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ABSTRACT OF THE DISSERTATION
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Model-Based Reinforcement Learning

by Bethany R. Leffler

Dissertation Director: Michael L. Littman

In recent years, the advances in robotics have allowed for robots to venture into

places too dangerous for humans. Unfortunately, the terrain in which these robots

are being deployed may not be known by humans in advance, making it difficult to

create motion programs robust enough to handle all scenarios that the robot may

encounter. For this reason, research is being done to add learning capabilities to

improve the robot’s ability to adapt to its environment. Reinforcement learning is

well suited for these robot domains because often the desired outcome is known,

but the best way to achieve this outcome is unknown.

In a real world domain, a reinforcement-learning agent has to learn a great

deal from experience. Therefore, it must be sample-size efficient. To do so, it

must balance the amount of exploration that is needed to properly model the

environment with the need to use the information that it has already obtained to

complete its original task. In robot domains, the exploration process is especially

costly in both time and energy. Therefore, it is important to make the best

possible use of the robot’s limited opportunities for exploration without degrading
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the robot’s performance.

This dissertation discusses a specialization of the standard Markov Decision

Process (MDP) framework that allows for easier transfer of experience between

similar states and introduces an algorithm that uses this new framework to per-

form more efficient exploration in robot-navigation problems. It then develops

methods for an agent to determine how to accurately group similar states. One

proposed technique clusters states by their observed outcomes. To make it possi-

ble to extrapolate observed outcomes to as-yet unvisited states, a second approach

uses perceptual information such as the output of an image-processing system to

group perceptually similar states with the hope that they will also be related

in terms of outcomes. However, there are many different percepts from which

a robot could obtain state groupings. To address this issue, a third algorithm

is presented that determines how to group states when the agent has multiple,

possibly conflicting, inputs from which to choose. Robot experiments of all al-

gorithms proposed are included to demonstrate the improvements that can be

obtained by using the approaches presented.
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Preface

Portions of this dissertation are based on work previously published by the au-

thor [Leffler et al., 2005, 2007, 2008].
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Chapter 1

Introduction

Recent advances in robotics have allowed for robots to venture into places too

dangerous for humans. In some severe environments, it is difficult for humans to

control the robots; autonomy is needed. One such environment is Mars [Volpe

et al., 2000]. One message takes several minutes to be transmitted from a con-

troller on Earth to a rover on Mars. Instead of waiting for each instruction to

be transmitted from humans, a Mars rover, shown in Figure 1.1, performs many

different routines based on its sensor data.

To perform navigation tasks, the robot needs to know how its location in the

world will change as the result of taking an action. This information is called the

robot’s dynamics [Murray et al., 1994]. By modeling its dynamics, a robot can

calculate the series of actions required to achieve a navigation task. Many robots,

including the Mars rover, are given equations to calculate the expected outcome

from taking an action [Balaram, 2000]. These equations are usually a function

of many variables such as a vehicle velocity and contact point location that are

carefully studied and calibrated by NASA engineers before the robot is deployed.

These parameters can then be adjusted by the robot after it arrives on Mars.

Unfortunately, it is difficult to allow for all scenarios that the robot may

encounter with a set of equations. Over time, the terrain that the robot travels

on or even the robot itself may change causing the robot to have an improper

model of the world. Without an accurate understanding of its dynamics, the

robot cannot reliably perform its task. One way make a more reliable robot is to
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Figure 1.1: Artists rendering of a Mars rover. Courtesy of NASA/JPL-Caltech.

give it the ability to learn.

Machine learning is the process in which a machine reliably improves its per-

formance of a task on the basis of experience [Mitchell, 2006]. In a learning

system, an agent, or dedicated processing unit, is fed experience and updates

its model of the environment.1 In a robot-navigation task, performance is often

evaluated on the path, or sequence of actions, that the robot takes to arrive at its

goal.

The field of machine learning can be divided into sub-problems with many

different inputs, outputs, and objectives. Robot problems can be formulated as

several different machine-learning problems (see Chapter 2). This dissertation

will formulate the robot-navigation task as a reinforcement-learning problem.

1It is important to note that the agent is not the robot. Often, it is designed so that an agent
is a learner and planner, and the robot is the actuator. However, many agents can be combined
to control a single robot—each with their individual tasks such as path planning, learning the
dynamics model, language processing, etc. [Thrun et al., 2000].
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1.1 Problem Setting

Reinforcement learning is a form of machine learning where the agent modifies

its behavior based on rewards provided by the environment [Sutton and Barto,

1998]. This approach is especially well suited for tasks where a desired outcome

is known, but the best way to achieve this outcome is unknown. For instance, in

the robot-navigation task, the desired outcome would be for the robot to arrive

in a desired location. So, a large reward would be given to the agent any time

that it entered this desired location. Learning from this reward, the agent would

calculate what actions it should perform at any given time.

The current status of the environment is detailed as a state. The state can in-

clude the status of all objects in an environment, but is often simplified to monitor

only objects that can affect the agent’s ability to achieve its given task. For ex-

ample, in a simple robot-navigation task, the state consists of the robot’s location

and orientation. However, if a task were to have a robot navigate through a room

full of people, the state would consist not only of the location and orientation of

the robot, but the location of each of the people in the room as well.

Figure 1.2 shows the interaction between a reinforcement-learning agent and

its environment. Initially, an agent receives the current state. An agent then

chooses an action to take. A set of actions can be continuous like turning a wheel

to a desired position, or discrete like choosing between preset actions such as

“turn left”. Each individual action can be continuous or discrete in time. For

continuous actions, an agent determines how long to perform each action. An

discrete alternative is to have each action performed for a predetermined length

of time. Environments detailed in this dissertation will consist of a discrete set

of discrete actions (for continuous domains, see the work of Doya [2000]).

After an action is completed, the environment sends the updated current state

and reward to the agent. This cycle repeats until the agent reaches a terminal
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Figure 1.2: A diagram showing the exchange of information in a reinforcement-
learning problem.

state. A state is considered terminal if the episode ends once the agent arrives in

it.

In robot-navigation tasks, the objective of the reinforcement-learning agent

is to determine the best path to reach the goal state which is usually a terminal

state with high reward.

1.1.1 Path Planning

As mentioned earlier, the performance in a robot-navigation task is determined

by the path that the agent takes to arrive at its goal. A policy is a set of actions,

one for each state, where the agent has determined each action to be the best

action for its corresponding state [Sutton and Barto, 1998]. These actions are

chosen based on the long-term expected reward that the agent hopes to receive.
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The optimal policy is the policy that leads to the highest possible reward from all

states. One way to learn the optimal policy would be for the agent to calculate the

value, or expected reward, of each of the state-action pairs using data collected

about the environment from previous experience.

A model-free, or direct, reinforcement-learning agent estimates the value of a

state-action pair based solely on the rewards received from previous experiences of

that state-action pair [Sutton and Barto, 1998]. Rewards received from perform-

ing each same state-action pair are averaged and mean values for all state-action

pairs are stored. When the agent chooses an action, it looks at each of the state-

action pairs for the current state and chooses the action corresponding to the

highest value.

Another way to obtain the value of a state-action pair is through model-based

reinforcement learning [Sutton and Barto, 1998]. With this approach, the agent

calculates the environment’s reward structure and dynamics model from the state

and reward information provided by the environment in previous experiences.

With this information, the agent builds a model of the world and uses it to

calculate the values of each state-action pair (see Section 1.2 for more details).

Both model-free and model-based approaches have their benefits. Model-

free methods require very little calculation because of their direct use of previous

rewards. Model-based methods create a more complete model of the environment,

requiring less experience but more calculation to determine a reasonable policy.

Although there is no single right answer on the question of model-based versus

model-free learning, in the robot domain, actions in the world are generally slow

compared to the time needed for computation. Therefore, I have opted to focus

primarily on model-based methods, although I have run model-free algorithms

for comparison. This dissertation explores the use of model-based reinforcement

learning to perform robot-navigation tasks.
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Figure 1.3: A simple Markov Decision Process (MDP) model.

1.2 Markov Decision Processes

The traditional model used to formulate the model-based reinforcement-learning

tasks is the Markov Decision Process (MDP) model [Puterman, 1994]. In addition

to states and actions, an MDP model includes a transition function and reward

function. The transition function, T (s, a, s′), can be thought of as an agent’s

action model or, in a robot domain, the agent’s model of a robot’s dynamics. It

is a probability distribution over possible next states, s′, from any given state-

action pair. This information is helpful for an agent to be able to plan a path,

and subsequently reach its goal.

The reward function, R(s, a), is the immediate reward for each state-action

pair, 〈s, a〉. An agent uses this information to determine its policy.

Figure 1.3 shows a simple MDP for illustration. For this MDP, the set of

states S consists of {s1, s2, s3}, the set of actions A consists of {a1, a2}, and s3 is

a terminal state as marked by the double circle. A transition is the probability of

reaching any given state given a state and action. In the figure, arrows indicate

the transitions.

This environment is deterministic because all of the transitions have a prob-

ability of 0 or 1. For instance, if the agent takes action a1 in state s1, the

probabilities of arriving in states s3 and s2 are 0 and 1, respectively.

The rewards are shown as real numbers near each of the arrows. For instance,

the reward for taking action a2 from state s2 is 1.0.
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1.2.1 Solving the Model

Using an MDP model of the environment, an agent can solve for the optimal

policy, π∗, using dynamic programming [Puterman, 1994]. The Bellman equa-

tion, shown in Equation 1.1, determines an optimal value for a state, V (s)∗, by

performing a max operation over all actions from the current state. The value of

a state-action pair, Q(s, a), is calculated by summing up the largest value of all

possible next states, s′, weighted by the probability that action a would take the

agent to s′. That sum is then multiplied by a discount factor, γ, and added to

the reward for that state-action pair:

V ∗(s) = max
a
Q(s, a) = max

a
{R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)}. (1.1)

The discount factor determines how heavily the agent should weight future

reward versus immediate reward. This parameter is set to a value between zero

and one. When the discount factor is zero, future actions have no bearing on

the agent’s decision. In contrast, when the discount factor is set to one, every

action in the future is as important as the current action. If the environment does

not have a reachable terminal state, the discount factor must be less than one to

guarantee that the value of a policy is well defined.

The Bellman equation in Equation 1.1 form a set of simultaneous equa-

tions through recursion. Value iteration is the process of repeatedly comput-

ing the value of each state from values stored in a table during previous itera-

tions [LaValle, 2006]. This process will continue for a user-specified number of

steps or until it converges to a user-specified tolerance.

These values, in combination with the transition function, can be used to de-

termine the best action to take in each state. For example, an agent in the simple

MDP environment of Figure 1.3 with a discount factor of 0.1 would calculate the

value of state s1 by calculating the value of action a1 as
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State s1 State s2 State s3

iteration 0 0.0 0.0 0.0
iteration 1 0.0 1.0 0.0
iteration 2 0.1 1.0 0.0
iteration 3 0.1 1.0 0.0

Table 1.1: Values for the states in the sample environment for the steps of value
iteration with a discount factor of 0.1.

Q(s1, a1) = R(s1, a1) + γ
∑
s′

T (s1, a1, s
′)V ∗(s′)

= 0.0 + 0.1((0 · V ∗(s1)) + (1 · V ∗(s2)) + (0 · V ∗(s3)))

= 0.1(V ∗(s2)).

For this example, the values of all states were initialized to 0. These values

are shown as iteration 0 in Table 1.1. Based on these initial values, the calculated

value of taking action a1 from state s1 is 0. The same calculation can be performed

for action a2. Again, since there is no stored value for s1, it is initialized to 0,

making the value of taking action a2 from state s1 also 0. The max over these

two actions is 0, and thus, this number is stored as the current value for s1 for

iteration 1 of value iteration.

Now, the agent would update its value for state s2 using the Bellman equation.

