g :=

n 0

0 1

, then one can show Tn := Tg is given by

Tn : Fun(PSL2(Z)\PSL2(R)) → Fun(PSL2(Z)\PSL2(R)) : f(−) 7→
∑
ad=n

b (mod d)

f

a b

0 d

−

 .
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How to verify this? The idea is to show that the sum parameterizes coset representatives for

Γg\Γ =

PSL2(Z) ∩

1 −n

0 1

PSL2(Z)

1 n

0 1

 \PSL2(Z).

One can show directly that these are in fact the only Hecke operators that we can define on this G, i.e. every

Hecke operator will be equivalent to one of these Tn.

Proposition 1.92

Let Γ ≤ PSL2(R) be a congruence subgroup, and consider the Iwasawa decomposition on SL2(R):

SL2(R) 3 g =

1 x

0 1

√
y 0

0 1/
√
y

cos θ − sin θ

sin θ cos θ

 .

Then, the following are equivalent:

1. f(z) ∈Mk(Γ), i.e., f is a modular form of weight k for Γ.

2. F (g) := yk/2f(x+ iy)e−kiθ is a Γ-invariant function on PSL2(R).

Proof. Do the computation in Iwasawa coordinates.

This correspondence carries over to our discussion of Hecke operators as well.

Proposition 1.93

Via the above correspondence, the below maps are equivalent:

1. F 7→ TnF ,

2. f 7→ nk−1
∑

ad=n
b (mod d)

d−kf
(
az+b
d

)
.

Example: if n = 4, then

T4F =
∑
ad=4

b (mod d)

F ((ax+ b)/d)

= F ((4z + 0)/1) + F ((2z + 0)/2) + F ((2z + 1)/2)

+ F ((z + 0)/4) + F ((z + 1)/4) + · · ·+ F ((z + 3)/3).

In this case, we’re acting on a function living on SL2(R), than the case of a function living on H.

Let us return to the action of the Hecke operators on classical modular forms. We present the formal

definition now:
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Definition 1.94

To define the action of the Hecke operator on the space of modular forms Tn :Mk →Mk. . .

1. For f ∈Mk, define a function on PSL2(R) by setting F (x, y, θ) = e−kiθyk/2f(z).

2. Then TnF is another SL2(Z)-invariant function; one can show that, in fact, (TnF )(x, y, θ) =

e−kiθyk/2g(z) for some function g depending only on z.

3. As TnF is invariant under SL2(Z), g(z) is a modular form of weight k.

Now we collect some fundamental facts about these Hecke operators acting the space of modular forms:

Proposition 1.95

The Hecke operators Tn :Mk →Mk satisfy:

1. TnTm = Tnm whenever (n,m) = 1.

2. TnTm = TmTn for all m,n.

3. TpnTp = Tpn+1 + pk−1Tpn−1

4. If f ∈Mk, then in fact Tnf ∈Mk as well; if f ∈ Sk, then Tnf ∈ Sk.

Proof. The first three points follow from some relatively tedious direct computations. For the fourth, if F

is invariant under Γ, then TnF is also invariant under Γ. So Tnf transforms like a weight k function on H;

so to check this last point, we only need to check that the resulting function is holomorphic. And for this,

it suffices to verify that the Fourier expansion is nice, which we do in the below lemma (which also shows

that f is a cusp form implies Tnf is as well.)

Lemma 1.96

If f =
∑

n≥0 anq
n ∈Mk, then

Tnf =
∑
m≥0

bmq
m, where bm :=

∑
d|(n,m)

dk−1amn/d2 .

In particular, f ∈ Sk implies Tnf ∈ Sk.
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Proof. We compute that

Tnf(z) = nk−1
∑
ad=n

b (mod d)

d−kf

(
az + b

d

)

= nk−1
∑
ad=n

b (mod d)

∑
`≥0

d−ka`e

(
az + b

d
`

)

= nk−1
∑
ad=n

∑
`≥0

d1−ka`e
2πiaz`/d 1

d

d−1∑
b=0

(e2πi`/d)b

=
∑
ad=n

∑
`′≥0

ak−1ad`′q
a`′ .

Writing d = n/a, this is ∑
ad=n

∑
`≥0

ak−1ad`q
a` =

∑
a|n
`>0

ak−1an`/aq
a`.

What is the coefficient of qm? Setting m = a`, we can rewrite this as∑
a|n
`≥0

ak−1an`/aq
a` =

∑
a|n

m/a≥0

ak−1anm/a2qm =
∑
a|n
a|m

ak−1anm/a2qm =
∑

a|(m,n)

ak−1anm/a2qm,

which is exactly what was to be shown.

In particular, we have

b0 =
∑
d|n

dk−1a0,

so f is cuspidal implies Tnf is as well.

In particular:

Lemma 1.97

If f(z) =
∑

n≥0 anq
n ∈Mk is an eigenfunction of Tn with Hecke eigenvalue λn, then

an = λna1.

Proof. Write Tnf =
∑

m≥0 bmq
m. On one hand, we have

b1 =
∑

d|(n,1)

dk−1an/d2 = an.

On the other hand, Tnf = λnf implies bm = λnam. Setting m = 1 yields the lemma.

Lemma 1.98

If f(z) =
∑

n≥1 anq
n ∈ Sk is a cusp form that is also a joint eigenfunction of all the Hecke operators,

then

f(z) = a1
∑
n≥1

λnq
n.
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Proof. If Tnf = λnf for all n, then an = λna1 for all n.

What’s so cool about being a joint eigenfunction of all the Hecke operators? We have TnTmf = λnλmf ,

and Tnmf = λnmf , so (n,m) = 1 implies λnλm = λmn. This is the multiplicativity of Hecke eigenvalues:

Lemma 1.99

Assume f ∈ Mk is a joint eigenfunction of all the Hecke operators {Tn}, with associated Hecke

eigenvalues {λn}. Then,

λnλm = λmn = λmλn

for all (m,n) = 1.

Note: {Tn} : Mk → Mk is a commuting family of linear operators acting on a finite dimensional vector

space. From linear algebra, it follows that the Hecke operators are simultaneously diagonalizable on the space

of holomorphic modular forms. Therefore, it makes sense to talk about joint eigenfunctions of all Tn, and

Mk is in fact spanned by joint eigenfunctions of all Tn. Any such function is called a holomorphic Hecke

eigenform.

Definition 1.100

f ∈Mk is a holomorphic Hecke eigenform if it is a joint eigenfunction of all Tn.

So our lemma abose says that for any holomorphic Hecke eigenform, we can write down the Fourier

expansion in terms of the eigenvalues.

Note that 3 above, applied to f , gives

λpnλpf = λpn+1f + pk−1λpk−1f,

so f 6= 0 implies we get a recursive formula for Hecke eigenvalues:

Lemma 1.101

Let f(z) ∈ Mk be a holomorphic Hecke eigenfunction. Then the Hecke eigenvalues corresponding to

f satisfy the recursive formula

λpnλp = λpn+1 + pk−1λpn−1 .

Some remarks:

1. A take-away from this: the Hecke eigenvalues are determined by their values at the primes.

2. An important point: Hecke eigenvalues are real. This follows from self-adjointness of all the Hecke

operators, which in turn follows from the original definition using the gδj . The adjoint is just given

by taking the inverse of gδj . I.e., the point is to find T ′
g such that 〈Tgf1, f1〉 =

〈
f1, T

′
gf2
〉
. So the

adjoint action is given by shifting f2 by the inverses of gδj and summing over j. A straightforward but

important step in this argument is to show that g(g−1δ−1
j g) also gives coset representatives.
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What we explained today is in fact a solution to two of the Ramanujan conjectures!!

Corollary 1.102

1. τ(n) is multiplicative on relatively prime arguments.

2. τ(n) satisify the recursion τ(p)τ(pn) = τ(pn+1) + p11τ(pn−1).

Proof. Recall that S12 is one-dimensional. Since {Tn} is a commuting family of linear operators acting on

this vector space, we can conclude that the generator ∆ is a joint eigenfunction of all Tn, and therefore ∆ is

a holomorphic Hecke cusp form. The coefficients are normalized to τ(1) = a(1) = 1, so the Hecke eigenvalues

are precisely τ(n). That is, each Hecke operator satisfies

Tn : S12 → S12 : ∆ 7→ τ(n)∆.

Thus, τ(n) satisfies every relation satisfied by Hecke eigenvalues.

Previously, we saw that modular forms are in fact polynomials in the Eisenstein series G4 and G6. Now,

we’re interested in the case where such polynomials are joint eigenfunctions of all the Hecke operators.

Definition 1.103

We define the normalized Hecke operators to be

Tn := n−(k−1)/2Tn.

The basic results about composing these maps carry over to the normalized setting:

1. TnTm = Tnm when (n,m) = 1

2. TpnTp = Tpn+1 + Tpn−1 .

3. More generally, we have

TnTm =
∑

d|(n,m)

Tnm/d2 ,

and λn = n(k−1)/2λ̃n, where λ̃n is the normalized Hecke eigenvalue.

Ramanujan conjectured was that the τ function satisfies the following bound:

|τ(p)| ≤ 2p11/2.

Using the above normalization, Ramanujan’s conjecture becomes |τ̃(p)| ≤ 2. And the generalized Ramanujan

conjecture is the following:

Conjecture 1.104: Ramanujan conjecture

The normalized Hecke eigenvalues λ̃p satisfy the bound

|λ̃p| ≤ 2.
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In fact, we know this conjecture holds for normalized Hecke eigenvalues corresponding to

holomorphic Hecke eigenforms, by the work of Deligne which resolved the Riemann Hypothesis for

function fields.
Proposition 1.105

Let {λ̃n} be the collection of normalized Hecke eigenvalues corresponding to a holomorphic Hecke

eigenform f . By the Ramanujan conjecture, we can write λ̃p = 2 cos θp for some θp ∈ [0, π). Then,

λ̃pn =
sin((n+ 1)θp)

sin θp
.

Proof. The normalized Hecke eigenvalues satisfy the recurrence λ̃pk+1 + λ̃pk−1 = λ̃pk λ̃p. Denoting ak := λ̃pk ,

we can rewrite this recurrence as ak+1 + ak−1 = aka1, with a0 = 1 (since f is normalized to have λ̃1 = 1)

and a1 = eiθ + e−iθ (since this is exactly λ̃p = 2 cos θp). The characteristic polynomial is

x2 − (eiθ + e−iθ)x+ 1 = 0,

which gives solutions ak = αeikθ + βe−ikθ.

Definition 1.106

Let {λ̃n} be the collection of normalized Hecke eigenvalues corresponding to a holomorphic Hecke

eigenform f , and write λ̃p = 2 cos θp. Then the Satake parameter of f at p is defined to be eiθp .

Remark: the Sato–Tate conjecture is precisely a statement about the distribution of Satake parameters,

which is why this looks like the setup for the Sato–Tate conjecture.

1.13 The L-function corresponding to a holomorphic Hecke eigenform

Proposition 1.107

Let f ∈ Sk be a holomorphic Hecke eigenform, normalized so the first Fourier coefficient is λ1. Let

L(f, s) :=
∑
n≥1

λ̃n
ns
, Λ(f, s) :=

Γ(s+ k−1
2 )

(2π)s
L(f, s).

Then:

1. L(f, s) converges absolutely for <(s) > 3/2.

2. Λ(f, s) has analytic continuation to all of C.

3. Λ(f, s) satisfies the functional equation Λ(f, s) = ikΛ(f, 1− s).
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Proof. For (1), as f(z) =
∑

n≥1 λnq
n ∈ Sk, the n’th Fourier coefficient of f satisfies the generic cusp form

bound λn � nk/2 (we prove this in a future lecture). Because λn = n
k−1
2 λ̃n, this implies λ̃n � n1/2.

Therefore L(f, s) indeed converges absolutely for <(s) > 3/2.

Towards showing (2), we’ll compute the Mellin transform of f along the vertical half line {iy : y > 0}.

We have ∫ ∞

0

f(iy)ys
dy

s
=

∫ ∞

0

∑
n≥1

λne
−2πnyys

dy

y
=
∑
n≥1

λn
(2πn)s

Γ(s) =
Γ(s)

(2π)s

∑
n≥1

λ̃n

ns−
k−1
2

.