The calculations for action a1 would be

Q(s2, a1) = R(s2, a1) + γ
∑
s′

T (s2, a1, s
′)V ∗(s′)

= 0.5 + 0.1((1 · V ∗(s1)) + (0 · V ∗(s2)) + (0 · V ∗(s3)))

= 0.5 + 0.1(V ∗(s1))

= 0.5 + 0.1(0)

= 0.5.
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The calculations for action a2 would be

Q(s2, a2) = R(s2, a2) + γ
∑
s′

T (s2, a2, s
′)V ∗(s′)

= 1.0 + 0.1((0 · V ∗(s1) + (0 · V ∗(s2)) + (1 · V ∗(s3))

= 1.0 + 0.1(V ∗(s3))

= 1.0 + 0.1(0)

= 1.0.

With the state s3 initialized to 0, the value of taking action a2 is greater than

that of taking action a1 from state s2. So, the value for state s2 is 1.0. The agent

now goes on to compute the value of state s3. However, since it is a terminal

state, no actions can be taken and its value will remain 0. Since the values of

some of the states just changed significantly, the agent once again computes the

value of each of the states. Using the techniques shown previously, the value of

state s1 changes to 0.1 in iteration 2 based on the value of action a1. The value

of state s2 is then re-evaluated to account for the new value of state s1. Since

the value of action a2 is still greater than the value of action a1 and the agent

is solving for the maximum value, the value of state s2 does not change. One

more round of these calculations is performed until the agent sees no change in

the value of any of the states. At that point, the agent determines that the best

policy, based on the current transition function, reward function, and discount

factor is to take action a1 from state s1 and action a2 from state s2.

As mentioned earlier, the agent chooses its actions based on a temporal weight-

ing of its expected reward in future states by the discount function. When acting

in the environment modeled by the MDP in Figure 1.3, if the discount factor were

very small, an agent in state s2 would choose action a2, but if it were larger, it

would choose action a1 because, over time, it would achieve a larger cumulative

reward. For instance, if the discount factor was 0.99, the agent would choose to

take action a1 instead of action a2 because the cycle of s1, s2, s1, s2, s1, etc. would
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State s1 State s2 State s3

iteration 0 0.0 0.0 0.0
iteration 1 0.0 1.0 0.0
iteration 2 0.99 1.0 0.0
iteration 3 0.1 1.4801 0.0
iteration 4 1.4652 1.4801 0.0
iteration 5 1.4652 1.950548 0.0
iteration 6 1.93113955 1.950548 0.0
iteration 7 1.93113955 2.41182815 0.0
iteration 8 2.38770987 2.41182815 0.0
iteration 9 2.38770987 2.86383277 0.0
iteration 10 2.83519444 2.86383277 0.0

Table 1.2: Values for the states in the sample environment for the steps of value
iteration with a discount factor of 0.99.

yield rewards of 0, 0.5, 0, 0.5, 0, etc. This result is due to changes that start at

iteration 3, as detailed in Table 1.2. The calculations for state s1 are the same,

except for the change in discount function resulting in a value of 0.99 instead of

0.1. This larger value for state s1 leads to the following calculations for action a1

from state s2:

Q(s2, a1) = R(s2, a1) + γ
∑
s′

T (s2, a1, s
′)V ∗(s′)

= 0.5 + 0.99((1 · V ∗(s1)) + (0 · V ∗(s2)) + (0 · V ∗(s3)))

= 0.5 + 0.99(V ∗(s1))

= 0.5 + 0.99(0.99)

= 1.4801.
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The calculations for action a2 would be

Q(s2, a2) = R(s2, a2) + γ
∑
s′

T (s2, a2, s
′)V ∗(s′)

= 1.0 + 0.99((0 · V ∗(s1) + (0 · V ∗(s2)) + (1 · V ∗(s3))

= 1.0 + 0.99(V ∗(s3))

= 1.0 + 0.99(0)

= 1.0.

Now, action a1 has a higher value than action a2 because of the increased

value of state s1 and the value of state s2. The table entry for state s2 in iteration

3 is updated to 1.4801. For the next iteration, the calculations for action a1 from

state s1 would be

Q(s1, a1) = R(s2, a1) + γ
∑
s′

T (s2, a1, s
′)V ∗(s′)

= 0.0 + 0.99((1 · V ∗(s1)) + (1 · V ∗(s2)) + (0 · V ∗(s3)))

= 0.0 + 0.99(V ∗(s2))

= 0.0 + 0.99(1.48)

= 1.4652.

The calculations for action a2 would be

Q(s1, a2) = R(s2, a2) + γ
∑
s′

T (s2, a2, s
′)V ∗(s′)

= 0.0 + 0.99((1 · V ∗(s1) + (0 · V ∗(s2)) + (0 · V ∗(s3))

= 0.0 + 0.99(V ∗(s1))

= 0.0 + 0.99(0.99)

= 0.9801.
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The value for state s1 would be updated and the calculations would continue

for a user-specified number of steps or until it converges to a user-specified toler-

ance. Several more iterations of these calculations are shown in Table 1.2.

1.2.2 Learning the Model

If the model were completely known at the beginning of a task, there would

be no point in having an agent learn. Programmers could solve the equations

themselves and hard code the optimal policies. A reinforcement-learning agent

becomes beneficial when the model of the environment is not fully known. In the

Mars rover example, programmers know the behavior that they want from the

robot. So, they are able to determine the reward function and discount factor,

but they might not be able to fully model the robot’s dynamics. For this reason,

they could have the agent try to learn its transition function. The sample MDP of

a robot-navigation task is shown in Figure 1.4. In this sample domain, the state

consists of an x and y location shown as a grid. In an ideal world, the actions

would include moving forward, back, left, and right a fixed amount of space. To

learn its transition function, the agent would try each of its actions once in each

state. After performing an action, the agent would store the resulting state as

the expected next state for the previous state-action pair.

However, most environments are not this predictable. Unlike the simple en-

vironment mentioned in the previous section, the majority of the world is not

deterministic; it is stochastic. When a robot moves in the world, there is a

probability distribution over possible next states. Figure 1.5 shows a stochastic

transition function of state s13 in a robot-navigation MDP. The transition prob-

abilities are shown in parenthesis. For example, choosing action a3 results in the

state s14 with a probability of 0.5 and state s145 with a probability of 0.5.
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Figure 1.4: An MDP of a two-dimensional robot environment.
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Figure 1.5: A stochastic MDP of a two-dimensional robot task. Only the transi-
tion function for state s13 is shown.
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1.2.3 Exploration

To create an accurate model of an environment, an agent must acquire suffi-

cient experience. Navigating stochastic environments requires more experience

than deterministic environments because an agent needs to learn the probability

distribution of all possible next states instead of learning a single next state.

The justification behind an agent taking an action can be in one of two forms:

exploration or exploitation. An explorative action is an action that is taken for

the purpose of gathering information. An exploitative action is an action taken

with the intent to receive high reward. If an agent has a purely explorative policy,

it will get low reward, as its actions will not necessarily take actions that result

in high rewards. On the other hand, if an action has a purely exploitative policy,

it may not fully explore its environment, leading to an improper or incomplete

model. Without an accurate model, an agent is likely to derive a sub-optimal

policy that achieves a low reward.

In order to receive near-optimal reward, a balance between these two types

of actions must be achieved. This choice of which type of action an agent should

perform is called the exploration/exploitation dilemma [Thrun, 1992]. By properly

balancing these two types of actions, an agent is able to build a proper model and

achieve optimal performance with a reasonable amount of experience.

For a reinforcement-learning agent to be beneficial in a real-life domain, the

amount of exploration must be small. This restriction is especially true in robot

domains where the exploration process is costly in both time and energy. Therefore,

it is important to make the best possible use of the robot’s limited opportunities

for exploration without degrading the robot’s performance.
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1.2.4 Generalization

Even with a purely exploratory algorithm, some agents would take impractically

long to fully model their environments. Assuming that every square foot of Mars

was its own state, a rover would have to visit every square foot of Mars and

perform each action once to have a simple deterministic model of the transition

function. Obviously, this approach is not feasible. The time an agent spends

exploring must be limited. One way to make the most of limited experience is to

use generalization [Sutton, 1988].

In the context of reinforcement learning, generalization is the use of prior

experience to infer information about unseen state-action pairs. For example,

an agent might experience driving forward on a specific piece of pavement and

assume from that experience that driving forward on any piece of pavement will

have the same result. By making this assumption, the agent no longer has to

drive forward on all of the locations covered in pavement, limiting the amount of

exploration that is needed to learn the model.

This assumption, while speeding up the learning process, could lead to the

agent choosing a poor policy. In the previous example, performing this general-

ization would cause problems if the environment included hills. Driving forward

on pavement is different depending on whether the road segment is uphill or not.

Without a proper model of the world, the agent would not know that it needed

to use more power to travel uphill. Therefore, generalization needs to be accurate

to be truly beneficial.

Value-Function Approximation

A common way of using generalization in a large state space is value-function

approximation. This approach takes data from experience and uses it to ap-

proximate the entire value function [Sutton, 1988]. In one common form of this
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Figure 1.6: A Markov Decision Process (MDP) model for a robot navigation task
where states s5, s10, s15, s20, and s25 are goal states.

technique, an agent infers a state-action pair’s value by assuming that states in

close proximity will have similar values [Gordon, 1995]. Referring back to the

Mars rover example, if every square foot is its own state, then locations next to

each other have similar values. So, if the agent went down a path, states next

to that path would be assigned similar values. This approach, though, has been

shown to be unstable often leading to the divergence of value iteration and/or

poor performance [Moore, 1995].
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Figure 1.7: An aggregate model of the environment modeled in Figure 1.6. Each
state represents a cluster of states with similar values in the original model.

State-Space Aggregation

Another way to perform generalization in model-based reinforcement-learning

tasks is to reduce the number of states in the model using state-space aggrega-

tion [Dean and Givan, 1997]. With this approach, the agent creates a reduced

model of the environment by clustering groups of states from the original rep-

resentation and mapping them to a single state in the aggregate model. The

aggregate model is then used for planning purposes. This mapping from original

models to aggregate models is called abstraction and can be performed based on

similar transition function, reward function, and optimal actions [Li et al., 2006;

Boutilier and Dearden, 1994].

Figure 1.6 shows an MDP model of a robot navigation task where the goal

is to enter one of the right most states. For this example, let us assume that

any state-action pair that leads to a goal state has a reward of 1.0 and any other

state-action pair has a reward of 0.01. An aggregate model of the MDP is shown

in Figure 1.7 where abstraction was performed on states with similar state-action

values. Since states s5, s10, s15, s20, and s25 have the same dynamics and rewards,

they are mapped to the same state, c5, in the aggregate model. Taking action a1

in states s4, s9, s14, s19, and s24 would lead to a reward of 1.0, so these states are

clustered and the state c4 in the aggregate model. This process is continued until

all states in the original model are mapped to a state in the aggregate model.

Once the aggregate model is determined, it is learned and solved as previously

detailed in Section 1.2.1. If the aggregate model has the same number of states as
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Figure 1.8: An aggregate model of the environment modeled in Figure 1.6. Each
state represents a cluster of states with the same dynamics in the original model.

the original model, the resulting values for all the state-action pairs are identical.

The benefit of this approach is that the exploration necessary for the agent

to learn the model is dependent on the number of states in the aggregate model

instead of the number of states in the original. If the aggregate model is much

smaller than the original model, the necessary exploration is greatly reduced.

There are difficulties with performing state-space aggregation. For instance,

if the only goal state in the environment was state s25 as in Figure 1.9. In this

environment, the determination of the aggregate model would have been more

difficult. If the clustering of states was based on state-action values, no states

would be clustered and the aggregate model would be the same size as the original

model. On the other hand, if the clustering were based on which states had

similar dynamics models, then state s25 would be one cluster and all states would

be another, as shown in Figure 1.8. Another possible solution would be to cluster

states based on the maximum possible value for each state. States would then

be clustered based on their proximity to the goal as shown in Figure 1.10. The

difficulty with this method, though, is that information about the state-action

pairs are lost. For instance, the maximum value for states s20 and s24 are +1.0

and, therefore, are both represented as state c7 in the aggregate model. However,

once the aggregate is created, the information about how to achieve this reward

is lost. In the original model, the agent had to take action a4 from state s20 or

action a1 in state s24. In contrast, if the agent is in state c7 in the aggregate

model, an agent has no way to know whether action a1 or a4 will lead to the goal.
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Figure 1.9: A Markov Decision Process (MDP) model for a robot navigation task
where states s25 is a goal state.
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Figure 1.10: An aggregate model of the environment modeled in Figure 1.9. Each
state represents a cluster of states equidistant to the goal in the original model.
Each state represents a cluster of states with similar values in the original model.
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1.3 Relocatable Action Models

To avoid this difficulty while performing generalization of the model, Sherstov

and Stone [2005] created the relocatable action model (RAM) representation as a

formalism for describing a decomposition of MDPs. This new formalism decom-

poses the transition function into three separate functions—a type function, a

relocatable action model, and a next-state function. The type function, κ, groups

states with similar dynamics into clusters. The number of clusters, C, is between

one, where all states are classified as similar, and one per state where all states

are classified as a different cluster. The transitions for each cluster are captured

in the relocatable action model, t. This model maps each transition called an

outcome, o.

For outcomes to be used for planning, the agent must be able to calculate

possible next states from a state and an outcome. The function for performing this

mapping is the next-state function, η. In the robot-navigation environment, where

the state space consists of locations, the next-state function can be expressed using

simple mathematical transformations such as subtraction and addition.

Using a RAM MDP is more beneficial than state-space aggregation because in

addition to sharing experience among similar states, it also keeps all information

about the original model. This information allows for the agent to properly model

its dynamics. In fact, a RAM MDP can be used to perform traditional state-space

aggregation. However, the inverse is not true (see Appendix A).

While using a RAM MDP allows for a better model, it does need more

background knowledge for determining the clustering function, relocatable ac-

tion model, and the next-state function. This dissertation will discuss how to

learn these functions in the robot-navigation environment with little additional

information.
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Figure 1.11: The simple Markov Decision Process (MDP) from Section 1.2.

1.3.1 Solving the RAM MDP

Like a traditional MDP, a RAM MDP can be solved using value iteration. However,

the RAM formalism uses different functions and variables, which need to be con-

verted to be used in the Bellman equation. Equation 1.2 shows the modified

Bellman equation used for solving a RAM MDP. Changes in the formula include

the reward function, which is dependent on the cluster-action pair instead of the

state-action pair, and the transition function, which is a combination of κ, t, and

η. It also uses outcomes instead of the next state:

V ∗(s) = max
a
Q(s, a) = max

a
{R(κ(s), a) + γ

∑
o

(t(κ(s), a, o)V ∗(η(s, o)))}. (1.2)

Figure 1.11 is the simple MDP introduced in Section 1.2. Assuming that

s1 ∈ c1, s2 ∈ c2, and s3 ∈ c3, the state values are the same as the traditional

formalism. For instance, an agent in the simple MDP environment with a discount

factor of 0.1 would calculate the value of state s1 by calculating the value of action

a1 as

Q(s1, a1) = R(κ(s1), a1) + γ
∑
o

t(κ(s1), a1, o)V
∗(η(s1, o))

= R(c1, a1) + γ
∑
o

t(c1, a1, o)V
∗(η(s1, o)).

In this one-dimensional model, an outcome would be the change in the x
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dimension. Therefore, the outcome o1 for taking action a1 from state s1 would be

a change of +1 in the x dimension. State s1 has a value of 1 in the x dimension.

Therefore, η(s1, o1) = s2 and the value of taking action a1 from state s1 is

Q(s1, a1) = R(c1, a1) + γt(c1, a1, o1)V
∗(η(s1, o1))

= R(c1, a1) + γt(c1, a1, o1)V
∗(s2)

= 0.0 + 0.1 · 1 · V ∗(s2)

= 0.1(V ∗(s2)).

Similar to the example in the previous chapter, the values for the remain-

ing state-action pairs would be calculated using value iteration and the Bellman

equation having the same results as a traditional MDP.

The process of learning the RAM MDP is very similar to learning a traditional

MDP. It involves a balance of explorative and exploitative actions to properly

model the environment and perform the given task. The benefits of the RAM

MDP are introduced when trying to reduce the amount of exploration needed.

By learning the agent’s transitions by cluster-action pairs, instead of state-action

pairs, the amount of exploration necessary to learn an environment is dependent

on trying every action in every cluster, instead of trying every action in every

state. The greater the state to cluster ratio, the more beneficial the RAM MDP.

To further illustrate the advantages of using a RAM MDP, Figure 1.12 shows

the same two dimensional robot-navigation environment as Figure 1.4, but with

the addition of the type function. The state’s type, or cluster, is indicated by

color. Each cluster has its own set of outcomes per action. For the red cluster,

action a1 changes the x dimension by +1, action a2 changes the x dimension

by −1, action a3 changes the y dimension by +1, and action a4 changes the y

dimension by −1. The green cluster’s outcomes are reversed.

If the two clusters were known, an agent would take a minimum of eight steps
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Figure 1.12: A RAM MDP model of a two-dimensional robot-navigation environ-
ment with two clusters.
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(four actions for each of the two clusters) to learn all of the transitions in the

environment. This result is in contrast to the 100 steps (four actions for each

of the 25 states) it would take an agent to learn the transition function for the

traditional MDP.

One detriment of the RAM MDP model is the increased number of calculations

that are introduced when solving for the transition function. However, in robot-

navigation domains where actions can take up to several seconds to perform, the

additional cost is insignificant.

1.3.2 Determining Accurate Clusters

As mentioned earlier, to exploit the benefits of the RAM formalism, the state

space needs to be clustered. Determining how to group states is a difficult prob-

lem. This dissertation addresses the issue of state-space clustering by making

the assertion that in robot-navigation domains there are often perceivable clues

available to the agent through sensors or other inputs that can be exploited to

determine beneficial clustering.

This improvement in learning time does not only hold true when the clusters

are apparent. Even in the absence of additional perceptual data, an agent can

learn action-independent state clusterings using reward data and still improve

learning time.

1.4 Thesis Statement

The central thesis of this dissertation is that state-space clustering determined

by perceptual information can be exploited to provide more efficient exploration

when performing robot-navigation tasks. By utilizing additional information

about the world, such as visual information about surface types or sensor in-

formation about wall locations, the agent is able to generalize between states and
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minimize exploration costs by focusing on learning at the level of clusters. By

performing this more efficient exploration, the amount of experience needed to

learn the dynamics model is reduced from being dependent on the number of

states to the number of clusters. In addition, it is possible and still beneficial to

learn the clusterings from possibly ambiguous percepts.

1.5 Outline

The remainder of this document demonstrates how using perceptual information

for generalization allows for more efficient exploration. Chapter 2 further exam-

ines research that has been done in areas of machine learning in robotic tasks and

generalization in reinforcement learning.

Chapter 3 introduces an algorithm for learning and solving RAM MDP models

in robotic environments when the state-space clustering is given. One technique

for learning the state-space clustering in a domain with limited inputs is shown

in Chapter 4. Chapter 5 expands on the learning of state-space clustering by

introducing an algorithm that learns accurate clusters of the state space when

multiple contradictory inputs are given. Each of these chapters demonstrate

positive empirical results from physical robot domains.

Finally, the dissertation concludes with a summary of the work detailed in

previous chapters. Also discussed are the ways in which the techniques detailed

in this dissertation could be applied to domains not explored here.
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Chapter 2

Related Work

2.1 Machine Learning and Robotics

This section gives an overview of select machine-learning algorithms that have

been implemented to learn dynamics or aid navigation in the robot domain. Each

of these approaches, which can be classified into three categories: unsupervised,

supervised, and reinforcement learning, and the robot tasks that they solved, are

described in Sections 2.1.1, 2.1.2, and 2.1.3, respectively.

2.1.1 Unsupervised Learning

Unsupervised learning is a branch of machine learning in which an agent learns

about an environment without any feedback about the correct output [Russell

and Norvig, 2003]. An unsupervised learning problem called clustering is the

grouping of input into classes, or clusters [Alpaydin, 2004]. A simple example

application is when a large group of people is broken up by age or gender.

Clustering was used to aid in the autonomous navigation of the Carnegie

Mellon NAVLAB vehicle [Crisman and Thorpe, 1991]. The goal of their UNSCARF

algorithm was to identify road segments from red, green, and blue values of pix-

els in an image taken by a camera mounted on the robot. Class boundaries were

then calculated based on the determined clusters and compared with “traditional”

shapes of roads. The group of pixels with the shape best fitting that of a road

was then determined to be a road. This process showed great benefit in situations
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where shadows were cast on the road.

Stronger and Stone [2004] proposed an unsupervised learning algorithm called

SCASM that calibrated the action and sensor models of a Sony Aibo. This

calibration was performed by having the robot walk forward and backward at

different velocities while facing a multicolor pole, or beacon. Using camera data

and information about the beacon, SCASM was able to determine the action

model in terms of the sensor model and vice versa.

2.1.2 Supervised Learning

Unsupervised learning can be applied to simple clustering tasks; however, it

doesn’t scale well to more difficult problems in which greater precision or reliabil-

ity is needed [Alpaydin, 2004]. For problems such as classification or regression, a

supervised-learning agent is provided with a set of inputs and outputs on which it

is trained to learn the mapping from one to the other. After the training process

is complete, the agent can then take in additional input examples and predict the

corresponding outputs.

Artificial Neural Networks

One way to implement a supervised learner is by creating an artificial neural

network. This data structure, modeled after the human brain, consists of many

densely interconnected simple units. Each of these units takes a number of real-

valued inputs and produces a real valued output [Mitchell, 1997]. To capture

greater complexity, the outputs of these units can be fed as inputs puts of other

units. This data structure is often robust to errors in training data and can handle

cases in which many inputs work together to produce the correct output.

A multilayer neural network was used to train sensors on the NAVLAB vehicle

to distinguish paved road segments from non-paved surfaces [Pomerleau, 1989].
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The ALVINN algorithm consisted of forty rounds of training of the neural network

on 1200 simulated road images and ground truth steering directions. Then, as

the robot drove, the neural network was fed input from three sources: a video

camera, a laser range finder, and a feedback unit based on previous classifications.

ALVINN returned the amount and direction that the steering wheel should turn,

which was then fed to NAVLAB. Using ALVINN, the NAVLAB robot was able

to drive 400 meters at 0.5 meters per second along a wooded path.

More recently, Rasmussen [2002] drove an Experimental Unmanned Vehicle

(XUV) along a rural road using a neural network to determine whether a pixel in

an image was to be classified as road. The network was trained on several values

of the visual feature space as input including height, smoothness, texture, and

color, where the outputs were hand-marked classifications. No implementation

on the robot was presented; however, the results of the classification task showed

good performance.

Bentivegna and Atkeson [2001] showed another use for supervised learning by

combining observation of humans with neural networks to teach a humanoid robot

to play air hockey against humans. Since air hockey is a complex task for an agent

to learn, the developers broke the task into “primitive” trajectories separated by

collisions of the puck and the paddle. The primitives that the agent learned were

left hit, straight hit, right hit, block, prepare, and multi-shot. Before the tasks

were learned, the agent watched a human play multiple games. By observing

human play, the agent was shown when to start each action and where the puck

should end up. The inputs to the neural network were the velocity and position of

the puck before and after it was hit. The outputs were the paddle’s velocity and

location at the time of collision with the puck. Once the primitive training was

completed, the robot was able to play a game against a human by determining

what primitives to perform based on the action it observed the human perform

when it was in a similar state and then executing the primitives using the neural
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network.

Self-supervised Learning

One difficulty in developing a supervised-learning agent is the hand labeling of

training data. In order for an agent to be robust, it must see a lot of training

data, which means that a developer has to label a lot of input. This process

can be time consuming. One solution to this problem is self-supervised learning.

With self-supervised learning, one sensor on the robot is able to determine the

output corresponding to another sensor’s input.