(Remark: the Gamma function is just the Mellin transform of e−x. So of course applying the Mellin transform

to Fourier expansion of a modular form specialized to z = iy will yield a Gamma factor.) But this implies

that
Λ(f, s− k−1

2 )

(2π)
k−1
2

=

∫ ∞

0

f(iy)ys−1dy.

The integral on the RHS converges absolutely for s ∈ C. Why is this? The point is that f is a cusp form, so

f(iy) → 0 exponentially fast as y → ∞. Rigorously, if |λn| � nc, then for any sufficiently small ε > 0, we

have ∑
n≥1

|λn|e−2πny �
∑
n≥1

nc(e−2πy)n �
∑
n≥1

(e−2πy + ε)n � e−2πy + ε

1− (e−2πy + ε)
� e−2πy + ε.

Choosing ε = e−2πy/M , where M =M(y) is large enough so that (M + 1)e−2πy/M < 1, this implies∫ ∞

0

∑
n≥1

λne
−2πnyys

dy

y
�
∫ ∞

0

e−2πyys−1dy,

which converges for all s. This argument also illustrates why f needs to be a cusp form for this construction

to work. It follows immediately that Λ(f, s) has analytic continuation to all of C.

Next we show (3). We know f(−1/z) = zkf(z). Restricting to the imaginary axis z = iy, this implies

f(i/y) = (iy)kf(iy). The idea is to insert this functional equation into the above Mellin transform and

apply a change of variable, which will yield a functional equation directly analogous to how we obtained the

transformation law for ζ during the first lecture. By our above computation, we have

Γ(s)

(2π)s

∑
n≥1

λ̃n

ns−
k−1
2

=

∫ ∞

0

f(iy)ys
dy

y
=

∫ ∞

0

f(i/y)(iy)−kys−1dy.

Applying the variable transformation x = 1/y, so dx = −y−2dy = −x2dy, we have∫ ∞

0

f(i/y)(iy)−kys−1dy =

∫ ∞

0

f(ix)(i/x)−k(1/x)s−1 dx

−x2

= ik
∫ ∞

0

f(ix)xk−s−1dx

= ik
Γ(k − s)

(2π)k−s

∑
n≥1

λ̃n

n(k−s)− k−1
2

.

These are related to the completed L-function via the identities

Λ(f, s− k−1
2 )

(2π)
k−1
2

=
Γ(s)

(2π)s

∑
n≥1

λ̃n

ns−
k−1
2

, ik
Λ(f, k+1

2 − s)

(2π)
k−1
2

= ik
Γ(k − s)

(2π)k−s

∑
n≥1

λ̃n

n(k−s)− k−1
2

.
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It follows that

Λ(f, s− k − 1

2
) = ikΛ(f,

k + 1

2
− s).

We make the variable transformation s 7→ s− (k − 1)/2, which yields Λ(f, s) = Λ(f, 1− s), as needed. This

completes the proof.

Finally, we’ll discuss the Euler product of this automorphic L-function. We compute

L(f, s) =
∑
n≥1

λ̃n
ns

=
∏
p

(
1 +

λ̃p
ps

+
λ̃p2

p2s
+
λ̃p3

p3s
+ · · ·

)

=
∏
p

(
1− λ̃p

ps
+

1

p2s

)−1

=
∏
p

(
1− α1(fp)

ps

)−1(
1− α2(fp)

ps

)−1

.

where we used unique factorization, and then multiplicity of λ̃n on relatively prime arguments, and then

the recursive relation among the prime powers (note: this is one reason we consider the normalized Hecke

eigenvalues) and then the definition of the Satake parameters. This is the Euler product of the au-

tomorphic L-function corresponding to the Hecke eigenform f . The α1(fp), α2(fp) are the Satake

parameters; there are 2 of them because f is an automorphic form on GL2.

In general, if π is an automorphic representation on GLm /Q, then we’ll see an Euler product of the

following form (with m Satake parameters; we say m is the degree of the L-function)

L(π, s) =
∏
p

m∏
j=1

(
1− αj(πp)

ps

)−1

.

And the Generalized Ramanujan conjecture (GRC) says that |αp(πp)| = 1 if π is unramified at p (note

that everything is unramified at p in GL2.) We don’t even know if this is true for Maass forms!!

The current best bound for Maass forms was proven by Kim and Sarnak (2000), that |αk(πp)| ≤ p7/64.

(Lecture 7: October 1, 2020)

1.14 Digression: motivating Hecke operators

Recall the zeta function,

ζ(s) :=
∑
n≥1

1

ns
=
∏
p

(
1− 1

ps

)−1

.

It’s a deep fact that the Dirichlet series is equal to the Euler product. Recall the Legendre symbol

(
n

p

)
=


1 n is a quadratic residue

0 p | n

−1 n is not a quadratic residue
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We can think of this as a character χp : (Z/pZ)× → {|z| = 1}. In general, if you take χ a character

(Z/dZ)∗ → {|z| = 1}, then the Dirichlet L-function associated to χ also has an Euler product:

L(s, χ) :=
∑
n≥1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1

.

Another thing in common between ζ and L(s, χ) is the existence of a functional equation: there is ζ(s) ↔

ζ(1− s) and L(s, χ) ↔ L(1− s, χ).

People wanted to know if L-functions obeying these nice properties (functional equation, Euler product)

can be generalized. People found:

1. Hasse-Weil zeta functions (corresponding to an algebraic variety).

2. Artin L-functions (corresponding to Galois representations)

But people wanted to know: what is the most general L-function one can write down? Towards this, Lang-

lands is the one who coined the term automorphic L-function. These L-functions are cooked up using a

representation π of a given algebraic group G. Such an L-function is written L(s, π). These are compli-

cated objects. But people believe that all L-functions that have Euler products and functional

equations must be one of the automorphic L-functions that Langlands defined. The simplest au-

tomorphic L-function other than ζ(s), L(s, χ) are the L-functions attached to modular forms: L(s, f), where

f is a holomorphic Hecke modular form. So that is one reason that it’s natural to study Hecke operators at

this point.

Let E : y2 = x3 + ax+ b be an elliptic curve. We want to count

ap := p+ 1−#
{
(x, y) ∈ (Z/pZ)2 : y2 ≡ x3 + ax+ b (mod p)

}
.

Similarly, we can compute ap2 to be some normalizing factor minus the count modulo p2. So if we define

L(s,E) :=
∏
p

(
1−

ap/
√
p

ps
+

1

p2s

)−1

,

then one can show that L(s,E) has a functional equation relating s and 1− s. So it’s natural to conjecture

that there exists some holomorphic Hecke eigenform f (for Γ0(N)) such that L(s, f) = L(s,E). This is true

for some cases by Andrew Wiles, and this led to the solution of Fermat’s last theorem. This is one of the

most dramatic applications of L-functions attached to Hecke eigenforms. So this is one reason that we study

Hecke theory.

1.15 The Petersson trace formula

As we can see from the Euler product, the L(s, f) is completely determined by the Hecke eigenvalues at

primes p, the

λ̃p.
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So these Hecke eigenvalues are interesting to study. For example, people ask questions like “if we vary

the modular forms, how do these Hecke eigenvalues vary?” Or “fix the modular form, and consider the

Hecke eigenvalues for varying p.” These questions are related to the Sato–Tate conjecture. To discuss these

questions, we need to discuss the trace formula. Roughly speaking, the trace formula will tell us what the

average of the n’th Hecke eigenvalue λf (n) is, as f runs over Mk(Γ). It is a formula that computes a

quantity of the shape ∑
f∈Mk(Γ)

λf (n).

This is a natural first statistical quantity to compute. We need to first define the Petersson inner product.

Proposition 1.108

If f, g ∈Mk(Γ), then ykf(z)g(z) is Γ-invariant.

Proof. Note that =(γz)k = yk/|cz + d|2k, so because f(γz) = (cz + d)kf(z) and g(γz) = (cz + d)kg(z), then

=(γz)kf(γz)g(γz) = ykf(z)g(z),

as needed.

We endow an inner product on the finite dimensional vector space Mk(Γ).

Definition 1.109

For f, g ∈Mk(Γ), we define

〈f, g〉 =
∫
Γ\H

f(z)g(z)yk
dxdy

y2
.

According to the third homework, dxdy/y2 is Γ-invariant, so this is a well-defined measure. So by the

previous propositon, the whole quantity is well-defined.

Proposition 1.110

Mk(Γ) (resp. Sk(Γ)) equipped with the Petersson inner product is a Hilbert space.

Proof. It is a complete, separable vector space (since it’s finite dimensional) equipped with a non-degenerate

inner product (since 〈f, f〉 > 0.)

Now we need to introduce Poincaré series. To simplify notation, fix Γ = PSL2(Z), and

Γ∞ =


1 n

0 1

 : n ∈ Z

 ⊆ Γ.

Fix φ : H → C a holomorphic function such that p(z) = p(z + 1), so p is not necessarily modular. Consider:

if f is a modular form, then

f(z) = f(γz)(cz + d)−k =: f |γ(z).
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Thus, f is a modular form with respect to Γ iff f = f |γ for all γ ∈ Γ. And one can check that f |γ1 |γ2 = f |γ1γ2 .

Because p is not a modular form, p 6= p|γ in general, and one way of turning p into a modular form is to

take its average over the slash operator. Namely, if

P =
∑
γ∈Γ

p|γ

is well-defined, then P is a modular form. Unfortunately, this sum diverges, since it contains the sub-sum∑
n∈Z p|1 n

0 1


. So we remedy this by actually defining

P :=
∑

γ∈Γ∞\Γ

p|γ .

So if we define Γ = ∪jΓ∞αj , then this means we’re taking P =
∑

j P |αj
. Illustrating this quotient: we have

the fundamental domain

T shifts this to the right one:

and S sends the triangle:

We know ΓF = H since F is a fundamental domain. But αjF collects fundamental domains on the half

plane, but only one among the shifts. Meaning, we can choose αj so that we only have the vertical strip,

since we’re picking only one from the translations:
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So picture the quotient Γ\H as the transformations moving fundamental domains into that above rect-

angular strip.

The series P =
∑

γ∈Γ p|γ will only converge if p is nice enough. Concretely,

P (z) =
∑

γ∈Γ∞\Γ

(cz + d)−kp(γz).

This is clearly invariant under |γ , so this is a modular form only given absolute convergence for any particular

p that we consider. The most important Poincaré series we consider is the following, taking p(z) := e(mz):

Definition 1.111

The m’th Poincaré series of weight k is

Pm(z) =
∑

γ∈Γ∞\Γ

(cz + d)−ke(mγz).

One can show that P0 = Ek. The way to see this is by parameterizing the quotient via

Γ∞\Γ = Γ∞

∗ ∗

c d


with (c, d) = 1. And summing over (c, d) = 1 gives the normalized Eisenstein series.

Proposition 1.112

If f =
∑

n≥0 anq
n ∈Mk, then

〈f, Pm〉 = Γ(k − 1)

(4πm)k−1
am.

50



Proof. We compute∫
γ\H

ykf(z)
∑

γ∈Γ∞\Γ

(cz + d)−ke(mγz)dµ(z) =

∫
γ\H

∑
γ∈Γ∞\Γ

yk(cz + d)−k(f(γz)(cz + d)−k)e(mγz)dµ(z)

=

∫
γ\H

∑
γ∈Γ∞\Γ

yk

|cz + d|2k
f(γz)e(mγz)dµ(z)

=

∫
γ\H

∑
γ∈Γ∞\Γ

=(γz)f(γz)e(mγz)dµ(z)

=

∫
Γ∞\H

=(z)kf(z)e(mz)dµ(z)

This technique is called “unfolding.” We can now evaluate this integral directly:∫
Γ∞\H

=(z)kf(z)e(mz)dµ(z) =
∫ ∞

0

∫ 1

0

ykf(z)e−2πimz−2πmy dxdy

y2

=

∫ ∞

0

ame
2πimy−2πmyyk−2dx.

since the only term in the Fourier expansion of f which survives the integration is n = m. After a change of

variable, this is just a gamma function, which finishes the proof.

Corollary 1.113

{Pm : m ≥ 0} spans Mk.

Proof. The span of the Pm is a closed subspace of Mk, because Mk is finite-dimensional. If the span is a

proper subspace of Mk, then there exists an orthogonal compliment of this span, so there exists f ∈ Mk so

that 〈Pm, f〉 = 0 for all m ≥ 0. This implies an = 0 for all m, so f = 0.

(Lecture 8: October 6, 2020)

Theorem 1.114

We have

TnPm =
∑

d|(m,n)

(n
d

)k−1

Pmn/d2

Proof. We first give a different realization of Hecke operators. Define

R(n) :=


a b

c d

 ∈M2×2(Z) : ad− bc = n

 .

Then R(1)\R(n) is parameterized by
a b

0 d

 : ad = n, b (mod d)

 .

51



Letting jγ(z) = cz + d, where γ =

a b

c d

, and define

f |γ(z) = (det γ)k/2jγ(z)
−kf(γz),

then we can prove that

Tnf = n
k
2−1

∑
γ∈R(1)\R(n)

f |γ .

This implies that

(TnPm)(z) = Tn

 ∑
g∈Γ∞\R(1)

jg(z)
−ke(mgz)


= nk−1

∑
g∈Γ∞\R(n)

jg(z)
−ke(mgz)

where we used jγ′(z)jγ(γ
′z) = jγγ′(z).

Now let H and B be any sets of right coset representatives of Γ∞\R(1), and R(1)\R(N). Simple but

powerful observation: HG is a set of right coset representatives of Γ∞\R(n), and the same can be said for

GH. If we use this fact, then we can write down

(TnPm)(z) = nk−1
∑
ρ∈G

∑
τ∈H

jρτ (z)
−ke(mρτz)

= nk−1
∑

ρ∈G,τ∈H

jτ (z)
−kjρ(τz)

−ke(mρτz)

= nk−1
∑
ad=n

d−k
∑

b (mod d)

∑
τ∈H

jτ (z
−k)e(m

aτz + b

d
)

= nk−1
∑

ad=n,d|m

d1−k
∑
τ∈H

jτ (z)
−ke(

am

d
τz)

=
∑

d|(m,n)

(n
d

)k−1

Pmn/d2(z).

We used our parameterization above for R(1)\R(n) to get jρ(τz)−k = dk (since ρ always has lower left

coordinate zero). Then we sum over b; that vanishes unless d | m, since e(mb/d) = 1 if d | m.

Hence, no Poincare series other than P0 is the eigenfunction of a Hecke operator. However, the Hecke

action on a Poincaré series can be written explicitly in terms of the Poincaré series of lower order.

Taking m = 0 we get the Eisenstein series so:

Corollary 1.115

TnEk =
∑

d|n
(
n
d

)m
Ek = σk−1(n)Ek, which means Ek is a joint eigenfunction of all Hecke operators.

This means that the Eisenstein series itself is a holomorphic Hecke eigenform.
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Corollary 1.116

The action Tn y Sk is self adjoint with respect to the Petersson inner product.

Proof. It suffices to show self-adjointness on the Poincaré series, since they span. We compute

mk−1TnPm = nk−1TmPn,

by symmetry of the formula that we just proved. Now let f =
∑

n≥1 ane(nz) be a cusp form, and write

Tnf =
∑
m≥1

am(n)e(mz).

Then, am(n) = an(m) =
∑

d|(n,m) d
k−1anm/d2 (call this 1), which implies that

mk−1 〈Tnf, Pm〉 = nk−1 〈Tmf, Pn〉 ,

which we call 2. From these symmetry formulas, we can argue that

`k−1 〈TnP`, Pm〉 =1 n
k−1 〈T`Pn, Pm〉

=2

( n
m

)k−1

`k−1 〈TmPn, P`〉

=1 `
k−1 〈TnPm, P`〉 .

Thus far, we’ve showed that

〈TnP`, Pm〉 = 〈TnPm, P`〉 .

The corollary will follow when we show that the Fourier coefficients of Poincaré are real, because if this is the

case, then we can switch the order of the inner product (which we recall conjugates the second coordinate)

and we’ll get that 〈TnPm, P`〉 = 〈P`, TnPm〉.

We’ll do this below.

Towards the Fourier expansion of Poincaré series:

Lemma 1.117

The double coset decomposition of Γ = SL2(Z):

Γ = Γ∞ ∪
⋃
c>0

⋃
d (mod c)

Γ∞

∗ ∗

c d

Γ∞.

In other words, Γ∞\Γ/Γ∞ can be parameterized by

∗ ∗

c d

 with c > 0, 0 < d < c, (d, c) = 1.

Proof. The way to see this is first to notice that Γ∞\Γ is parameterized by

∗ ∗

c d

 with (c, d) coprime.

Then quotienting on the right by Γ∞ gets us the rest of the way there.
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Using this, we write

P (z) = p(z) +
∑

1 6=γ∈Γ∞\Γ/Γ∞

Iγ(z)

where

Iγ(z) =
∑

τ∈Γ∞

jγτ (z)
−kp(γτz)

=
∑
n∈Z

(c(z + n) + d)−kp

(
a

c
− 1

c(c(z + n) + d)

)
=
∑
n∈Z

∫ ∞

−∞
(c(z + v) + d)−kp

(
a

c
− 1

c(c(z + v) + d)

)
e(−nv)dv.

by Poisson summation. Now let p(z) = e(mz), and make the variable transformation m 7→ m− z − d/c, so

we continue

Iγ(z) =
∑
n∈Z

e(nz +
ma+ nd

c
)Jc(m,n)

where Jc(m,n) =
∫∞+iy

−∞+iy
(cv)−ke(−m

cv − nv)dv. For n ≤ 0, we can send y → ∞ and get e(−nv) → 0, which

tells us that Jc(m,n) = 0. And for n > 0 and m > 0, this is (by definition of Bessel functions)

2π

ikc

( n
m

) k−1
2

Jk−1

(
4π

√
mn

c

)
.

Therefore,

Theorem 1.118

The Fourier expansion of the m’th Poincaré series of weight k is

Pm(z) = e(mz) +
2π

ikm(k−1)/2

∑
n≥1

e(nz)n(k−1)/2
∑
c>0

S(m,n, c)

c
Jk−1

(
4π

√
mn

c

)
where

S(m,n, c) :=
∑

d (mod c)

e(
md∗ + nd

c
),

is called the Kloosterman sum.

It’s one of the most important exponential sums one would like to understand in analytic number theory.

Corollary 1.119

Pm(z),m ≥ 1 is cuspidal.

Corollary 1.120

{Pm(z) : m ≥ 1} spans Sk.

Corollary 1.121

The Fourier coefficients are real.
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Proof. Kloosterman sums are real, and Bessel functions are real.

This completes the proof that the Hecke operator is self-adjoint with respect to Petersson inner product.

Note: this can also be proved using the definition directly.

Theorem 1.122

Sk is spanned by joint eigenfunctions of {Tn}n≥1. These joint eigenfunctions are called holomorphic

Hecke cuspforms.

Proof. It is a fact from linear algebra that self-adjoint commuting linear operators have a simultaneous

orthonormal eigenbasis.

Next, we’ll get one of the most powerful techniques people use to study modular forms.

Let Bk be the basis of Sk consisting only of Hecke cusp forms. For f ∈ Bk, let f(z) =
∑
af (n)e(nz),

where we assume that f is Petersson normalized via 〈f, f〉 = 1. Then

Pm(z) =
∑
f∈Bk

〈Pm, f〉 f(z) =
Γ(k − 1)

(4πm)k−1

∑
f∈Bk

af (m)f(z)

(The first equality is true in general; we have an orthonormal basis of a finite dimensional vector space, so

any vector in the space can be decomposed into a sum over its projections on to each basis element.) Now,

we take the inner product:

〈Pm, Pn〉 =
(Γ(k − 1))2

(4πm)k−1(4πn)k−1

∑
f∈Bk

af (n)af (m)

=
Γ(k − 1)

(4π
√
mn)k−1

(
δm,n +

2π

ik

∑
c>0

S(m,n, c)

c
Jk−1

(
4π

√
mn

c

))

Theorem 1.123: (Petersson trace formula, version 1)

For m,n ≥ 1, we have

Γ(k − 1)

(4π
√
mn)k−1

∑
f∈Bk

af (n)af (m) = δm,n +
2π

ik

∑
c>0

S(m,n, c)

c
Jk−1

(
4π

√
mn

c

)
The LHS is the “spectral side” and the RHS is the “arithmetic side.”

The arithmetic side is referred to as such because it contains arithmetic sums. We’ll now present a different

version of the Petersson trace formula. Because f is a Hecke eigenform, we know af (n) = af (1)λf (n), where

λf (n) is the n-th Hecke eigenvalue. Now, let us normalize f by setting af (1) = 1, i.e., we write

f(z) =
∑
n≥1

λf (n)n
k−1
2 e(nz).
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I.e., f is Hecke normalized. (We’re abusing notation here; now λf (n) is denoting the normalized Hecke

eigenvalue, whereas before it denoted the much larger Hecke eigenvalue.) In this case, the spectral side of

the Petersson trace formula becomes

Γ(k − 1)

(4π
√
mn)k−1

∑
f∈Bk

af (n)af (m) =
Γ(k − 1)

(4π)k−1

∑
f∈Hk

λf (n)λf (m)

〈f, f〉

Here Hk denotes a basis of Hecke normalized cusp forms. The extra inner product in the denominator pops

out because these are no longer L2-normalized.

1.16 Rankin-Selberg convolution

Now, we’re going to talk about what will be the typical size of the Petersson norm of a Hecke normalized

modular form. In order to do this, we’ll need to introduce real analytic Eisenstein series and the Rankin-

Selberg convolution.

Definition 1.124

The real analytic Eisenstein series is

E(z, s) :=
∑

γ∈Γ∞\Γ

=(γz)s =
∑

(c,d)=1

ys

|cz + d|2s
.

This converges absolutely with <s > 1, but we can analytically continue it to complex plane with poles

potentially at s = 0, 1. Now, for f, g ∈ Hk (Hecke cusp forms of weight k, which are Hecke normalized) we

look at ∫
Γ\H

ykf(z)g(z)E(z, s)
dx

dy
y2 =

∫
Γ\H

ykf(z)g(z)
∑

γ∈Γ∞\Γ

=(γz)s dxdy
y2

=

∫
Γ∞\H

ykf(z)g(z)=(z)s dxdy
y2

=

∫ ∞

0

∫ 1

0

f(z)g(z)ys+k dxdy

y2

=
∑
n≥1

nk−1λf (n)λg(n)

∫ ∞

0

e−4πnyys+k−2dy

= (4π)−(s+k−1)
∑
n≥1

λf (n)λg(n)

ns
Γ(s+ k − 1)

=
Γ(s+ k − 1)

(4π)s+k−1
L(s, f ⊗ g).

Justifying the fourth line: when we conjugate the expansion of g and integrate is against the expansion of f

with respect to the variable x, the exponentials are orthogonal to 1 unless they both came from qn, in which

case the exponentials are exactly one.

So it’s natural to define
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Definition 1.125

The Rankin-Selberg convolution corresponding to f and g is

L(s, f ⊗ g) :=
∑
n≥1

λf (n)λg(n)

ns
.

Collecting facts about the Rankin-Selberg convolution:

1. When f = g, the LHS has a simple pole at s = 1 (coming from the real analytic Eisenstein series) with

residue 〈f, f〉. And the RHS has a simple pole at s = 1 with residue

Γ(k)

(4π)kζ(2)
L(1, sym2f)

(Note: the value of this is finite.)

Thus, the spectral side of Petersson trace formula becomes

Γ(k − 1)

(4π)k−1

∑
f∈Hk

λf (n)λf (m)

〈f, f〉
=

4πζ(2)

k − 1

∑
f∈Hk

λf (n)λf (m)

L(1, sym2, f)
.

So we may think of this as a weighted average of λf (n)λf (m), where the weight is given by a special value of

the symmetric square L-function of f . We can think of this as an average because #Hk ≈ k/12, and we’re

dividing this by k − 1, which is linear in k.