Dahlkamp et al. [2006] developed an agent for driving a Volkswagen Touareg

across a desert using two different sensors for road detection. To train the agent, a

laser range finder was used to identify which parts of the nearby area (22 meters)

were considered drivable. This information was then sent to the agent as output

to be matched with the video camera image of that area as input. Once the

learner was trained, the agent was able to identify where else in the image was

passable. Since the video range was 70 meters, the learned predictions were more

useful than the range sensor alone. Since the agent’s classifications weren’t as

reliable as the range finder, the authors used the learner’s output as an obstacle

pre-warning system. If the learner thought that part of the incoming image was

not drivable, it would tell the robot to slow down for the laser range finder to

make a determination about that area.

2.1.3 Reinforcement Learning

Self-supervised learning addresses the common situation of a developer being

unable or unwilling to specify the proper output or classification of a given input.

However, it assumes that a robot is able to use multiple sensors to provide both

input and output. Frequently, ground truth cannot be determined by the agent

alone. Reinforcement learning addresses this issue by using information from the
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environment to provide the agent with feedback after every action it performs.

Using this technique, an agent is able to evaluate its performance using only

feedback from the environment.

Model Free

Most reinforcement-learning algorithms can be categorized as either model-free or

model-based algorithms. In model-free, or direct, reinforcement learning, an agent

learns the long-term value of taking each action in each state [Sutton and Barto,

1998]. By comparing the value of taking each action from the agent’s current

state, the agent can determine the best policy.

Watkins and Dayan [1992] revolutionized reinforcement learning with their Q-

learning algorithm, which they proved converges to the optimal policy in the limit.

This algorithm was based on the Bellman equation mentioned in Section 1.2.

Watkins and Dayan [1992]’s addition to this work was recognizing the importance

of a Q-value, the definition of which is

Qπ∗(s, a) = R(s, a) + γ
∑
a

T (s, a, s′)V ∗(s′). (2.1)

By keeping a lookup table of Q-values, an agent quickly determines which

action to take. This lookup table is updated after every step using Equation 2.2

where α is the learning rate, which specifies how to weight new information. Q-

learning allows for minimal per-step planning time and guarantees convergence.

However, this guarantee only holds in the limit. The form of the update is

Q(st, at) = Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (2.2)

Mahadevan and Connell [1992] implemented two versions of Q-learning on an

OBELIX robot that navigated through a room and pushed a cardboard box from

its initial position to the other side of the room. To implement the Q-learning

algorithm in a robot domain, the states were grouped by similarity to limit the
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number of times that each individual state had to be visited. This requirement

was met using weighted Hamming Distance and statistical clustering to relate the

states to each other. To improve performance further, the authors broke the task

into three smaller subtasks and hard coded when the agent should be performing

each task. These subtasks were to find the box, push the box, and recover from a

stall such as being stuck in a corner. Each “learning run” of this algorithm took

two hours and included 2000 steps of the robot.

Model-Based Methods

Another approach to reinforcement learning is to use the feedback from the en-

vironment to learn a model of the world. This approach is also based on the

Bellman equation. Referring back to Equation 1.1, a model of the environment

can be expressed in the form of the reward function R(s, a) and the transition

function T (s, a, s′). By creating a full model of the environment, the agent can

learn the structure underlying the value function instead of just estimating it

from experience. This approach gives the agent a more accurate prediction of the

value function with less data.

Modeling From Observation

In the robot domain, it is often difficult to explore thoroughly enough to get a full

model of the critical parts of the world. Instead, like humans, some algorithms

take an apprenticeship, or demonstration, approach. With this approach, the

agent observes a human, usually an expert, acting in the world and is able to

model the world before acting in it. This view is different from supervised learning

because instead of a human labeling a bunch of input, the human acts in the

environment and the agent learns from that experience.

Bagnell and Schneider [2001] used this apprenticeship technique to command

the CMU Yamaha R50 helicopter to hover in place. For the agent to learn the
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dynamics of the helicopter, data was collected from human pilot tele-operation.

Once the model was constructed using locally weighted Bayesian regression, the

policy space was searched using the Amoeba algorithm, which involves creating a

geometric figure of points, where there was one point for each feature, and moving

and reshaping that figure to search the policy space.

Ng et al. [2004] also explored controlling a Yamaha R50 helicopter by pro-

cessing human control data to model the environment. Once the model was

constructed using locally weighted linear regression, the agent took actions in the

world and used feedback from the environment to improve its policy using the

gradient ascent-like algorithm PEGASUS. With this algorithm, the agent learned

to fly several patterns that were identified as difficult by organizers of a human

remote-control helicopter competition.

Atkeson and Schaal [1997] used demonstration to teach a SARCOS robot arm

to perform a pendulum swing up task. In this instance, the agent observed a

human perform the task of swinging a pole from a downward position to keeping

it balanced straight up vertically. The agent then tried to mimic the behavior

of the human. However, due to differences in the poles used by the human and

the robot, direct emulation of the human was not enough to perform the task

properly. Instead, while performing the reenactment, the agent learned a model

of the dynamics from the reward that it received. From this model, the agent was

able to improve on its behavior and successfully perform the task after a small

number of trials.

Modeling From Exploration

Learning a model through observation is an efficient way to model a subset of the

environment. Unfortunately, a robot cannot always observe a human performing

the desired task such as when a robot is trying to learn about its sensor or action

models. In these situations, a robot can use feedback from the environment to
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learn a model of the world from experience.

As mentioned in Section 1.1, the exploration-exploitation dilemma is fre-

quently encountered when modeling an environment through experience. In Q-

learning research, this tradeoff is often managed by the agent taking a random

action a small percentage of the time. However, there are more explicit methods

for addressing the problem.

Kearns and Singh [1998] introduced an algorithm with a much smaller learning-

time upper bound than Q-learning. The E3 algorithm, which stands for Explicit

Explore or Exploit, divides all of the states into two sets: known states that the

agent has visited sufficiently, and unknown states. Then, the agent chooses an

action that will either lead to exploitation of the known set or exploration of the

unknown set with high probability if possible. By choosing actions based on this

criterion, the agent balances the exploration-exploitation tradeoff and converges

to near optimal policies faster than other methods.

A closely related algorithm to the E3 algorithm isRmax [Brafman and Tennenholtz,

2002], which provides an implicit way of addressing the tradeoff. Instead of hav-

ing the agent calculate the value of learning more versus doing what it knows will

pay off, Rmax initializes the rewards of all states to the maximum reward. This

reward does not get updated to its observed value until the agent visits the state

a target number of times. This high expected value for unseen states drives the

agent to explore unseen states if the value of doing so exceeds the value of known

states and leads to more efficient exploration.

2.2 Generalization in Reinforcement Learning

The main bottleneck when attacking machine-learning tasks in robot-navigation

domains is balancing the tradeoff between exploration and exploitation. Many

researchers have worked on knowledge transfer between environments and other
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ways to decrease sample-complexity demands [Thrun and O’Sullivan, 1996; Diuk

et al., 2006]. Other avenues of research include generalization over states and

value functions. This section will highlight some of the more common techniques

being studied.

2.2.1 Value-Function Approximation

As shown in Section 1.2.4, a common form of generalization used in reinforcement

learning is value-function approximation. In model-free reinforcement learning,

this technique often involves using a parameterized function approximators to

generalize the value function between similar states and actions [Sutton, 1996]. A

well-known example of this approach working successfully is TD-Gammon [Tesauro,

1995]. This system used neural networks to learn the values of different parame-

ters of a general non-linear function approximator to play backgammon.

Another algorithm called fitted Q iteration [Ernst et al., 2005] uses a regres-

sion algorithm to fit a value-function approximator to training data. Once enough

experience is gathered, the learned function approximator is used to provide ap-

proximation of values in the entire state-action space. In tree-based implemen-

tations of this algorithm, regression trees are used to determine similarities in

the state space from values of state-action pairs experienced. Values from un-

seen state-action pairs are then predicted using approximations from experience

collected in the same area of the tree.

Guestrin et al. [2003] approximated value functions not over the each state,

but over each state variable. They assumed that each state variable had a value

subfunction and that the sum of the values of these subfunctions could accurately

approximate the actual value function. In a robot-navigation domain, this ap-

proach would require approximating a value subfunction to a robot’s x, y and θ

values independently and then summing the subvalues to approximate the value

of the state as a whole.
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2.2.2 Model Reduction

Another approach to generalization in reinforcement learning is to try to condense

the size of the model with which the agent is working. This approach is most

commonly seen in the planning literature. Bean et al. [1987] minimize their model

by performing state abstraction to create a higher level model of the environment.

This smaller model is then used to find shortest paths between higher level nodes.

Once the high level path is found, it is propagated to the original model and the

learner finds the remaining shortest paths.

This idea of state abstraction can also be combined with value approximation

to infer similar values for similar states. As mentioned in Section A.1, a problem

with abstraction is that important information can be lost. To limit this problem,

Moore [1991] introduced Variable Resolution Dynamic Programming (VRDP)

which, as the name suggests, allows for multiple levels of abstraction during the

planning process. This algorithm generalizes values across regions deemed to be

of low importance.

Another way of limiting information loss in state clustering is soft-state aggre-

gation [Singh et al., 1995]. In contrast to regular state-space aggregation, when

using soft-state aggregation, a state can belong to several clusters with a certain

probability. A state’s approximated value, then, is a weighted sum of all of the

values of the clusters to which it could possibly belong.

Even with soft state aggregation, though, the underlying state variables are

lost, can lead to sub-optimal performance. One way to ensure that the gener-

alization is only performed across uninformative features is to factor the state

space. A factored-state Markov Decision Process (MDP) [Dean and Givan, 1997]

is similar to a traditional MDP, but instead of having transitions be from state to

state, they are modeled at the level of changes in the values of state variables. By

learning the transition function between state variables, the model can be mini-

mized by aggregating over state variables that do not affect a state’s transitions.
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Figure 2.1: A factored-state Markov Decision Process (MDP).

An example in the robot-navigation domain would be if a state space consisted

not only of the robot’s location, but also the angle of its arms. This example is

demonstrated in Figure 2.1 where X and Y are the robot’s location and Z is the

position of the robot’s arm. The go forward action would not affect the angle of

its arms, so these state variables would not need to be considered when calculat-

ing the result of a go forward action. Adaptations have been made to well-known

algorithms such as Rmax and E3 to benefit from from the factored-state MDP

representation [Guestrin et al., 2002; Kearns and Koller, 1999].

2.2.3 Generalization in the Transition Function

While factored-state MDPs look at transitions to decompose the state space,

the transitions learned are still direct mappings from one state to another. In

a robot-navigation domain, where the state variables like x, y, and θ have a

large set of possible values, trying to explore all values of these variables is not

feasible. For this reason, generalization in the transition function is necessary.

One approach to solving this problem is to use topological theory in relational

reinforcement learning [Lane and Wilson, 2005]. By building in relations about

cardinal directions, the agent can determine its location with respect to the goal,

such as north and west. This implementation, however, needs predictable actions

and cannot handle obstacles.
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Other research has addressed generalized transition functions by making the

reasonable assumption that “nearby” state-actions can help in predicting state-

action dynamics. This constraint limits exploration by assuming that states that

have a small Euclidean distance have similar dynamics models. Algorithms like

Metric E3 and Fitted Rmax use this assumption to speed up learning [Kakade

et al., 2003; Jong and Stone, 2007]. While these techniques limit the amount of

exploration that an agent needs to perform, the way in which they determine

similarities in the state space can lead to errors in the model.

In the remainder of this dissertation, I will discuss techniques for modeling en-

vironments as relocatable action model (RAM) Markov decision processes (MDP)

and performing state-space clustering on perceptual inputs to allow for more ef-

ficient exploration in the robot-navigation domain.
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Chapter 3

Exploiting Known Perceptual Clusters

3.1 Introduction

As mentioned in Section 1.3, the relocatable action model (RAM) Markov decision

process (MDP) enables more efficient exploration than a traditional MDP by gen-

eralizing experience across similar states. This chapter will introduce the RAM-

Rmax algorithm, which models robot-navigation environments as RAM MDPs

and uses perceptual information to cluster the state space. In two separate do-

mains, this algorithm is shown to perform more efficient exploration than several

state-of-the-art algorithms.