But what is the typical size of L(1, sym2, f)?

Theorem 1.126

For any ε > 0,

k−ε �ε L(1, sym
2, f) �ε k

ε.

So this varies very moderately as the weight k → ∞. The upper bound is easy, we can prove it ourselves

if we try to follow the definition of the L-series. The lower bound is quite serious, it’s actually JJ’s favorite

theorem of Hoffstein-Lockhart. They did this by studying the Siegel zeros of various L-functions. (Just like

you can prove this for Dirichlet L-functions, which gives you a similar lower bound L(1, χd) � d−ε.) The

lower bound is ineffective.

Returning to Petersson: the trace formula, in this case, tells us the weighted average is 1 when m = n,

and is something small when m 6= n. Actually showing the summation involving Kloosterman sums is

smaller than the main contribution is difficult, but there are many techniques people use to show that type

of estimate.

(Lecture 9: October 8, 2020)

1.17 Basic estimates on modular forms

We can estimate the Fourier coefficients of cusp forms as follows:
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Proposition 1.127

Suppose we have a cusp form f(z) =
∑

n≥1 a(n)e(nz) ∈ Sk.

1. a(n) = Of (n
C).

2. F (z) := yk/2|f(z)| is a bounded function in z ∈ H.

3.
∑N

n=1 |an|2 �f e
2πNyy−k.

4. a(n) � nk/2.

Proof. For the first point, since M = C[G4, G6], and G4 and G6 have polynomially growing coefficients, any

polynomial in G4 and G6 only grows polynomially fast.

For the second, we know yk|f(z)|2 is Γ-invariant, as

F (γz)2 = (=γz)k|f(γz)|2 =

(
y

|cz + d|2

)k

|(cz + d)2kf(z)|2 = yk|f(z)|2 = F (z)2.

As F (z) ≥ 0, this implies F (z) is Γ-invariant as well. Notice that e(nz) = e(nx)e−2πny, so as y → ∞,

|f(z)| → 0 by considering the Fourier expansion. So f(z) is bounded in the main fundamental domain.

Then by Γ-invariance, F (z) is bounded everywhere.

Now if we let c := ||F ||L∞(F ) be the supremum in one fundamental domain, then for any y > 0 we have∫ 1

0

|f(z)|2dx =

∫ 1

0

(
∑
n≥1

a(n)e(n(x+ iy)))(
∑
n≥1

a(n)e(n(x+ iy))) =
∑
n≥1

|a(n)|2e−4πny.

Because yk/2|f | ≤ c, we see that the above integral is bounded by c2y−k, and therefore

N∑
n=1

|an|2 �f e
2πNyy−k.

For the fourth, setting y = 1/N in the above estimate, this implies

N∑
n=1

|a(n)|2 �f N
k.

Hence |a(n)|2 �f n
k, so a(n) = Of (n

k/2). Recall the Ramanujan conjecture, which predicts that

a(n) = Of (n
(k−1)/2).

for Hecke modular forms on the full modular surface, Deligne proved that we have the strongest possible

bound, the Ramanujan bound. But for very general modular forms (e.g. half integral weight) we don’t yet

have this Ramanujan bound.

Next homework will be a single problem, and he’ll give us two weeks to prove it (and he’s giving us all

the necessary ingredients to prove it.) It’s to prove this:
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Theorem 1.128

If f is a Hecke cusp form on SL2(Z) which is Petersson normalized, and F (z) = yk/2f(z), then

k
1
4−ε �ε sup

z∈H
|F (z)| �ε k

1
4+ε.

This tells us that the supremum of a weighted modular form is approximately k1/4. This is actually the

main theorem of a paper which was published about 10 years ago. But this is a very good exercise to learn

the basic techniques of analytic number theory.

2 Equidistribution in number theory

2.1 Diophantine approximation

Eventually we’ll talk about equidistribution theorems related to modular forms. Before that, we’ll get an

introduction to equidistribution in general. The model question is the following:

Fix α ∈ R. How are the fractional parts {{αn} : n ∈ N} distributed?

For example:

1. if α = 2/7, then {{αn} : n ∈ N} = {i/7 : i = 0, . . . , 6}. So this will give

2

7
→ 4

7
→ 6

7
→ 1

7
→ 3

7
→ 5

7
→ 0

7
→ · · · .

So as you increase n, you hit each element in the set quite “evenly”.

2. If α =
√
2, then

{α} = 0.4142 . . .

{2α} = 0.8284 . . .

{3α} = 0.2426 . . .

{4α} = 0.6568 . . .

and these will spread out densely.

Note: density does NOT equal equidistribution. In this example, equidistribution means that the proportion

of time the sequence spends in each interval (a, b) is
∫ b

a
dµ = b− a.

The questions we can ask about distribution of numbers in this context:

1. Is {nα} dense?

2. Is {nα} uniformly distributed (i.e., equidistributed with respect to the standard measure)?
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The answers in this case are yes (for both). The first person to do this was Kronecker.

Theorem 2.1: (Kronecker)

Let α ∈ R−Q. Then {{nα}} is dense in [0, 1).

Theorem 2.2: (Dirichlet)

If α ∈ R and N ∈ N, then there exist p, q ∈ Z with 0 < q ≤ N such that

|qα− p| < 1

N
.

Proof. Set α0 = 0, α1 = {α} , αi := {2α} , . . . , αN := {Nα}. By the pigeonhole principle, there exist i, j such

that |αi − αj | < 1/N . This implies

|iα− biαc − (jα− bjαc)| < 1

N
.

Therefore, set q = i− j and p = biαc − bjαc.

Corollary 2.3

For α ∈ R \Q, there exist infinitely many p, q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Proof. Fix any N1 ∈ N. By Dirichlet’s theorem, there exist p1, q1 ∈ Z with 0 < q1 ≤ N1 so that∣∣∣∣r − p1
q1

∣∣∣∣ < 1

Nq1
<

1

q21
.

Inductively, we have
∣∣∣r − pn

qn

∣∣∣ 6= 0 because r is irrational. So we may choose Nn+1 large enough so that∣∣∣∣r − p1
q1

∣∣∣∣ , . . . , ∣∣∣∣r − pn
qn

∣∣∣∣ > 1

Nn+1
.

By Dirichlet’s theorem, there exist pn+1, qn+1 ∈ Z with 0 < qn+1 ≤ Nn+1 such that∣∣∣∣r − pn+1

qn+1

∣∣∣∣ < 1

qn+1Nn+1
<

1

q2n+1

.

In particular,
∣∣∣r − pn+1

qn+1

∣∣∣ < 1
Nn+1

. As pn+1/qn+1 is closer to r than any of the lower order pi/qi, it follows

that pn+1/qn+1 /∈ {pi/qi : i = 1, . . . , n}, as needed.

This is the strongest theorem of this type:
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Theorem 2.4: (Hurziwtz)

If α ∈ R \Q, then there exist infinitely many p, q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

Why is that theorem the strongest of its type?

Proposition 2.5

If r = (1−
√
5)/2 and A >

√
5, then ∣∣∣∣r − p

q

∣∣∣∣ < 1

Aq2
(2.1)

has only finitely many solutions p/q.

Proof. Suppose there exists A >
√
5 such that (2.1) holds for infinitely many p/q. Thus, there exist infinitely

many p, q such that

r =
p

q
+

δ

q2
,

where δ = δ(p, q) satisfies |δ| < 1/
√
5. But

r =
p

q
+

δ

q2
⇐⇒ δ

q
= qr − p

⇐⇒ δ

q
+
q
√
5

2
=
q

2
− p

=⇒ δ2

q2
+ δ

√
5 = p2 − pq − q2.

As |δ| <
√
5, for q sufficiently large, the LHS is strictly less than 1. In particular, since there exist infinitely

many p/q satisfying (2.1), the RHS necessarily vanishes for some p, q. Thus, for this choice of p, q, we have

4p2 − 4pq − 4q2 = 0 =⇒ 4p2 − 4pq + q2 = 5q2 =⇒ (2p− q)2 = 5q2.

This is impossible, as v5((2p− q)2) ∈ 2Z, whereas v5(5q2) ∈ 2Z+ 1.

Theorem 2.6: (Liouville)

Suppose α ∈ R is algebraic of degree n > 1. Then there exists some constant A > 0 such that, for all

p, q > 0, we have ∣∣∣∣α− p

q

∣∣∣∣ ≥ A

qn
.

Proof. Let f ∈ Z[x] be the minimal polynomial of α, so f is irreducible, so for all p/q ∈ Q, we have

qnf(p/q) ∈ Z \ {0} (if this were zero, it would be reducible.) So by the mean value theorem, there exists
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x0 ∈ [α, p/q) such that

f(p/q)− f(α)p/q − α− f ′(x0).

Hence, ∣∣∣∣pq − α

∣∣∣∣− |qnf(p/q)
f ′(x0)qn

≥ 1

qn
1

sup|x−α|<δ |f ′|
.

If we take this constant to be A, then we get the result.

In particular, if α is algebraic of degree 2, then∣∣∣∣α− p

q

∣∣∣∣ ≥ A

q2

which means algebraic numbers are the worst in terms of diophantine approximation.

Historical remarks:

1. (Thue) the exponent n in Liouville’s theorem can be replaced by n
2 + 1 + ε

2. (Siegel) the exponent n in Liouville’s theorem can be replaced by 2
√
n

3. (Dyson) the exponent n in Liouville’s theorem can be replaced by
√
2n

4. (Roth) the exponent n in Liouville’s theorem can be replaced by 2 + ε. This tell us that we can find

some constant A := A(α) such that |α− p/q| ≥ A/q2+ε.

We’ll use this to give a proof of Kronecker’s theorem.

Proof of Kronecker’s theorem. We want to show that, for any x ∈ [0, 1), there exists αnj
such that αnj

→ x.

Given ε > 0, let q > 0 be chosen so that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

with 1/q < ε. Take an integer j so that

|j(αq − p)− x| < 1

q
,

by Dirichlet’s theorem. Then |(jqα−jp)−x| < ε. If we choose ε to be small enough so that an ε-neighborhood

of x is contained in (0, 1), then jqα− jp = {jqα} = αjq suffices.

2.2 Uniform distribution
Definition 2.7

A sequence {an} ⊆ [0, 1) is uniformly distributed if, for every (b, c) ⊆ [0, 1),

lim
N→∞

# {n ≤ N : an ∈ (b, c)}
N

= c− b.

Let’s play a game!! True and false questions:
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1. For irrational α, {nα} is uniformly distributed: True

2. For irrational α,
{
n2α

}
is uniformly distributed: True

3. {log n} is uniformly distributed: False! Once can actually show this accumulates near zero some-

times. . . or more precisely, it fluctuates a lot.

4. {n!e} is not uniformly distributed. In fact, its not even dense!

Proof. e =
∑

n≥1
1
n! , so

n!e ∈ Z+
1

n+ 1
+

1

(n+ 1)(n+ 2)
+ · · ·+ <

1

n+ 1

(
1 +

1

1!
+ · · ·+

)
=

e

n+ 1
.

5. What about {log pn}? Along the same lines as {log n}, the answer is no.

6. {
√
n} is uniformly distributed.

7. {log n!} is unformly distributed, but {log log n!} is not uniformly distributed.

Next time, we’ll discuss Weyl’s criterion, which lets us check whether a sequence is uniformly distributed

by associating to an exponential sum. Later, we’ll discuss equidistribution of Hecke eigenvalues,

and (effective) vertical Sato–Tate. The point of this mini-unit is to warm us up for that; this will bridge

randomness and number theory. For example, consider the Möbius function µ(n). We believe that µ(n) is

random. Consider a random sequence xn in {±1}. Then

lim
N→∞

1√
N

N∑
n=1

xn

is in fact the normal distribution!! So the estimate
∑N

n=1 xn � N1/2+ε happens most of the time. So

formally speaking,

lim sup
N→∞

Prob

(
N∑

n=1

xn � N1/2+ε

)
= 1.

If µ(n) were truly random, then we must also have

N∑
n=1

µ(n) � N1/2+ε

for large N . Merten’s conjecture is that this estimate holds; this is in fact equivalent to RH. So this

is one example of why understanding randomness in number theory is important; being able to prove true

randomness in some objects gives us hard and fast true things.

(Lecture 10: October 13, 2020)
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Now, a brute-force proof of uniform distribution of the fractional parts:

Theorem 2.8

For irrational α, {nα} is uniformly distributed.

Proof. Define ||·|| to be the distance to the nearest integer. Given ε > 0, pick M > 0 sufficiently large so that

1/M < ε, and choose 1 ≤ m ≤ M such that δ := ||mα|| < 1/M . The existence of such an m is guaranteed

by a lemma that we proved last time. We want to show that

{{αn} : 1 ≤ n ≤ N,n ≡ i (mod m)}

is well-distributed, in a sense to be made explicit. Why that particular set? As mα is ε-close to an integer,

we have

|{mα+ x} − {x}| < 1

M
.

So if we consider the sequence {x} , {x+mα} , {x+ 2mα} , . . . , any element of this sequence will be at most

1/M far away from its neighbors.

To formalize all this, let us reexpress this sequence as

{{αn} : 1 ≤ n ≤ N,n ≡ i (mod m)} = {{j(mα) + iα} : 1 ≤ j ≤ Ji}

= {{δj + γ} : 1 ≤ j ≤ Ji}

where Ji = bN/mc = N
m +O(1), and where

γ :=

iα δ = {mα}

iα− δ(Ji + 1) 1− δ = {mα} .

Now, for 0 ≤ γ ≤ 1, and K = [δJi + γ],

# {j ≤ Ji : {δj + γ} ∈ [b, c)]} =

K∑
k=0

# {j ≤ Ji : δj + γ ∈ [k + b, k + c)}

= (K +O(1))

(
c− b

δ
+O(1)

)
= (c− b)Ji +O

(
c− b

δ
+ δJi + 1

)
by the definition of K. Next we combine all of these for i = 1, . . . ,m− 1. This implies that

# {n ≤ N : {αn} ∈ (b, c)} = (c− b)Jim+O

(
(c− b)m

δ
+ δJim+m

)
= (c− b)N +O

(m
δ

+ δN
)
.

Next, we choose N ≈ m/δ2 (so that these error terms balance each other.) Then we get

(c− b)N +O
(m
δ

+ δN
)
= ((c− b) +O(ε))N.
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This implies that

lim
N→∞

# {n ≤ N : {αn} ∈ (b, c)}
N

= c− b.

That was a brute force of the theorem. This type of proof is nice when we don’t have a nice technique to

handle the distribution of sequences: just break it up into subsequences where each subsequence is manageable

(in this case, “arithmetic progressions”) and then combine them to prove the theorem. This type of thing is

quite standard in the theory of character sums and the circle method. But we’ll soon present a much simpler

proof of this theorem.

Before that, another thing about uniform distribution.

Proposition 2.9

1. Any sequence has a rearrangement that is not uniformly distributed.

2. Any dense sequence has a rearrangement that is uniformly distributed.

Proof. (1) is trivial: if it’s not already uniformly distributed, divide it into two halves, say those in [0, 1/2] are

the subsequence bi and those in (1/2, 1] are ci. Then b1, b2, c1, b3, b4, c2 . . . is clearly not uniformly distributed

since it spends more time in the left half of the interval.

For (2), let cn be the arbitrary sequence. if we define a( m
2+1

) = bm,i = i/m, then this is uniformly

distributed. This marches along in 4 steps, then in 8, then in 16, etc. Now set mm,i = cn, such that

i− 1

m
≤ cn ≤ i

m
.

Then

d(m
2

) = bmi .

Basically, what we’re trying to do is mimic the sequence i/m.

But since cn can be arbitrary, the new b′m,i mimics the bm,i.

We mention that just to emphasize the role of ordering when talking about the ordering of numbers.

Now, a very important theorem in the world of equidistribution:
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Theorem 2.10: (Weyy’s criterion)

The following are equivalent:

1. {an} is uniformly distributed modulo 1.

2. For all continuous f , limN→∞
1
N

∑N
n=1 f({an}) =

∫ 1

0
fdx.

3. lim 1
N

∑N
n=1 e(man) = δm,0

Proof. (1 =⇒ 2): 1 means 2 is true for step functions.

(2 =⇒ 3): this is obvious (if it’s true for every function, in particular it must be for exponential functons)

(3 =⇒ 2): you can approximate every sufficiently continuous function using Fourier expansion.

(2 =⇒ 1) : you can approximate a step function by continuous functions.

Example for (2):
N∑

n=0

e(mαn) =
e((N + 1)mα)− 1

e(mα)− 1

is valid as long as α /∈ Q and m 6= 0. As we increase N , the absolute value of this expression is uniformly

bounded. Hence
1

N

N∑
n=0

e(mαn) → 0

if α 6∈ Q and m 6= 0.

This is why people care about exponential sums; if you can exhibit cancellations in exponential sums,

then you can say things about the distribution of numbers. For example, to prove the existence of arbitrarily

long arithmetic progressions in the primes, Green-Tao showed that nilpotent flow is disjoint from the Mobius

function, which is very related to some cancellation in exponential sums.

2.3 A more general notion of equidistribution

Definition 2.11

Let (X,µ) be a measure space. We say {xn} ⊆ X is equidistributed with respect to µ if any one of

the following holds:

1. 1
N

∑N
n=1 δxn

→ µ in the sense of weak convergence.

2. 1
N

∑N
n=1 f(xn) →

∫
X
fdµ for all f ∈ C(X).

3. For any open ball A, 1
N# {xn ∈ A : n < N} → µ(A)/µ(X).

The equivalence of these properties can be proven using techniques similar to Weyl’s criterion. Just like

Weyl’s criterion, it is sufficient to check condition (2) for a basis {fn} for the set of continuous functions.
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Why do we mention this? The exponential function might not necessarily be the best choice of basis. For

example, if the points are equidistributed with respect to the non-uniform measure, then there might be a

better basis to work with. (Like the Chebyshev polynomials in the Sato–Tate distribution.) An important

trick towards this that he wishes were taught earlier: orthogonal polynomials.

Let µ be a measure on R such that
∫
f(x)dµ(x) <∞ for all polynomials f . Then

〈f, g〉 :=
∫
fgdµ

defines an inner product (as it’s finite for any choice of f and g by hypothesis.)

Definition 2.12

The sequence {pn}n≥0 of orthogonal polynomials is defined by

deg pn = n, 〈Pm, Pn〉 = 0 when m 6= n.

These are the orthogonal polynomials corresponding to µ.

P0 will necessarily be a constant, then inductively, P0, . . . , Pn−1 determines Pn by the inner product.

(All the above orthogonal polynomials are defined this way!!)

Example:

1. The Jacobi polynomials are the orthogonal polynomials deterimed by the measure (1 − x)α(1 +

x)βχ[−1,1](x)dx, and these polynomials are denoted P (α,β)
n (x).

2. The Hermite polynomials are the orthogonal polynomials deterimed by the measure e−x2

dx, and they’re

denoted by Hn(x).

3. The Gegenbauer polynomials are the orthogonal polynomials deterimed by the measure (−x2)αχ[−1,1](x).

In particular, these are a special case of the Jacobi polynomials. They’re denoted C(α)
n (x).

4. The Legendre polynomials are the orthogonal polynomials deterimed by the measure χ[−1,1](x)dx.

These are denoted Pn(x).

5. Chebyshev polynomials of the first kind are denoted Tn(x). They correspond to the measure dx/
√
1− x2.

6. Chebyshev polynomials of the second kind and denoted Un(x). They correspond to the measure
√
1− x2dx.

These appear naturally when you’re trying to understand the Laplacian on the sphere; they’re referred

to as spherical harmonics in general.

Note that

Un(cos θ) =
sin((n+ 1)θ)

sin θ
,

so if we write λf (p) = 2 cos θp, then λf (p
k) = Uk(λf (p)/2). In particular, the recurrence relation of

Hecke eigenvalues can be expressed in a very simple way in terms of these Chebyshev polynomials.
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The last four classes of orthogonal polynomials all come about when you try to solve the eigenfunction

equation on a sphere. They’re the eigenfunctions in some coordinates.

Let us end the lecture by briefly discussing special functions. It’s good to know the asymptotic behavior

and expansions of all of these that come up. What do we do when we encounter special functions in our

research? There are two good options:

1. Look it up on the NIST functions site; this is an excellent database.

2. There is a book called Table of integrals, series, and products by Gradshteyn–Ryzhik. “It’s the bible”

says Jeff and JJ.

(Lecture 11: October 15, 2020)

2.4 Weighted vertical Sato–Tate

Today we’ll discuss a Weighted distribution of Hecke eigenvalues as k → ∞. Recall that by the Ramanujan

conjecture, the normalized Hecke eigenvalues correponding to a holomorphic Hecke eigenform satisfy the

bound

λf (p) ∈ [−2, 2].

We want to see how these numbers are distributed within this interval, as we vary k. And since we just

discussed Petersson, it’s natural (and easier) to discuss the weighted average of these numbers.

Recall one version of Petersson, where we weight by the symmetric square L-function: if Bk is a basis of

Sk consisting of Hecke normalized Hecke cusp forms, then

4πζ(2)

k − 1

∑
f∈Bk

λf (n)λf (m)

L(1, sym2, f)
= δm,n +

2π

ik

∑
c>0

S(m,n, c)

c
Jk−1

(
4π

√
mn

c

)
.

It is natural to define the following measure:

νp,k :=
4πζ(2)

k − 1

∑
f∈Bk

1

L(1, sym2, f)
δλf (p).

This is a weighted average of the Dirac delta masses supported on each Hecke eigenvalue λf (p), where the

weight comes from L(1, sym2, f). But we know this is a very mild weight since k−ε � L(1, sym2, f) � kε.

Then we have ∫ 2

−2

Un(x/2)dνp,k =
4πζ(2)

k − 1

∑
f∈Bk

λf (p
n)

L(1, sym2, f)

because we can compute this integral on the Dirac masses to be∫ 2

−2

Un(x/2)dδλf (p) = Un(λf (p)/2) = λf (p
n).

The Petersson trace formula with n := pn and m := 1 implies that

4πζ(2)

k − 1

∑
f∈Bk

λf (p
n)

L(1, sym2, f)
= δn,0 +

2π

ik

∑
c>0

S(pn, 1, c)

c
Jk−1

(
4πpn/2

c

)
(2.2)
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(Note that λf (1) = 1, as an = λf (n)a1 for all n.) Denote by Ek the series on the RHS. We’ll argue that it

is an error term, i.e., Ek → 0 as k → ∞.

To do this, we’ll need to introduce a bound for the Kloosterman sum

S(n,m, c) =
∑∗

x (mod c)

(
nx+mx∗

c

)
.

This is trivially bounded by |S(n,m, c)| ≤ φ(c), as each summand has size at most one. But this is too crude

of an estimate for our applications; as φ(c) = c
∏

p|c(1 − p−1), If c has few prime factors, this is bounded

away from zero; in general, the product is � 1/ log c, so in fact φ(c) � c/ log c, which is essentially linear

growth. So, we want to exploit the cancellation that happens inside this exponential sum. The best bound

is obtained by Weil:

Theorem 2.13: (Weil’s bound)

We have

|S(m,n, c)| ≤ σ0(c)
√

gcd(m,n, c)
√
c.

This implies that |S(pn, 1, c)| ≤ σ(c)
√
c. Note: oftentimes, Weil’s bound is enough to prove the theorem

one is considering, but many times you need to do your own better error in the particular situation that

you’re considering. But Weil’s bound is sharp in this general setting.

Continuing from above, we can use Weil’s bound to estimate

|Ek| ≤ 2π
∑
c>0

σ(c)√
c
Jk−1

(
4πpn/2

c

)
.

Next, we need some bound on the Bessel functions. For large k, Jk is exponentially small for x < k; then it

enters the transition range (where it becomes large); and then it decays and oscillates.