3.2 The RAM-Rmax Algorithm

Algorithms that model the environment using a traditional MDP, such as the

Rmax algorithm, require an agent to try every action in every state at least once

to determine the transition function of that state-action pair (see Section 2.1.3 for

further details). This requirement is due to the necessity of learning the transition

function, which maps state-action pairs directly to next states. There is no way

to infer the result of taking action a1 in state s0 without visiting s0, in the general

setting.

To allow for generalization across states, the RAM MDP decomposes the

traditional transition function into three parts—the clustering function, κ, the

relocatable action model, t, and the next-state function, η. The RAM-Rmax
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algorithm is a modification of the Rmax algorithm that uses the RAM MDP to

model its environment. Once κ and η are known, the amount of exploration that

the RAM-Rmax algorithm needs to build a complete model of the environment

is reduced from being dependent on the number of state-action pairs to being

dependent on the number of cluster-action pairs. This section will explore how

the RAM-Rmax algorithm performs efficient exploration to learn outcomes and

policies when κ and η are given.

3.2.1 Determining κ, the Clustering Function

In this chapter, we make the assumption that as a robot navigates through its

environment, it has access to additional information, such as perceptual cues,

that can be used to classify states into proper clusters. One type of classifier,

called terrain classification, uses image-segmentation algorithms on images of the

environment’s terrain to determine which states are similar. For example, results

of a particular image-segmentation algorithm called Edge Detection and Image

SegmentatiON (EDISON) are shown in Figure 3.1 [Christoudias et al., 2002].

When a camera is placed above the environment, facing the surface, image seg-

mentation can be used to determine surfaces that have different visual properties,

such as color or texture. These visual properties often correspond to differences

in surface properties. Based on informal experimentation, the assumption that a

robot’s dynamics change across surfaces with visually detectable is reasonable.

3.2.2 Learning Outcomes

In many environments, learning a relational transition, such as an outcome, can

be difficult. However, in robot-navigation tasks, the state space is based on real

numbers such as an agent’s location (x, y) and orientation, θ. By assuming that

the dimensions of the environment are isotropic and continuous, the distance
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Figure 3.1: Results of the EDISON image segmentation algorithm on different
landscape images [Christoudias et al., 2002]. The different “terrains” are outlined
in white.

M
agnitude Orientation

Direction

Figure 3.2: A sample outcome where the agent starts out at x = 0, y = 0,
θ = 90 and ends up at x = −5.66, y = 5.66, θ = 150. The resulting outcome
is magnitude = 8 points, direction = 45 degrees, change in orientation = 60
degrees.
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between states can be reliably calculated.

For instance, Figure 3.2 shows a sample outcome where the starting position of

the agent is x = 0, y = 0, θ = 90. Since outcomes are calculated from the agent’s

starting coordinate frame, it is easiest to consider the agent’s starting position

to be the origin. The agent’s next state is shown to be x = −5.66, y = 5.66,

θ = 150. To accurately capture the results of an action, outcomes are stored in

terms of magnitude, direction, and change in orientation. Magnitude measures

the absolute distance that the robot has traveled. The direction of the outcome is

the direction of this displacement. In this example, the outcome has a magnitude

of 8 points and a direction of 45 degrees. Finally, the change in orientation is the

amount that the robot’s orientation has rotated. In the example outcome shown,

the agent went from an orientation of 90 degrees to an orientation of 150 degrees,

making the change in orientation 60 degrees.

After each action, the outcome is calculated, stored, and tallied (as tC) for the

corresponding cluster-action pair. The maximum size of the outcome list is finite

due to finite number of possible outcomes in a discrete environment. However,

research has shown that outcomes can also be stored as a Gaussian distribution to

keep the computation time from scaling with experience [Brunskill et al., 2008].

3.2.3 Determining η, the Next-State Function

Once the agent has learned its outcomes, it can use η to make predictions about

possible next states. Since a RAM MDP maintains all of the state information,

simple arithmetic such as matrix transformations can be used to calculate η using

outcomes and state information (as shown Section 1.3.1).

Figure 3.3 is a graphical representation of the steps for calculating an agent’s

possible next states. Figure 3.3(a) shows a set of outcomes that the agent has

experienced. Once again, the transformation has been made so that the agent’s

starting location is assumed to be x = 0, y = 0, θ = 90. The diagonal dashed
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Figure 3.3: These three steps show how possible next states are calculated using
outcomes and the agent’s current state. (a) Sample outcomes for a turn left
action. The agent’s start location is shown as x = 0, y = 0, θ = 90. The dashed
lines indicate direction and the dashed arcs indicate magnitude. (b) Sample
environment. “G” marks the goal state and the arrowhead indicates the agent’s
current location. (c) Align the outcomes with the agent’s current state to calculate
the agent’s distribution over next states, shown in red.

lines indicate direction, and the dashed arcs measure magnitude. The arrowheads

show resulting orientation.

The sample environment is shown in Figure 3.3(b) where the goal state is

marked with a “G” and the agent’s current state is shown with an arrowhead. To

calculate the agent’s possible next states, a transformation is performed to move

the origin of the outcome coordinate frame to the agent’s current state, as shown

in Figure 3.3(c).
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3.2.4 Planning

Q(s, a) = R(s, a) + γ

(∑
o∈O

(
tC(κ(s), a, o)

z
×max

a′∈A
Q(η(s, o), a′)

))
(3.1)

To decide which action to perform in the environment, the agent uses a param-

eterized and typed variation of the Rmax algorithm [Brafman and Tennenholtz,

2002], called RAM-Rmax. Shown in Algorithm 1, this version of Rmax initializes

the value of each state-action pair to the maximum reward, Rmax. This value

remains until the action has been experienced in that state’s cluster enough to

be “known”. An action becomes “known” for a particular cluster when the robot

has performed that cluster-action pair M times, where M is a constant free pa-

rameter. The value of the action can be derived by solving for Q(s, a) as shown in

Equation 3.1 which is updated as tC changes. Here, z is a normalization constant

calculated by

z =
∑
o∈O

tC(κ(s), a, o).

To calculate the value of a state-action pair, all outcomes for that state’s

cluster are mapped to next states using η. This calculation is a weighted sum

over the possible next state of every outcome. The weighting is determined by

the tally of cluster-action-outcome tuple, tC(κ(s), a, o).

Once the value for all state-action pairs are calculated, the agent chooses the

action with the highest value from the current state and sends the corresponding

command to the robot. Planning can take several milliseconds on standard hard-

ware. Calculations are performed while the robot is performing its actions (each

action takes approximately one second), so there is no computational delay.

3.2.5 System Architecture

Figure 3.4 shows the flow of data through our system for a robotic domain. Before

the robot is placed in the environment, a picture is taken with an overhead camera

and sent through an image-segmentation engine to determine terrain classification
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Figure 3.4: Flow chart of the system architecture. The dashed lines indicate
information passing that occurs at startup.

(see Section 3.3.2). Classification information is then sent to the agent as a look-

up table.

Next, the robot is placed in its starting configuration and the agent queries the

localization system for the robot’s position in the world. Using this information,

the agent, with the guidance of the RAM-Rmax algorithm (see Figure 1), chooses

which action to take based on the outcomes it has observed through experience.

The selected action is then sent to the robot to execute. After the action is

completed, the agent once again retrieves the robot’s location information and

calculates the latest outcome, which is added to a list of outcomes seen in the same

cluster. The agent then updates its values for each of the states and chooses the

next action to take. This process continues until the localization system tells the

agent that the robot is in the goal region or out of bounds. These occurrences end

the episode; the robot is placed back in the starting location to execute another

episode. Experience are maintained through out the experiment.
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Global data structures: Q, tC
Constants: Rmax, M , goal

RAM Rmax():
begin

INITIALIZE()

state⇐ getLocation()

while state 6= GOAL do
action⇐ getBestAction()

takeAction(action)
nextState⇐ getLocation()

UPDATE(state,action,nextState)
state⇐ nextState

end

INITIALIZE():
begin

for c ∈ C, a ∈ A, o ∈ O do
tC(s, a, o)⇐ 0

for s ∈ S, a ∈ A do
Q(s, a)⇐ Rmax

end

UPDATE(s,a,s’):
begin

o⇐ s′ − s†
tC(κ(s), a, o)⇐ tC(κ(s), a, o) + 1
for s ∈ S do

for a ∈ A do
Q(s, a)⇐ Rmax

repeat
for s ∈ S do

for a ∈ A do

z ⇐
∑
o∈O

tC(κ(s), a, o)

if z ≥M then

Q(s, a)⇐ r(s, a) + γ
∑
o∈O

tC(κ(s), a, o)

z
×max

a′∈A
Q(η(s, o), a′)

until Q(s, a) stops changing
end
†
This subtraction is a transformation expressing s′ in the coordinate frame of s.

Algorithm 1: The RAM-Rmax algorithm.
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Figure 3.5: Photograph of the sandbag experimental environment. The robot is
in the starting location and the arrows indicate the learned policy.

3.3 Evaluation Experiments

In this section, we describe two robotic experiments that illustrate the utility of

the RAM-Rmax algorithm in real-life tasks. Both experiments demonstrate more

efficient exploration in comparison with current state-of-the-art techniques.

3.3.1 Experiment with Hand-Tuned Clusters

Sandbag Experimental Setup

Constructed from a LEGO R© Mindstorms NXT kit, the robot used had four

wheels and was powered by two independent motors. Control computations were

performed on a laptop, which issued commands to the robot via Bluetooth R© using

the LeJOS framework. A VICON motion-capture system was used to determine

the robot’s state in terms of location and orientation. A hand-tuned color-based
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classifier performed terrain classification.

The Sandbag experimental environment, shown in Figure 3.5, was a 4 × 4-

foot “room” with two different surfaces textures (wood and sand-filled cloth bag)

discretized into 625 states. We found that the robot traversed the cloth roughly

33% more slowly than it did the wood.

The agent was informed at the beginning of the experiment which states were

the goal, having a reward of 1, and which states were out of bounds, having a

reward of −1. The agent also knew there was a reward of −0.01 for each state-

action pair that did not result in a terminal state.

At the beginning of each timestep of the experiment, the agent was fed several

pieces of information. The localization system told the agent its state. The image

parser informed the robot of which cluster was associated with the current state

based on calibration performed before the experiment.

The actions available to the agent were: turn left, turn right, and go forward.

Each action was performed for 500 ms. Once an action completed, there was a

250 ms delay to allow the robot to come to a complete stop. Displacement of the

turn right and go forward actions are shown in Figure 3.5.

Results

To determine how RAM-Rmax performed in relation to current state-of-the art

algorithms, it and Rmaxwere run in the Sandbag experimental environment. We

had originally planned to also run Q-learning [Watkins and Dayan, 1992] in the

environment, but other experiments shows that it would not be able to learn given

the battery life of the robot [Leffler et al., 2007]. For both of these algorithms,

we set M = 4 and γ = 1. Figure 3.6 shows the cumulative reward that each of

these learners received over 50 episodes. Each episode began with the agent being

placed in roughly the same place and ended when the robot entered a terminal

state. The rapid rise of the RAM-Rmax curve shows that the learner almost
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Figure 3.6: Cumulative reward per run of all algorithms compared in the sandbag
experimental environment.

immediately started to follow an excellent policy.

After the first episode, the exploration phase of the learning was complete for

the RAM-Rmax agent; all actions had been explored M times in both state types.

Over the next few runs, the probabilities in the model converged, and starting at

Episode 5, the path taken by the RAM-Rmax agent seldom varied from that shown

in Figure 3.5. The Rmax agent, on the other hand, kept the value of Rmax for the

majority of state-action pairs after 50 episodes, and, therefore, it was still actively

exploring. Setting M = 1 did not visibly speed the agent’s learning process. That

is, the agent did not have a large reward for revisiting states and, without the

ability to generalize, the Rmax algorithm was unable to learn effectively in this

domain.

A more finely discretized state space could have led to a more effective policy,

but was not tried due to the negative impact that it would have had on Rmax.

In contrast, the amount of exploration performed by the RAM-Rmax algorithm

would have remained the same. This more efficient exploration policy is due to

the its dependence on the number of clusters which would not have changed.
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Figure 3.7: Image of the RockyRoad environment. The start location and orienta-
tion is marked with an arrow. The goal location is indicated by the circle. Green
pieces of poster board are shown here marking the boundaries of the environment.