This type of behavior is common; there is exponential growth, followed by some transition range, followed

by some oscillatory behavior, where the transition range is defined by some Airy function. The reason for

this is from harmonic analysis; namely, these special functions have integral representations which have
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stationaly phase with singularity of order 3 (this explains why we’re seeing 1/3 everywhere.) The explicit

bounds that we’ll use:
Proposition 2.14

1. Jk−1(x) � 1/k1/3 for x close to k − 1.

2. If ν ≥ 0 and 0 < x ≤ 1, then 1 ≤ Jν(νx)
xνJν(ν)

≤ eν(1−x).

3. In the transition range: Jν(ν+aν1/3) = 21/3

ν1/3Ai(−21/3a)+O(1/ν), where Ai is the Airy function,

for each a ∈ I, where I is a fixed compact interval.

Proof. We can find these on NIST.

We may assume k is sufficiently large so that 4πpn/2/c is less than k− 1, which lets us apply the second

part of the proposition. Namely, if k − 1 > α/c, where α = 4πpn/2, and so ν = k − 1 and x = α/c(k − 1),

then we have Jν(νx) ≤ eν(1−x)xνJν(ν), so

Jk−1

(
4πpn/2

c

)
≤ e

(k−1)
(
1− α/c

k−1

)(
α

c(k − 1)

)k−1

Jk−1(k − 1)

� ek
(

α

c(k − 1)

)k−1

� e−k

ck−1

as Jk−1(k− 1) � k1/3; and as (k− 1)−(k−1) decays much faster than ek grows, so we can get the very crude

upper bound of e−k for their product. Finally, this tells us that

|Ek| �
∑
c>0

σ(c)√
c

e−k

ck−1
� e−k

since this series converges to a constant bounded by something independent of k.

In summary, we showed that

4πζ(2)

k − 1

∑
f∈Bk

λf (p
n)

L(1, sym2, f)
= δn,0 +O(e−k),

as k → ∞. But by our computation above, this implies that∫
Un(x/2)dνp,k = δn,0 +O(e−k),

so we deduce that

lim
k→∞

∫
Un(x/2)dνp,k = δn,0. (2.3)

Next, recall that Un are the orthogonal polynomials with respect to
√
1− x2dx; by a change of variables,

this implies that ∫ 2

−2

Un(x/2)
√

4− x2dx = δn,0.
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which implies that dνp,k →
√
4− x2dx. In particular, we have

lim
k→∞

4πζ(2)

k − 1

∑
f∈Bk

λf (p
n)

L(1, sym2, f)
=

∫ 2

−2

Un(x/2)
√
4− x2dx.

In summary, we’ve shown that

lim
k→∞

∫ 2

−2

Un(x/2)dνp,k =

∫ 2

−2

Un(x/2)
√
4− x2dx.

In particular, every g ∈ C([−2, 2]) can be written in a basis of Un(x/2), so by linearity we get

lim
k→∞

∫ 2

−2

g(x/2)dνp,k =

∫ 2

−2

g(x/2)
√
4− x2dx.

Expanding the definition of the measure on the LHS, we get the following:

Theorem 2.15: (Weighted vertical Sato–Tate)

The following equidistribution statement holds:

lim
k→∞

2πζ(2)

k − 1

∑
f∈Bk

g(λf (p)/2)

L(1, sym2, f)
=

∫ 2

−2

g(x/2)
√
4− x2dx.

The Sato–Tate conjecture, which is now a theorem, says that, for a fixed f ∈ Sk(SL2(Z)), the normalized

Hecke eigenvalues λf (p) become equidistributed with respect the semicircular measure
√
4− x2dx. We

proved weighted vertical Sato–Tate, which is so-called because in that version we fixed p and varied f . It is

indeed possible to order to obtain an unweighted vertical Sato–Tate; this is our next task. To do this, we’ll

first need to discuss Selberg’s trace formula.

2.5 Eichler-Selberg trace formula

The Petersson trace formula didn’t really compute the trace of anything. In contrast, the Eichler-Selberg

trace formula explicitly computes the trace of the Hecke operator acting on Mk. Although it’s impossible

in general to write down each individual Hecke eigenvalues, this result gives us an explicit formula for the

trace. The full proof of Zagier appears in one of the books by Serge Lang.

We want to compute

TrTm =
∑
f∈Bk

λf (m),

where Bk is a basis of Sk consisting of Hecke cusp forms. As Tm : Sk → Sk is a linear operator, for some

H(z, z′) which is bi-invariant under SL2(Z), we can define a linear operator

TH : f 7→
∫∫

Γ\H
H(z, z′)f(z)

dxdy

y2
.

There ought to be some integral kernel of the Hecke operator; namely, there should be some kernel H so that

TH = Tm. Suppose we have found some H. Then the trace of such an operator TH is (roughly) computed
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by the formula which integrates the integral kernel over the diagonal:

TrTH =

∫∫
Γ\H

H(z, z)
dxdy

y2
.

This is the whole idea. What Zagier did was conjure a specific H that gives Tn. The final result:

Theorem 2.16: (Eichler-Selberg trace formula)

If k ≥ 4 and m ≥ 1, then the trace of the Hecke oparator Tm on Sk is given by

TrTm = −1

2

∑
t∈Z

pk(t,m)H(4m− t2)− 1

2

∑
dd′=m

min(d, d′)k−1.

Some points:

1. In this trace formula, Tm is the un-normalized Hecke operator.

2. Here, H is the Hurwitz class number, so H(n) = 0 if n < 0, H(0) = −1/12, and for n > 0, H(n) is the

number of SL2(Z)-equivalence classes of positive-definite binary quadratic forms ax2 + bxy + cy2 with

discriminant b2 − 4ac = −n. This class number comes with some weight: we count forms equivalent

to a multiple of x
2 + y2 with multiplicity 1/2

x2 + xy + y2 with multiplicity 1/3.

3. The above pk(t,N) are defined by

1

(1− tx+Nx2)
=
∑
k≥1

xk−2pk(t,N), where pk(t,N) :=
ρk−1 − ρk−1

ρ− ρ
;

here, ρ + ρ = t and ρρ = N . This expression is valid only when t2 < 4N , which is acceptable, as the

Hurwitz class number vanishes on negative arguments. In particular, notice that H(4m − t2) is zero

for all but finitely many t, so the sum over t ∈ Z is finitely supported.

(Lecture 12: October 20, 2020)

In the Eichler-Selberg trace formula, the main term corresponds to the 4m − t2 = 0 summand. When

t2 = 4m, writing ρ+ ρ = t and ρρ = t2/4, then we have ρ = ρ = t/2. In this particular case, we compute

Pk(t,N) = ρk−1 + ρk−2ρ+ · · ·+ ρk−2 = (k − 1)(t/2)k−2 = (k − 1)m
k−2
2 ,

so we can rewrite the trace formula as

TrTm =
k − 1

12
m

k−2
2 δ√m − 1

2

∑
t2<4m

Pk(t,m)H(4m− t2)− 1

2

∑
dd′=m

min(d′d′)k−1,

where we define

δ√m =

1
√
m ∈ Z

0 else.

If we fix m and send k → ∞, then we can estimate:
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1. When m is fixed, we have the class number bound H(4m− t2) �m 1, as this doesn’t depend on k at

all.

2. As ρρ = m and ρ+ ρ = t, we estimate∣∣∣∣ρk−1 − ρk−1

ρ− ρ

∣∣∣∣ = ∣∣∣∣ρk−1 − ρk−1

√
4m− t2

∣∣∣∣ ≤ 2|ρ|k−1 = 2m
k−1
2 = Om(m

k−1
2 ).

3. As min(d, d′) ≤
√
m, we have∑

dd′=m

min(d, d′)k−1 ≤ σ0(m)m
k−1
2 = Om(m

k−1
2 )

So if we divide by m
k−1
2 , then we get that the trace of the normalized Hecke operator is

Tr(T̃m) =
k − 1

12

1√
m
δ√m +Om(1), as k → ∞.

As the space of modular forms of weight k has dimension about k/12, we can conclude:

Theorem 2.17

As k → ∞, the average normalized Hecke eigenvalues of T̃m acting on Sk is

1

|Bk|
∑
f∈Bk

λf (m) =
1√
m
δ√m +Om(1/k).

Remark: we should expect to only get behavior like this when m is a square, because λf (p2) = λf (p)
2−1

(this is a special case of the recurrence satisfied by Hecke eigenvalues, λ(n)λ(m)
∑

d|(n,m) λf (nm/d
2)) so on

a square, these sums are positive and pile up, and otherwise they’ll scatter and cancel out.

Next, consider the weighted measure

µp,k =
1

|Bk|
∑
f∈Bk

δλf (p).

(We looked at a weighted version of this measure last time.) Then, one can show that

lim
k→∞

∫ 2

−2

Un(x/2)dµp,k =

p
−n/2 n ∈ 2Z

0 n ∈ 2Z+ 1.

Sketch of proof: use the formula above; you pick up the main term behavior if and only if m is a square,

which happens if and only if n is even.
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Proposition 2.18

The measure

dµp(x) :=
p+ 1

π

√
1− x2/4

(
√
p+ 1/

√
p)2 − x2

dx

defined on [−2, 2] is the unique measure that satisfies

∫ 2

−2

Un(x/2)dµp(x) =

p
−n/2 if n is even

0 if n is odd
(2.4)

for all non-negative integers n.

Proof. In three steps.

Step 1: We will argue that ∑
m≥0

U2m(x/2)

pm
=

p+ 1

(
√
p+ 1/

√
p)2 − x2

. (2.5)

First, we recall the generating function ∑
n≥0

Un(x)t
n =

1

1− 2tx+ t2
.

For x := x/2 and t := 1/
√
p, this implies∑

n≥0

Un(x/2)

pn/2
=

√
p

(
√
p+ 1/

√
p)− x

,

which implies that ∑
n≥0

Un(x/2)

pn/2

∑
m≥0

Um(−x/2)
pm/2

 =
p

(
√
p+ 1/

√
p)2 − x2

.

Therefore, it suffices to show that

(p+ 1)

∑
n≥0

Un(x/2)

pn/2

∑
m≥0

Um(−x/2)
pm/2

 = p
∑
m≥0

U2m(x/2)

pm
. (2.6)

We compute ∑
n≥0

Un(x/2)

pn/2

∑
m≥0

Um(−x/2)
pm/2

 =
∑
`≥0

∑`
k=0 Uk(x/2)U`−k(−x/2)

p`/2
.
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We will find a closed form expression for the coefficient of p−`/2:

∑̀
k=0

Uk(x/2)U`−k(−x/2) =
∑̀
k=0

(−1)`−kUk(x/2)U`−k(x/2)

=

b`/2c∑
k=0

(−1)`−kUk(x/2)U`−k(x/2)

+
∑̀

k=b`/2c+1

(−1)`−kUk(x/2)U`−k(x/2)

=

b`/2c∑
k=0

(−1)`−k
k∑

n=0

U`−2k+2n(x/2)

+
∑̀

k=b`/2c+1

(−1)`−k
`−k∑
n=0

U2k−`+2n(x/2),

where we used the product formula Um(x)Un(x) =
∑n

k=0 Um−n+2k(x), valid for m ≥ n. Expanding this,

and cancelling greatly, we see that only the first term in every other inner sum contributes; concretely, this

sum is precisely

N`(x/2) := (−1)`−b`/2c

⌊
b`/2c

2

⌋∑
k=0

U`−2b`/2c+4k(x/2)

+ (−1)`−b`/2c−1

⌊
`−b`/2c−1

2

⌋∑
k=0

U2b`/2c−`+2+4k(x/2).

With this new notation, by (2.6) it suffices to show that∑
`≥0

N`(x/2)

p
`
2−1

+
∑
`≥0

N`(x/2)

p`/2
=
∑
m≥0

U2m(x/2)

pm−1
.

Upon reindexing, this is clearly equivalent to

N`(x/2) +N`−2(x/2) =

0 if ` is odd

U`(x/2) if ` is even.

And this can be verified directly from the definition of N`.

Step 2: We will verify that the orthogonality relation (2.4) holds. Using the basic orthogonality relation∫ 1

−1

Un(x)Um(x)

√
1− x2

2/π
dx = δm,n
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we compute

∫ 2

−2

Un(x/2)dµp(x) =

∫ 2

−2

Un(x/2)

∑
m≥0

U2m(x/2)

pm

 √1− x2/4

π
dx

=
∑
m≥0

1

pm

∫ 2

−2

Un(x/2)U2m(x/2)

√
1− x2/4

π
dx

=
∑
m≥0

1

pm
δn,2m

= p−n/2.

Step 3: We will argue that dµp is the unique measure satisfying the orthogonality relation (2.4). As the Un

are orthogonal polynomials, knowing the value
∫ 2

−2
Un(x/2)dµp for all n is equivalent to knowing the moments

mn :=
∫ 2

−2
xndµ(u) for all n. But by Carleman’s condition, if every mn is finite and

∑
n≥1m

−1/2n
2n = +∞,

then dµp is the only measure on [−2, 2] with (mn) its sequence of moments. We can estimate that

|mn| ≤
∫ 2

−2

|xn|dµp ≤ 2n
∫ 2

−2

dµp = 2n,

so the moments of dµp are finite. As the even moments are positive, we can estimate that

1

m
1/2n
2n

≥ 1

(22n)1/2n
=

1

2
,

hence
∑

n≥1m
−1/2n
2n = +∞, as needed.

So in other words,

dµp,k → dµp as k → ∞,

in the weak sense. This is a theorem of Serre (1997) published in JAMS. This is referred to as the vertical

Sato–Tate theorem. This has been generalized to various contexts, as we can write down Hecke theory for

basically all algebraic groups. But the ultimate version of generalization that one can write down is due

to Shin-Templier. They studied every case where one can write down the trace formula; by assuming some

functoriality conjecture, they computed the limiting distribtuion of Hecke eigenvalues for basically every

algebraic group G. They classified the types of distributions you get, depending on G.

2.6 Effective equidistruibution

So far, the equidistribution results that we stated ({αn}, vertical Sato–Tate) didn’t specify a rate of conver-

gence. But often we want to know “how fast” things equidistribute. Say {an} is uniformly distributed mod

1, and let

µN =
1

N

N∑
n=1

δan .

Then dµN (x) → dx on [0, 1] as N → ∞. There are two common ways of quantifying the rate of convergence:
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1. Take a function on the unit circle, say f ∈ C∞(S1), and bound∣∣∣∣∫ fdµN −
∫
fdx

∣∣∣∣
in terms of some Sobolev norm ||f ||Wp,k , and N .

2. The “discrepancy” is defined as

D(dµN , dx) := sup
[α,β]⊆[0,1]

|µN (α, β)− (β − α)|.

If we can quantify how this converges to zero at N → ∞, then this is one way of quantifying the rate

of convergence.

These two notions are certainly not the same. For example, take {an} = {nα}, where α ∈ R \ Q. We’ll

compute both discrepancies.

1. If f is a smooth function, then it has a fast-converging Fourier expansion f =
∑
bme(mx), so∫

fdµN −
∫
fdx =

1

N

∑
m6=0

am
e((N + 1)mα)− 1

e(mα)− 1
.

(a) Take δ > 2. Then we showed that there exists Mδ,α > 0 such that, for any m > Mδ,α, and for

any n ∈ Z, we have ∣∣∣α− n

m

∣∣∣ > 1

mδ
.

(As there are only finitely many solutions if the inequality is flipped.) This is equivalent to

|mα− n| > m1−δ, hence

|e(mα)− 1| �δ,α |m|1−δ.

So by our above equality, we get∫
fdµN −

∫
fdx�δ,α

1

N

∑
m 6=0

|m|δ−1|bm|.

(b) Now we take care of |bm|. By integration by parts,

(2πmi)kbm =

∫ 1

0

e(−mx)f (k)(x)dx.

Namely, we just take the k’th derivative of f ’s Fourier expansion and integrate. This implies that

|bm| ≤ 1

(2π|m|)k
||f ||Wk,∞(S1) .

This implies that the size of the m’th Fourier coefficient of f is related to the differentiability of

f .

Now, let k = 3 and δ = 2.1. Then we get∣∣∣ ∫ fdµN −
∫
fdµ

∣∣∣�α
1

M
||f ||W 3,∞(S1) .

So this is how you obtain the rate of decay in the first context.
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2. Now we’ll discuss how to bound the discrepancy, using the Erdős-Turan inequality. This inequality

says that, for any n > 1, we have

D(dµN , dx) �
1

n
+

n∑
k=1

µ̂N (k)

k
,

where µ̂N (k) =
∫
e(kx)dµN (x) is the k’th Fourier coefficient of the associated measure. Applying this

to our case, we get that this is

µ̂N (k) =
1

N

e((N + 1)kα)− 1

e(kα)− 1
�δ,α

|k|δ−1

N
,

so the discrepancy can be estimated as

D �δ,α
1

n
+

n∑
k=1

kδ−1

N
� 1

n
+
nδ

N
.

Now, choose n such that 1/n and nδ/N both go to zero, and we want to choose it so that they’re

balanced (i.e. they go to zero at the same rate.) So we want 1/n = nδ/N , so we choose N = n1+δ, so

choose n = N1/3, then we get that

D �δ,α N
−1/3+ε.

In fact, one can prove that the discrepancy is

D = O(logN/N),

which is much better.

2.7 Density type results

Kronecker’s theorem says {αn} becomes dense in [0, 1]. Density type results are those which quantify results

such as Kronecker’s theorem. These are even more complicated to deal with than equidistribution results.

For example, one must answer questions like: what is the minimum of εN > 0 such that {an}Nn=1 intersects

any ball of radius εN? (E.g. {an}Nn=1 ⊆ [0, 1] implies εN > 1/N by the pigeonhole principle.)

Theorem 2.19

For {{αn}}, we have

lim sup
n→∞

NεN > 1 +
2
√
5

5
.

Furthermore, equality is obtained exactly when α = (aφ+ d)/(cφ+ d), where φ is the Golden ratio,

and γ ∈ GL2(Z).

The standard proof of this uses continued fractions. This result says that the fractional part {αn} has

large holes, since the theorem is only “obviously” true for 1 on the RHS. The smaller the lim sup for a

particular α, the better it’s distributed than other α’s, since it’ll have fewer holes. This theorem says

“the golden ratio is the best at filling out [0, 1].” Typically, finding a sharp estimate for εN is extremely

difficult.
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(Lecture 13: October 22, 2020)

2.8 Effective vertical Sato–Tate conjecture

Let us start with a variant of the Erdős-Turan inequality. This inequality only works for sequences that

become uniformly distributed, so if we’re working with a sequence that equidistributes with respect to

another measure, then we need a variant.

A fact that we’ll accept without proof: the sequence {xn} ⊆ [0, 1] is equidistributed with respect to some

continuous measure µ if and only if the following is true:

1. The “Weyl limit”

cm := lim
N→∞

1

N

∑
n≤N

e(mxn)

exists for all m ∈ Z, and in fact converges to
∫
emxdµ. (This is clearly a necessary condition, but is

not sufficient. So we must impose the following. . . )

2. limN→∞
1
N

∑
|m|<N |cm|2 = 0. (This imposes that the resulting measure is indeed continuous.)

If we assume further that ∑
|cm| <∞,

then we can define µ explicitly by dµ = f(x)dx, where

f(x) =
∑

cme(−mx).

The point is that finiteness of
∑

|cm| guarantees absolute convergence of the RHS. Without this condition,

we only have measure-wise equality; but with this finiteness condition, we’re guaranteed pointwise equality.

Murty and Sinha proved the following variant of the Erdős-Turan inequality:

Theorem 2.20: (Murty-Sinha, 2009)

D(dµN , dµ) <
||f ||L∞

M + 1
+ 2

∑
1≤|m|≤M

1

m
|µ̂N (m)− cm|.

This recovers Erdős-Turan when we set dµN = dx; so in this case, the right-hand sum simplifies.

Now that we have a general Erdős-Turan with a general target measure, we can prove an

effective Sato–Tate. One can try to work this out using

dµ = µp(x) =
p+ 1

π

√
1− x2/4

(
√
p+ 1/

√
p)2 − x2

χ[−2,2](x)dx.

from before; but the problem is that computing the Weyl limit is not natural. It essentially comes out to

computing the Fourier transform of this measure, but it’s hard to integrate the above against e(mx). Much

more natural is to integrate this against Un(cos(mx)) with respect to x.
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We first note that, under the change of variable θ 7→ 2 cos θ = x, any measure dν(x) on [−2, 2] corresponds

to a unique “even” measure dν̃(θ). (Why is this? θ varies from −2π to 2π; but cos θ is even; so if we have an

even measure in terms of θ, that’ll correspond to an even measure on [−2, 2] under this change of variable.

For example, dx is sent to −2 sin θdθ. ) Next, observe that

D(dµN , dµ) = D(dµ̃N , dµ̃).

(Why is this? The LHS quantity is the supremum of |
∫ b

a
dµN −

∫ b

a
dµ|, but under the change of variable

given by the above correspondence, this is difference is precisely 2|
∫ b′

a′ dµ̃N −
∫ b′

a′ dµ̃|.) We’ll need the identity

Um(cos θ)− Um−2(cos θ) =
sin(m+ 1)θ − sin(m− 1)θ

sin θ
= 2 cos(mθ).

This tells us that the Weyl limit for µ̃p,k is

̂̃µp,k =

∫
cos(mθ)dµ̃pk(x)

because µ̃p,k is even. But this is∫
cos(mθ)dµ̃pk(x) =

1

2

∫
Um(cos θ)− Um−2(cos θ)dµ̃p,k(θ)

=
1

2

∫ 2

−2

Um(x/2)− Um−2(x/2)dµp,k(x)

=
1

2

1

|Bk|
∑
f∈Bk

λf (p
m)− λf (p

m−2).

So, we have an explicit Weyl limit by doing a change of variable. If we estimate the Eichler-Selberg trace

formula, keeping track of p-dependency in the error estimate, we get the following quick application:∣∣∣ ˆ̃µp,k(m)− cm

∣∣∣� 1

k
p3m/2 log pm.

Applying the generalized Erdős-Turan inequality for µ̃p,k, we can estimate the discrepancy

D(dµp,k, dµp) �
1

M
+

1

k
p3M/2(log pM )(logM).

It’s clear that fixing M and taking k large gives vertical Sato–Tate. But we want a precise error estimate.

If we take M = bc log k/ log pc, then we get

p3M/2 � p
3
2 c

log k
log p = k

3
2 c.

So by taking c sufficiently small, we have that p3M/2/k goes to zero almost linearly in k. This means that,

with this choice of M ,
1

k
p3M/2(log pM )(logM) � k−1+δ

for some small δ > 0. As for the first part, we have M−1 � log p/ log k, and since p is fixed, this goes to

zero as 1/ log k. This proves vertical Sato–Tate a la Murty and Sinha:
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Theorem 2.21: (Murty-Sinha)

We have

D(µp,k, µp) �
log p

log k
.

Some philosophical remarks:

1. Because of the term p3M/2 in the original discrepancy estimate, one has to take M at least logarith-

mically small in k, since we need p3M/2 to grow slower than k. But this means the whole expression

can’t decay any faster than 1/ log k, from the original Murty-Sinha estimate. That is, by the same

term, improving the depending constant c in the final statement requires a power saving estimate in

the error term of the trace formula, which is extremely difficult. For example, we saw c < 2/3. So to

make the final statement effective, and to get a good constant, we need the 3/2 in the p3M/2 to be

smaller, since that gives the barrier. This is where the “effective” comes from.

In particular, if we want some bound like 1/kδ, then we’d need some exponentially good savings for k

in the Eichler-Selberg trace formula. Which is absurd; one can prove this is not even true.

2. Thus, if we’re going to prove a discrepancy using Erdős-Turan, then there is no way to improve this past

1/ log k. So we probably need some tools that are better than the Erdős-Turan inequality to improve

the Murty–Sinha bound. But this is not known, at the moment. But philosophically, we don’t think

not having the right tool is the real problem. Rather, we think that the definition of the discrepancy

D(·, ·) as the supremums of integrals, being naturally not smooth, is the main reason why we can’t

prove anything stronger than 1/ log k. And this may be seen by the Fourier transform.