3.3.2 Experiment with Automated Terrain Classification

For a second experiment, the system architecture included a camera-based local-

ization system and automated terrain classification.

Terrain Classification

An IEEE1394 video camera was used to take an image of the navigation envi-

ronment without the robot. This image was then fed into the Edge Detection

and Image SegmentatiON (EDISON) system [Christoudias et al., 2002] where

similar patches of terrain were determined based on color, texture, and proximity

of pixels. The image-segmentation system determined the number of clusters on

its own, but needed a parameter to be set stating the minimum size of a cluster.

This value was set to the number of pixels that the robot occupied in the image

to ensure that all of the robot’s wheels could occupy a single patch of terrain at

the same time.
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Figure 3.8: Image of the LEGO R© Mindstorms NXT robot in the RockyRoad
experimental environment.

To limit the number of spurious clusters, all clusters that appeared in fewer

than one-tenth of the states had their pixels reassigned to adjacent segments.

The remaining clusters were used to determine κ. This form of clustering was

performed with the expectation of combining states with similar dynamics models.

Localization

The localization system was a standard fiducial-based system, which for these

experiments acted as an indoor global positioning system (GPS). Using the same

overhead camera mentioned previously, the location of a marker affixed to the

robot was obtained using commonly available color-segmentation software [Bruce

et al., 2000]. The type of marker used was based on work done for a robotic

soccer application [Bruce and Veloso, 2003]. The typical precision of this system

is approximately 5mm.
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RockyRoad Experimental Setup

For this experiment, a LEGO R© Mindstorms NXT robot(see Figure 3.8) was run

on the RockyRoad environment. This domain, shown in Figure 3.7, consisted

of a highly variable region comprised of rocks embedded in wax and a smoother

carpeted area. The agent’s task was to begin in the starting location (indicated in

the figure by an arrow) and end in the goal (indicated in the figure by an ellipse)

without going outside the environmental boundaries. The rewards were −1 for

going out of bounds, 1 for reaching the goal, and −0.01 for taking an action that

led to a non-terminal state. Reaching the goal or going out of bounds ended the

episode.

One difficulty of the RockyRoad environment is the large difference in dynam-

ics on the rock and carpet surfaces. Figure 3.9 shows the outcomes observed by

the agent on these two surfaces. The center of the circle represents the starting

location of the robot. The dashed lines indicate the direction (in degrees) and

the arcs indicate the magnitude (in pixels) of displacement. From left to right,

this figure shows the outcomes of the left turn, go forward, and right turn actions

on the rock (top) and carpet (middle) surfaces. The bottom row shows the same

outcomes as above, but combines the two terrains to demonstrate the amount of

noise that is introduced when the terrains are assumed to be similar. Some ac-

tions, such as turning right on rocks, are more sparse than others in the figure due

to the number of times that an action was taken during the exploitation phase.

Due to the close proximity of the goal to boundary, the agent needs to accu-

rately model the robot’s dynamics to reliably reach the goal. To make this task

even more difficult, the actions are limited to going forward, turning left, and

turning right. Not allowing the agent to move backwards increases the need for

the agent to accurately approach the goal. For example, if the robot enters the

narrow portion of the environment facing away from the goal, it is not able to

turn around without going out of bounds. Therefore, an agent with an inaccurate
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Figure 3.9: Outcomes learned by the robot for different actions and surfaces.
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dynamics model is likely to think this task is impossible and might choose to drive

out of bounds quickly to minimize step cost.

For the experiments, we compared the RAM-Rmax and tree-based fitted Q

iteration [Ernst et al., 2005] algorithms (see Section 2.2.1), each with and without

terrain classification. All algorithms were informed of the reward function. The

agents without terrain classification assumed one cluster for the entire domain.

Figure 3.10 shows the results of the EDISON image-segmentation engine when

fed in the image of the world and the minimum region to segment. Recall that

the minimum region to segment was specified to be the number of pixels that the

robot occupies in the image, which for this experiment was 4000 pixels.

For all agents, the world was discretized to a forty by thirty by ten state space

instead of the camera’s full resolution of 640 by 480 by 360 degrees of orientation.

This coarse discretization was used to limit the number of states that the robot

could occupy at once. Lastly, each algorithm had the value of M set to ten, which

was chosen after informal experimentation.

Results

Figure 3.11 shows the average performance and standard deviation of the RAM-

Rmax and fitted Q iteration agents with and without terrain classification over five

runs of twenty episodes. When the RAM-Rmax agent used image segmentation to

determine the surface types in the environment, it reached the goal in 61% of the

episodes as opposed to 22% of the episodes when no clustering data was given.

This difference is more noticeable in the last 10 episodes after some learning had

taken place. Narrowed to these instances, the success rates are 96% and 34%,

respectively. The fitted Q iteration agents were not able to reach the goal in any

of the runs with or without the terrain classification. Doubling the number of

episodes to 40 in a run also did not result in any positive reward for either of the

fitted Q iteration agents. Indeed, published results with this algorithm suggest
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Figure 3.10: Resulting discretized segmented image from EDISON of the
RockyRoad environment showing two different surface types. Several states were
mislabeled due to the image processing algorithm, but these mislabelings did not
harm the results.
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Figure 3.11: Graph of the RAM-Rmax and fitted Q iteration algorithms’ aver-
age cumulative reward with and without terrain classification. Agents not given
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WS
NS 1
NS 2

Figure 3.12: Diagram showing paths taken by the RAM-Rmax algorithm with
segmentation (WS) and with no segmentation (NS) en route to the goal after
some learning has occurred (shown in yellow). NS1 demonstrates a sample path
in which the agent judged the goal as unreachable and so minimized negative
reward by exiting the environment quickly. NS2 shows a sample path in which
the agent’s inaccurate model caused it to miss the goal. “X” marks the location
used for the example in Section 3.4.

hundreds or thousands of episodes are often needed [Ernst et al., 2005].

Figure 3.11 also shows a large variance in the performance of the RAM-Rmax

agent that did not use terrain classification. The reason for this difference is the

variability in the dynamics model that the agent learned in each run. Because

no single dynamics model is a good fit for the two terrains, the model changed

over time, sometimes assigning the overall environment a very noisy model like

the rocks and sometimes assigning a very reliable model like the carpet. These

fluctuations in the model caused the chosen trajectory of the same agent to change

drastically between runs as shown Figure 3.12. In two of the five runs, the RAM-

Rmax agent that had no terrain classification chose to navigate towards the goal

as shown by the path marked NS 2. However, the dynamics model that it had

learned was innaccurate, and the agent would accidentally drive out of bounds

when approaching the goal. In the other half of the runs (marked in Figure 3.12

by NS 1), the agent did not think that it was possible to reach the goal based on
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its learned dynamics model, and, therefore, had a negative maximum value. This

RAM-Rmax agent chose to drive out of the environment as quickly as possible to

minimize negative reward.

In contrast, the RAM-Rmax agent with image segmentation (WS) learned

that the rocky surface was unpredictable, but that the carpet surface allowed for

consistent actions. Once these two surfaces were learned, the agent was able to

arrive at the goal reliably, as shown in Figure 3.12, seldom over-shooting the goal.

3.4 Discussion

The two RAM-Rmax agents outperformed both of the fitted Q iteration agents due

to the efficiency with which they used experience data. The RAM-Rmax agents

with and without terrain classification were able to generalize their observed out-

comes to unseen states in the same cluster, which limited the amount of necessary

exploration. Since fitted Q iteration does not model the environment, its gener-

alization ability was limited to exploiting local consistency in the value function.

Throughout the twenty episodes, neither of the fitted Q iteration agents were able

to take advantage of the underlying structure and were still actively exploring the

environment. Because the fitted Q iteration algorithm needs so much experience,

they hadn’t acquired a policy capable of reaching the goal without going out of

bounds.

The performance discrepancy of the two RAM-Rmax agents can be explained

by examining the learned value function of the two agents. For example, when

supplied with terrain classification, the average value of a state near the goal (X =

25, Y = 15, θ = 0, marked with an “X” in Figure 3.12) was 0.450 with a standard

deviation of 0.194. In comparison, the agents without terrain classification on

average calculated the value of the same state to be 0.1782 with a standard

deviation of 0.373. The difference in this state’s expected values comes from
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the variance in the learned dynamics models. Without terrain classification, the

RAM-Rmax agent learned a single dynamics model with high variance, which tells

the agent that there is a relatively low probability of reliably reaching the goal.

The agent with terrain classification, on the other hand, creates two different

dynamics models—one with large variance and one with small variance. Using

these two separate models allows the agent to create a more accurate model of

the environment, which is necessary to determine that the probability of reaching

the goal from the carpet is high.

However, there is a limit to how much improvement additional context can

add. If the terrain classifier were to have found a third distinct type corresponding

to states on the border between the two terrains, the agent might have been able

to model the dynamics of when its front wheels were on one surface and its

back wheels on another, possibly improving performance. To improve the policy

further, the agent could also have declared each rock its own surface, allowing

for the ability to model its likelihood of getting stuck on each particular rock.

The downside of this approach is experience efficiency. The more surface types

that the learner recognizes, the less it generalizes and the more exploration it

needs; in the limit, as the number of clusters approaches the number of states,

this algorithm becomes equivalent to (non-generalizing) Rmax. The experiments

reported in Section 3.3.1 suggest that such an approach would be completely

ineffective in the RockyRoad environment.

3.5 Conclusion

This chapter introduced the RAM-Rmax algorithm and explained how it learns

the outcomes and relocatable action model of a RAM MDP in a robot-navigation

environment. This algorithm performs efficient exploration through state-space

clustering determined by perceptual information, specifically terrain classification.
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The two experiments detailed in this chapter showed that using terrain clas-

sification for state-space clustering as an input to the RAM-Rmax algorithm is a

reliable approach to achieving accurate models with limited exploration. They

also demonstrated the benefits of using the RAM MDP for generalization in con-

trast to current state-of-the-art techniques, namelyRmax and fitted Q iteration. In

addition, they demonstrated validity of the assumptions used in our algorithm.
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Chapter 4

Reward-Based Clustering

4.1 Introduction

Now that the benefits of using the RAM-Rmax algorithm to learn and perform in

robot-navigation environments have been introduced, this chapter will address the

issue of learning the state-space clusters that are integral to performing efficient

exploration.

As explained previously, the reinforcement-learning paradigm includes an agent

getting feedback from its environment. In the last chapter, the agent relied on

additional sensor data to obtain clustering information. This chapter will show

how an agent can determine which states are similar with no additional infor-

mation from the environment. Through its experience, an agent can detect the

latent structure of the environment and perform efficient exploration by exploiting

similarities in the state space.

4.2 Problem Definition

When a reinforcement-learning agent performs an action, it receives feedback

from the environment. This data includes information about the current state

and the reward for the previous state-action pair. Previous research has used

reward information to determine similarities in the state space [Givan et al., 2003;

Chapman and Kaelbling, 1991]. However, most of these approaches then use these

similarities omit much of the state information. In contrast, our approach, clusters
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Figure 4.1: An RAM MDP with an action-independent transition function.

the state-space to infer the environment’s underlying structure to allow for the

transfer of experience between similar states.

Figure 4.1 shows a relocatable action model (RAM) Markov decision process

(MDP) where all of the actions that the an agent can take from one state lead

to the same next state. The transition function in this environment is, therefore,

action-independent. Without any additional sensors, it seems difficult for the

agent to accurately cluster the state space. However, as the agent gathers expe-

rience, it can use the rewards that it receives from the environment to determine

similar states.

For example, if the agent navigated through the state space in Figure 4.1

and performed action a3 in states s1 through s6, it would receive a reward of

0.5, 0.5, 0.5, 0.1, and 0.1, respectively. Using this information, the agent could

use unsupervised learning (see Section 2.1.1) to determine that states s1, s2,

and s3 belong in one cluster, and states s4 and s5 belong in a second cluster.

Since the agent cannot take an action from state s6, it will not be included in

either group. Once the state space similarities have been determined, the agent

can generalize its experience across states in the same cluster, allowing for more

efficient exploration.