3. Experimental computations suggest that the discrepancy is better than the Murty–Sinha bound. From

a theorem of Gamburd-Jacobson-Sarnak:

Theorem 2.22

D(µp,k, µp) = Ωp(
1√

k(log k)2
) as k → ∞. Furthermore, numerical experiments predict that

D(µp,k, µp) = O(k−
1
2+ε).

This follows from the square root cancellation from the sums of Hecke eigenvalues (numerical experi-

ments show us that normalized Hecke eigenvalues behave like random numbers.)

2.9 Digression: motivating arithmetic quantum chaos

All of the theorems we’ve proven so far fall into the field of arithmetic quantum chaos. Suppose {xn}

is a sequence which is i.i.d., with E(xn) = 0 (so it’s centered at zero) and its variance is V (xn) = 1. The
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central limit theorem says
1√
N

N∑
n=1

xn → N(0, 1),

the standard normal distribution. What does this imply? For large N , we have that

P

(
| 1√
N

N∑
n=1

xn| < A

)
∼ 1√

π

∫ A

−A

e−x2

dx.

So, for any ε > 0,

P

(
| 1√
N

N∑
n=1

xn| < N ε

)
→ 1.

In other words, it is “almost surely” true that∣∣∣∣∣
N∑

n=1

xn

∣∣∣∣∣ < N
1
2+ε.

For example, we think that {µ(n)} is random, i.e. that it takes values in 1, 0, and 1 with probability

3/π2, 1 − 6/π2, and 3/π2, respectively. (Why these numbers? They’re the density of square-free numbers!

Specifically, 6/π2 is the probability that a random number has a square factor. This is a relatively “naive”

way of guessing the distribution.)

If this prediction is true, it implies RH, but only if we can quantify the rate of convergence and show

that there is square-root cancellation. Namely, RH is equivalent to the claim that

|
N∑

n=1

µ(n)| < N
1
2+ε

for all large N . We at least do know that µ(n) is equidistributed with respect to the above measure. And in

fact, that is equivalent to the prime number theorem (with no error bound.)

For example, for Dirichlet L-functions, the corresponding quantities are {χd(n)µ(n)}. We know that∑
n<N

χd(n)µ(n) = o(N),

which is equivalent to Dirichlet’s theorem on primes in arithmetic progressions. In this case,∑
n<N

χd(n)µ(n) = Oε(N
1
2+ε) ⇐⇒ GRH.

The estimate on the LHS says Dirichlet characters and the Mobius function aren’t correlated.

So why is the field called arithmetic quantum chaos? Quantum chaos is all about the relationship between

Hamiltonian systems and the corresponding quantized system, when the underlying Hamiltonian system has

chaotic behavior. But if you’re looking at the Hamiltonian which corresponds to the free particle, then the

corresponding quantized system is going to be described by the Laplacian, as the Schrodinger equation is

not going to have any potential on it. Therefore, understanding the corresponding quantized system can be

done by looking at the eigenspaces of the Laplacian. And on H, geodesic flow is chaotic, so Hamiltonian
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dynamics is chaotic (this is a famous “hyperbolicity theorem.”) Therefore, if you want to understand the

corresponding quantized system on H, then you must understand the spectrum of the Laplacian, namely,

modular forms and Maass forms.

(Lecture 14: October 27, 2020)

To recast our earlier discussion, µ(n) is uncorrelated with the constant sequence 1, 1, 1, . . . . And the

prime number theorem in arithmetic progressions tells us µ(n) is uncorrelated with χd(1), χd(2), . . . But

the latter sequence is determined by the first d elements of the sequence, by periodicity. So the sequence

χd(1), χd(2), . . . is very far from being random; in fact, it’s a deterministic sequence.

The Möbius disjointness conjecture says: for any deterministic sequence {an}, we must have∑
n≤N

anµ(n) = o(N).

To wave our hands at what it means for a sequence {an} to be deterministic. . . consider a1, . . . , aN , and

within this truncated sequence, look at the n-length adjacent subsequences. There are N −n of these, and we

count the number of distinct segments. For example, the constant sequence gives 1, uniformly in n and N ;

looking at the Dirichlet character, you’ll get at most d distinct segments, unformly in N . So we can try to

estimate how the number of distinct segments grows in terms of n and N ; and this gives a quantity called

the “entropy” of the sequence. For a sequence to be “deterministic” means the entropy is zero. The Möbius

disjointness conjecture implies Chowla’s conjecture.

Chowla’s conjecture: If r1, . . . , rm ∈ {1, 2} with not all ri = 2, a1, . . . , am are distinct, then

1

N

∑
n≤N

µr1(n+ a1) · · ·µrm(n+ am) → 0.

This conjecture is so hard that not even a single case has been proven to date. For example, we don’t even

know if the Mobius function is uncorrelated with itself, i.e., we don’t know if

1

X

∑
n≤X

µ(n)µ(n+ 1) → 0.

We bring this up since it was a very hot topic recently in analytic number theory. Recent theorems in this

direction:

1. If we define λ(n) = (−1)#prime factors of n, then Matomäki-Radziwill proved that

lim inf
1

X

∑
n≤X

λ(n)λ(n+ 1) > −1

6
.

If there were no cancellation, this would be either −1 or 1. But what they showed is that there does

exist some positive proportion of cancellation in this summation. This was published in the Annals,

and people care a lot about this result because it represents progress towards Chowla’s conjecture.
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2. “The logarithmic Chowla’s conjecture” says

1

logX

∑ µr1(n+ a1) · · ·µrm(n+ am)

n
= o(1).

This was proved in 2018, and was also published in the Annals.

The takeaway: recent work on Chowla has included proving it with extra weight. The reason these are

so important:

3. (Green-Tao) Mobius disjointness conjecture is true for nil-sequences (this is a deterministic sequence

which is determined by a nilpotent flow.) This allowed them to show that for all N , there exist N

distinct primes p1, . . . , pN and d such that pi+1 − pi = d.

The upshot: you can get some very incredible results by looking at randomness in µ, as

well as progress towards Chowla’s conjecture.

2.10 Overview of Hamiltonian dynamics

In this class we’ve been studying modular forms. There is in fact some randomness going on in this area as

well; so there should be some conjectured analog to Chowla that explains the expected behavior of modular

forms. In order to discuss this, we need to understand some physics.

The Hamiltonian, which represents total energy, is

H = T + V,

where T = P 2/2m is kinetic energy, P is momentum, m is the mass, and V is the potential. Any motion

is going try to minimize the total energy. The case relevant to modular forms is when there is no potential

at all, V = 0. So the dynamics is described by the total energy T ; in this case, H describes the energy of

free particle. So movement is only along geodesics, since geodesics minimize length. And if you think of a

particle with fixed mass, your total energy H is a function of x and P = mẋ. In other words, the total energy

H is a function on a phase space {(x, p)}, where you record the position and the velocity at the same time.

If you bring this to a manifold M , then the setup of pairs {(x, p)} is identified with TM , the tangent bundle

over M . So the Hamiltonian dynamics described by a potential-free Hamiltonian H is actually equivalent to

geodesic flow on M . The geodesic flow on M is defined by

Φ : TM → TM : (x, p) 7→ (Expx(p), q).

Here, (x, p) specifies a point x on M and its direction p; Expx(p) is the point obtained by moving a point x

according to the tangent vector p along a geodesic; and the resulting vector is the parallel transport q, which

is obtained by moving p along this geodesic. This is called geodesic flow because any trajectory of Φ is given

by a geodesic. Note that this geodesic flow is equivalent to Hamiltonian dynamics for a free particle, as the

latter follows geodesics when it’s free to move in this space.
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The way that physicists quantize this, thereby obtain quantum dynamics, is by mapping the momentum

P to a differential operator; i.e. the corresponding “quantum system” is obtained by naively mapping

P 7→ 1

i
∂x.

In this case, the total energy becomes the negative Laplacian,

H = −∆,

since P 2 = −(∂x)
2. The dynamics is described by the evolution equation

i∂tφ(t, x) = ∆φ(t, x),

which is the potential-free version of the Schrodinger equation. One strategy of solving this equation is by

separation of variables; if we do this, we obtain

φ(t, x) =
∑

ane
−itλnφn(x),

where −∆φn(x) = λnφn(x). In words, we write the solution φ(t, x) as an infinite series, where each summand

is the product of something that oscillates in t and an eigenfunction of the Laplacian. This means that the

eigenstates φn(x) of −∆ describe the potential-free quantum system. Even though (on the surface) this

quantum system has nothing to do with the classical Hamiltonian system, physicists believe there is a close

relation between these two systems.

The subject quantum chaos concerns the relationship between classical Hamiltonian dynamics and quan-

tum dynamics (namely, the behavior of these eigenstates φn.) The general philsophy of this correspondence is

based on Berry’s 1997 paper, which is referred to as “Berry’s Random Wave Model.” It essentially says that if

the classical dynamics is chaotic, then the corresponding quantum dynamics must be random. Meaning, you

shouldn’t see the eigenfunctions align, or anything like that. In particular, he stated: φn should behave

like a random wave.

Now we explain the relevance to modular forms. SL2(Z)\H has hyperbolic structure, meaning that the

sectional curvature is −1 everywhere; in contrast, a sphere has curvature 1 everywhere and the Euclidian

plane 0. Therefore, SL2(Z)\H is dispersing, meaning that if you shoot two geodesics into directions that

are slightly different, then the distance between those particles will grow like an exponential function; in

constrast, in the Euclidian plane, the distance only grows like a linear function, and in positively curves

surfaces such as S2, they will always meet each other eventually. We know that in this case, the geodesic flow

is chaotic. So according to the Random Wave Model, eigenfunctions of the Laplace Beltrami operator, which

in this case is −∆ = −y2(∂2x + ∂2y), should behave like a random wave. We know that these eigenfunctions

are Maass forms.

There are many conclusions we may draw from the Random Wave Model, i.e., the naïve belief that the

Maass forms φn behave like a random wave.
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1. The L∞ conjecture says

‖φn‖L∞ = Oε(λ
ε
n).

This is important because it implies the Lindelöf hypothesis for ζ. A non-trivial estimate for L∞ norm

for Maass forms was proven in the early 90’s.

2. It’s conjectured that limn→∞ ||φn||Lp , for p even, is the p-th moment of the standard normal distribu-

tion, N(0, 1). We have a good understanding of the fourth moment, from the past few years. A group

of people recently computed this fourth moment, assuming the Ramanujan conjecture for Maass forms.

3. If you’re given an eigenstate, then the corresponding density function is given by |φn|2dV . If things

were random, then this measure should not be concentrated everywhere; it ought to “see” every part

of the surface SL2(Z)\H equally. Therefore, we expect |φn|2dV to converge to the volume form dV as

n→ ∞. This is the arithmetic quantum unique ergodicity theorem of Lindenstrauss and Soundararajan

(and this won Lindenstrauss the Fields medal to Lindenstrauss.)

Often, these implications are too strong to be claimed. So, we want to understand where the truth lies in.

That’s why we try to give a better estimate for L∞ norms of modular and Maass forms.

Arithmetic quantum chaos is mainly about properties of Maass forms, as these are the relevant eigen-

functions. But there is a more general belief: we believe that modular forms f , as the weight k → ∞, should

exhibit the same asymptotic behavior as Maass forms φn, as the Laplacian eigenvalue λn → ∞. Physicists

gave us the philosophy of Maass forms ought to behave like a random wave; the number theorists ran with

this, and now believe that modular forms should as well. A consequence of this is the mass equidistribu-

tion of modular forms. This analog of the arithmetic quantum unique ergodicity theorem of Sound and

Lindenstrauss says is that

|f |2ykdV → dV.

And this was proven by Sound-Holowinsky around 2010. The point: increasing the weight of your

form to ∞ is exactly the analog of increasing your Laplace eigenvalue to ∞. The Petersson trace

formula and the Eichler-Selberg trace formula are the most important tools for studying this phenomenon.

If this is true, then for example, then Hecke eigenvalues must behave like a random number. And this was

proven by Serre, which is referred to as vertical Sato–Tate.
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