One concern with having an agent assume that there are states with similar

properties in the environment is the cost of finding the similarities in the state

space—especially when there are no redundancies in the state space. However,
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Figure 4.2: A diagram of a robot environment modeled as an MDP with an
action-independent transition function.

Leffler et al. [2005] proved that in certain domains—even when every state is

unique—adding methods to learn the underlying state clustering to an agent

does not change the amount of experience needed to model the environment in the

worst case. In addition, we showed that performing clustering has the potential

to greatly improve the agent’s experience efficiency by changing its sample-size

from being dependent on the number of states to the number of clusters. We

demonstrate precisely such as case in the next section.

4.3 Experiment

Experiments were performed to give an empirical demonstration of the benefits

of state-space generalization with initially unknown clustering. The environment

used was similar to the MDP in Section 4.2 and is shown in Figure 4.2. The

state space consisted of 17 locations with 2 underlying clusters: uphill and flat.

At each state the agent can take one of seven actions each corresponding to the

robot’s motor power. The reward function received was dependent on the time it

took for the agent to travel between states.

4.3.1 Algorithms Tested

Several algorithms were compared in this environment to demonstrate the benefits

of assuming and learning state clusters. The algorithms compared were a known-

policy algorithm and three variations of Fong’s “näıve” algorithm [Fong, 1995]

that learns the optimal policy by trying every action in every state a fixed number
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of times, like the Rmax algorithm [Brafman and Tennenholtz, 2002].

No Clustering

In order to show the benefits of clustering the states, we ran an algorithm that

had no clustering—known or learned—as a baseline. This algorithm was a direct

implementation of the näıve algorithm where each of the seven actions was tried

once in each state. After the seventh traversal, the agent determined the best

action for each state and, thereafter, performed the expected best action.

Known Policy

For our known-policy algorithm, I collected data in advance by having the robot

perform fourteen traversals of the environment “offline” to estimate model pa-

rameters. States were grouped by hand based on their perceived slope. These

groupings were further verified by reward data. Actions chosen for the agent to

perform in each state type were also determined by hand based on reward data

received during training. This case was intended as an optimistic baseline.

Known Clustering

For verification of the upper limits of the benefits of clustering, one of the al-

gorithms compared had the state clusters known in advance. Like the known-

policy algorithm, these clusters were labeled by hand. With this information

programmed in, the agent ran the näıve algorithm on the two clusters by trying

every action once in each of the two clusters. Since a single traversal was long

enough to sample each action in each cluster, it only took one traversal to learn

reward values and obtain near-optimal behavior.
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Fig. 2. The robotic vehicle used in our experiments.

an RCX 2.0 block, one rotation sensor, one motor with seven

power levels, four wheels, and various connecting pieces. The

course was made up of three two-by-two boards supported by

plywood in the pattern shown in Figure 1. The robot’s software

was built in the the leJOS programming language. The robot

itself is shown in Figure 2.

Each algorithm was run for two epochs, consisting of 12

traversals each. The interval between locations was defined as

100 rotation clicks as registered by the robot’s rotation sensor.

The reward for a traversal was calculated using the following

formula:

1000−
∑

l

(round(
tl − tl−1

100
)− tg)2 (3)

where round and division by 100 are used to discretize the
outcomes, tg is the goal time elapsed between points as derived
from the goal speed g, tl is the time we reach location l and
the subtraction from 1000 is used to map cost to reward.

Since the RCX 2.0 does not possess adequate memory

to perform the calculations needed for the aforementioned

algorithms, the robot simply stored the observed speeds during

each traversal. At the end of the course, the collected data

was transmitted to a laptop, which processed the data and

calculated the power levels to use for each location in the

next traversal as per the algorithm being evaluated.

Evaluating algorithms in the real world invites a host of

noise factors that one would not consider in a pure simulation.

One such factor in our implementation was the substantial

effect battery power had on the robot’s performance. As

the batteries drained, the effect of the power commands on

the movement of the robot changed. Although the learning

algorithms were able to adapt to different battery powers, the

large variability of the action effects threatened to make com-

parisons unreasonable. To compensate, brand new disposable

batteries were used for each algorithm studied. Thereafter,

any decline in battery power appeared consistent across all

algorithms.
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Figure 4.3: The robot used in the two-slope environment.

Learned Clustering

Finally, to see if state-clustering should be learned, we ran a RAM-näıve algo-

rithm that used reward data to cluster the state space. Those clusters then

were used to learn the remainder of the model more efficiently. To collect the

reward data, the agent first traversed the entire course with a constant action

three times. The resulting rewards were fed into a single-link hierarchical cluster-

ing algorithm [Hubert, 1974]. This algorithm constructed clusters based on the

minimum L1 (Manhattan) distances between the rewards received.

With the the number of clusters set to two based on the slope perceived by the

experimenter, the agent determined the state grouping. On the fourth traversal,

the policy performed was identical to the policy of the known-clustering algorithm.

4.3.2 Experimental setup

To compare the algorithms in a physical setting, a robot, shown in Figure 4.3, was

built to traverse a two-slope test course. The robot was constructed using parts

from a Lego R© Mindstorm kit, specifically a RCX 2.0 block, one rotation sensor,

one motor with seven power levels, four wheels, and various connecting pieces.

The course was made up of three two-by-two boards supported by plywood as
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Figure 4.4: The robotic vehicle and environment used in the two-slope experiment.
The agent started at the left-most location on the ramp and travelled 1700 clicks
on the rotation sensor.

shown in Figure 4.4. The robot’s software was built using the leJOS programming

language.

Each algorithm was run for two epochs, consisting of 12 traversals each. The

interval between states was defined as 100 rotation clicks as registered by the

robot’s rotation sensor. The reward for a traversal was calculated using the

following formula:

−
∑
l

(round(
tl − tl−1

100
)− tg)2 (4.1)

where round and division by 100 are used to discretize the outcomes, tg is the goal

time elapsed between points as derived from the goal speed g, tl is the time the

robot reaches location l and the additive inverse is used to map cost to reward.

Since the RCX 2.0 does not possess adequate memory to perform the calcu-

lations needed for the aforementioned algorithms, the robot stored the observed

speeds during each traversal. At the end of each traversal, the collected data was

transmitted to a laptop, which processed the data and calculated the policy to

use in the next traversal as per the algorithm being evaluated.

Evaluating algorithms in the real world invites a host of noise factors that one

would not consider in a pure simulation. One such factor in our implementation

was the substantial effect battery power had on the robot’s performance. As

the batteries drained, the effect of the power commands on the movement of the
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Figure 4.5: Per traversal reward for each of the tested algorithms.

robot changed. Although the learning algorithms were able to adapt to different

battery powers, the large variability of the action effects threatened to make the

results incomparable. To compensate, brand new disposable batteries were used

for each algorithm studied. Thereafter, any decline in battery power appeared

consistent across all algorithms.

4.3.3 Results

Figure 4.5 shows the per traversal reward of the algorithms demonstrating the

performance of all resulting behaviors. The graphs for the second epoch were

omitted because they did not differ significantly from Epoch 1. As expected, the

known-policy performed well in every traversal since no learning was required.

Following the same reasoning, the known-cluster algorithm learned a good policy

faster than the no-clustering and RAM-näıve algorithms.
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Surprisingly, the known-policy algorithm did not always receive the highest per

traversal reward. This result is because the assumption that only two classes exist

in the world (uphill and flat) was not entirely valid. In actuality, each position was

slightly different. Certain locations, in particular, were really transitions between

the flat and sloped surfaces and could have been their own cluster. So, even

though the algorithms that exploited the latent structure quickly discover which

positions belong to which clusters, they fail to achieve maximum reward using

the small number of clusters. The non-clustering approach was able to represent

and exploit the differences between the locations, resulting in slower learning, but

apparently optimal reward.

The reward data collected by the RAM-näıve agent and the clusters that

resulted are shown in Table 4.1 and Figure 4.7, respectively. As mentioned earlier,

the level of clustering chosen was such that the states were divided into two
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Table 4.1: Reward Data Collected by the RAM-näıve algorithm in each state
during the first three traversals.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Trav. 1 -4 -9 -4 -9 -4 -4 -4 0 0 0 0 0 0 0 -4 -9 -4
Trav. 2 -9 -9 -9 -4 -9 -4 -4 0 0 0 0 0 0 -1 -9 -4 -9
Trav. 3 -9 -9 -4 -4 -9 -4 -1 0 0 0 0 -1 0 -1 -4 -4 -9
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Figure 4.7: State clusters learned and given as input to the RAM-näıve algorithm.
The clusters become more inclusive as the height gets larger. At a height of 5, all
states are divided into two clusters.
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clusters. While this algorithm was not able to achieve the same per-traversal

reward as the other algorithms, it had learned the model and began receiving

higher rewards several traversals earlier than the no-clustering algorithm. This

more efficient exploration policy led to a higher cumulative reward, as shown in

Figure 4.6. Even though the algorithm that performed no clustering ended up

with a better policy, the difference in reward received does not make up for the

large initial cost of exploration in this small number of traversals.

This experiment was also run using Expectation Maximization (EM) [Dempster

et al., 1977] to perform the clustering task of the RAM-näıve algorithm. The

clusters determined were the same as the results of the hierarchical clustering

algorithm leading to similar behavior and cumulative reward.

4.3.4 Discussion

This experiment showed the inherent benefits of generalizing experience. Even

with the exploration necessary to determine clusters, and learning a sub-optimal

policy, the RAM-näıve algorithm was able to receive a higher cumulative reward

than an algorithm that used no generalization.

However, this algorithm would not be beneficial in all domains. For instance,

if the task were to continue for an additional one-thousand traversals, the cost

of initial exploration would be outweighed by the per traversal reward. In addi-

tion, this environment was very limited in the transition function. Environments

that do not contain action-independent transition functions would require a dif-

ferent planning policy to ensure that all state-action pairs were navigated to and

explored.

Still, the advantages to assuming similarities in the state space and using a

RAM MDP to model them often allows for more efficient exploration, even when

those similarities have to be learned. Sample bounds have been found for these

techniques [Leffler et al., 2005]: the non-clustering approach has a lower bound of
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Ô(lk ln l) while the RAM-näıve approach has a lower bound of Ô(l ln l + nk ln n),

Where l is the number of states, n is the number of clusters, and k is the number

of actions. As the number of clusters grows larger than the number of states,

the RAM-näıve approach becomes more sample efficient than assuming that no

clusters exist.

4.4 Conclusion

This chapter has introduced how an agent can learn state-space clusterings of an

environment using only reward information. In addition, it showed that the ben-

efits of the generalization can outweigh the costs of initial exploration in certain

domains.

The experiment demonstrated these benefits in a real-world domain. The

results of implementing an algorithm that models the environment as a RAM

MDP in a robot-navigation tasks showed that even though the learned policy

might not be optimal, an agent might receive a better cumulative reward by

limiting exploration and exploiting a near-optimal policy sooner.
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Chapter 5

Determining Accurate Classifiers

5.1 Introduction

Up until this point, the assumption has been made that there is one single clas-

sifier, such as terrain classification or reward function, from which state-space

clustering can be determined. Unfortunately, this assumption does not always

hold. In robot-navigation environments, the number of classifiers could be as

large as the number of sensors on the robot. One option for handling this abun-

dance of information is to incorporate all of the classifiers and create a large

number of clusters. However, a large number of clusters hinders the benefits of

generalization. Another option is to make an assumption about which classifier

indicates the proper grouping. If this assumption is incorrect, though, the per-

formance of the agent would be poor, possibly leading to the agent’s inability

to perform the given task. The solution presented in this chapter is to have the

agent learn from experience which classifiers are indicators of states with similar

dynamics. That is, it will learn the accurate classifiers.

5.2 The Meteorologist Algorithm

In order for an agent to be able to determine the features on which it should

cluster, it needs to be able to detect whether a proposed clustering is accurate.

For this reason, we use the Knows What It Knows, or KWIK, framework [Li

et al., 2008]. This framework specifies that an agent can calculate whether it has
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Table 5.1: Sample meteorologist predictions.

Channel 2 Channel 3 Channel 4 Channel 5 actual
Pred. Error Pred. Error Pred. Error Pred. Error

Day 1 0.1 0.01 0.25 0.0625 0.5 0.25 1.0 1.0 sun
Day 2 0.75 0.0625 0.6 0.36 0.25 0.5625 —— —— rain
Day 3 0.9 0.01 0.75 0.0625 —— —— —— —— rain
Day 4 0.5 0.25 0.9 0.81 —— —— —— —— sun
Day 5 0.25 0.0625 —— —— —— —— —— —— sun

enough information to make accurate predictions about its environment. If this

agent is given a particular hypothesis, it can also return whether that hypothesis

is correct with a high probability. By combining a set of these hypotheses and

testing them against the same input, an agent can determine which hypothesis is

error-free.

One example of where this set of hypothesis classes can be applied is the task

of deciding a television meteorologist. Let us assume that someone has just moved

into a new city and wants to get good weather reports. Further, let’s assume that

there is one meteorologist who accurately predicts the weather—when he says

that there is a 30 percent chance of rain tomorrow, then 30 percent of the time, it

will rain. The other people might be almost as accurate, or possibly inaccurate,

but at least one is right on the money.

Table 5.1 shows some sample predictions of four different television channels

and how the most accurate channel is chosen using a mean squared error of greater

than 50 percent to eliminate inaccurate meteorologists. On the first day, Channel

5 made a poor prediction and is disregarded. On Day 2, Channel 4 had an error

of 56.25 percent, and is also excluded. This continues for several days until only

Channel 2 is left as a reliable meteorologist. If more than one of the channels

were deemed to be accurate, each of the channels’ predictions would be weighted

equally.
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A meteorologist-selection algorithm can be used in conjunction with the RAM-

Rmax algorithm to detect which perceptual input gives the agent the best predic-

tions about the dynamics of the environment.

5.3 The SCRAM-Rmax Algorithm

In a robot-navigation domain, we can assign a “meteorologist” to each of robot’s

perceptual inputs. These meteorologists each have the hypothesis that the dy-

namics model of the robot is correlated to a given input. The meteorologist-

selection algorithm then determines which hypothesis is most accurate. The cho-

sen hypothesis is used as the clustering function of the RAM-Rmax algorithm; the

resulting algorithm is called the Sensor Choosing for Relocatable Action Models-

Rmax(SCRAM-Rmax) algorithm.

This algorithm, shown in Algorithm 2, uses the same exploration policy as

Rmax and the same action-selection policy as RAM-Rmax. The contribution of

the SCRAM-Rmax algorithm is the acquisition of the accurate clustering function

and the use of that function to generalize experience. When an agent starts out in

the world, it has the assumption that all the features give information about the

robot’s dynamics and creates a hypothesis class for each feature. This assumption

allows for a more exploration-driven policy until the agent has enough data to

determine whether this assumption is correct.

As the agent starts a task, it travels toward the goal, gathering experience.

This data is input into a meteorologist-selection algorithm, which consults the

set of hypothesis classes to see if any of them are giving predictions with a high

error. If not, the agent will continue towards the goal as planned. However,

once a hypothesis has a large enough error based on the agent’s experience, it is

eliminated. Dynamics models for each of these clusters are then recalculated and

the values of each of the states are updated to reflect this change. At this point,
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the agent can decide to perform more exploration based on the newly reduced

clusters, or if the agent has enough experience, it can continue to the goal.

Global data structures: M
Constants: goal

SCRAM Rmax():
begin

INITIALIZE()

state⇐ getLocation()

while state 6= goal do
action⇐ getBestAction()

takeAction(action)
nextState⇐ getLocation()

CONSULT METEOROLOGISTS(state,action,nextState)
UPDATE(state,action,nextState)
state⇐ nextState

end

CONSULT METEOROLOGISTS(state,action,nextState):
begin

updateMeteorologists(state,action,nextState)
enoughData⇐ true
forall m ∈M do

prediction⇐ getPrediction(m)

if prediction = IDK then
enoughData⇐ false
break

if enoughData then
bestClassfier ⇐ getBestClassifier()

regroupOutcomes(bestClassifier)
end

Algorithm 2: The SCRAM-Rmax Algorithm where INITIALIZE and
UPDATE are the same as in Algorithm 1.

5.4 Experiments

Two experiments using LEGO Mindstorm NXT R© robots were performed to

demonstrate the benefits of learning accurate classifiers. The first experiment

shows the importance of knowing the correct perceptual input for state-space

clustering. The second experiment evaluates the speed at which SCRAM-Rmax

can learn this information in a real-life task.
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Figure 5.1: Image of the castered robot used in the artificial-dynamics environ-
ment.

5.4.1 Artificial-Dynamics Experiment

To demonstrate the importance of proper classification, we constructed an envi-

ronment where the robot’s dynamics greatly differed depending on one particular

clustering of the state space. The agent was given four different classifiers and

needed to identify the classifier that properly modeled the world. The first ex-

periment included artificial variations in the robot’s dynamics. All of the phys-

ical terrain that the robot traversed was identical, however, the mapping from

action to outcome was different based on input from Classifier 1, as shown in

Figure 5.2(a). When the agent is in a state labeled as blue, actions a0, a1, a2,

and a3 result in the robot going left, right, forward and backward, respectively.

In a state labeled as yellow, the resulting behaviors are right, left, backward and

forward, respectively. With improper clustering of the environment, the agent is

not able to navigate from the start state to the goal location which are labeled in

Figure 5.2(a).

The robot, shown in Figure 5.1, was made up of two wheels and a caster. This
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Goal

(a) Classifier 1 (b) Classifier 2

(c) Classifier 3 (d) Classifier 4.

Figure 5.2: Several different classifiers of the artificial-dynamics environment
given to the SCRAM-Rmax and RAM-Rmax algorithms. (a)The actual classifier
used to determine the robot’s dynamics. The arrowhead indicates the start state
of the agent and the ellipse indicates the goal location.(b),(c), and (d) show in-
correct classifiers that were given as input to the different algorithms.
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Figure 5.3: Combination of all features in Figure 5.2. Each individual color
represents a separate cluster.

design was used to limit the friction during the turn actions.

Algorithms

For this experiment, we compared an agent running the SCRAM-Rmax algorithm

against three RAM-Rmax agents. Each of the RAM-Rmax agents had a different

terrain classifiers as input. These classifiers consisted of Classifier 1, a four-stripe

vertical classifier (Figure 5.2(a)); Classifier 2, a three-stripe horizontal classifier

(Figure 5.2(b)); and a classifier that combined the all four of the given classifiers

(Figure 5.3). All algorithms were given the goal location and had the parameters

M and γ set to 10 and 1, respectively. The rewards were 1 for reaching the goal,

−1 for going out of bounds, and −0.025 for every other state-action pair. Since

a RAM-Rmax agent with the incorrect model could run indefinitely, the episode



78

would “time-out” if the agent had seen more than M experiences in each type

and took more than 50 steps. If a time-out occurred, the episode would terminate

and the agent would receive a reward of −1.

Results

Figure 5.4 shows the various agents’ performances. As expected, the RAM-Rmax

agent with the correct classifier (Classifier 1) performed the best, learning a seem-

ingly optimal policy—receiving 0.75 for each episode. The SCRAM-Rmax agent

received the second best cumulative reward by converging to the same policy af-

ter learning that Classifier 1 was the most accurate clustering function. Next in

performance was the RAM-Rmax agent with the combined classifier. While its

cumulative reward was at one point below −28, the agent eventually learned the

optimal policy and began receiving positive rewards. The agent that performed

the worst was the RAM-Rmax with the incorrect classifier. This agent learned a

very noisy dynamics model and was not able to reach the goal. In fact, without a

proper dynamics model, the agent was often not able to go out of bounds to end

the run, and frequently timed-out.

5.4.2 Real-Dynamics Environment

Experiment 1 detailed the pitfalls of improper classification. A second experiment

was performed in a more realistic environment to show the ability of the SCRAM-

Rmax algorithm to learn the proper classification of real dynamics models. The

environment for this experiment consisted of a combination of rock-embedded

wax and carpet surfaces. As shown in Figure 5.5, half of each of the surfaces was

colored blue and the other half was colored red. Only the surface texture, not the

surface color, affected the robot’s dynamics.

The start state is marked with an arrow and the goal area is marked with an

ellipse. The agent’s possible actions were: turn left, turn right, or go forward.



79

-30

-25

-20

-15

-10

-5

 0

 5

 10

 1  2  3  4  5  6  7  8  9  10

Cu
m

ul
at

ive
 R

ew
ar

d

Episode

RAM-Rmax w/ correct classifier
SCRAM-Rmax

RAM-Rmax w/ incorrect classifier
RAM-Rmax w/ all classifiers

Figure 5.4: Cumulative Reward in the artificial-dynamics environment.

GoalGoal

Figure 5.5: The real-dynamics environment consisting of rocky and carpet sur-
faces colored red and blue. The arrowhead indicates the starting position of the
robot, and the ellipse marks the goal area.
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Figure 5.6: Image of the four-wheeled robot used in the real-dynamics environ-
ment.

Any area without color is considered to be out of bounds. If the agent were to

enter such an area, the episode would end and the agent would be given a reward

of −1. Reaching the goal also ended a run with a reward of 1. The reward for a

state-action pair with any other resulting next state was 0.025.

Figure 5.6 shows the robot used in the real-dynamics experiment. This robot

has four wheels, where the back two wheels were powered individually.

Algorithms

Since there are multiple features on which the terrain could be classified, we

once again compared the SCRAM-Rmax algorithm to several agents running the

RAM-Rmax algorithm with different inputs. Figure 5.7 shows the three different

classifiers fed into the RAM-Rmax algorithm—color, texture, and a combination

of color and texture. SCRAM-Rmax was given the color and texture classifiers to

determine possible correlations with the robot’s dynamics. The actual classifiers

used were hand-tuned after being run through an image-segmentation program.
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(a) Color segmentation of the environment

(b) Texture segmentation of the environment

(c) Color and texture segmentation of the environ-
ment

Figure 5.7: Classifiers fed into the RAM-Rmax and SCRAM-Rmax algorithms for
the real-dynamics environment. From top to bottom: color-based, texture-based,
and a combination of color-based and texture-based.
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Figure 5.8: Cumulative Reward of the multiple agents in the real-dynamics envi-
ronment

However, research in the vision community on color and texture segregation has

shown that these classifiers could be obtained using automated techniques [Shi

and Malik, 2000].

Results

Figure 5.8 shows the average cumulative reward received by each of the agents

with error bars marking one standard deviation. The agents running the RAM-

Rmax algorithm with color and texture classifiers performed best due to the speed

at which the agent learned the model. An accurate dynamics model was not

necessary to perform the task reliably, so even the classifier based on color per-

formed well. As a result, the difference in performance between the agents that

used the color and texture classifiers was not statistically significant. The agent

running the SCRAM-Rmax algorithm learned that the texture classifier was the
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most accurate classifier and reached the goal in fewer episodes than it took the

RAM-Rmax agent that assumed that all classifiers mattered.

The results of this experiment demonstrate that even if the clustering function

needs to be learned, it is more efficient to learn that function than to assume that

all information in the environment matters.

5.5 Discussion

The artificial-dynamics experiment demonstrated the benefits of correct classifica-

tion when generalizing experience across state-space clusters. Improper clustering

can lead to an agent being unable to perform its task. The performance of the

SCRAM-Rmax algorithm showed that with slightly more exploration, an agent

can learn which classifier is associated with the robot’s dynamics. This approach

is shown to be more efficient than assuming that every classifier matters.

The real-dynamics experiment showed that the SCRAM-Rmax algorithm can

distinguish the more subtle differences in dynamics that are more likely to be

present in the real world. However, an accurate dynamics model is not always

necessary to perform a given task. SCRAM-Rmax balances the cost of obtaining

accurate models with the reward of efficient exploration.

5.6 Conclusion

This chapter has introduced a meteorologist-selection algorithm to determine ac-

curate predictors. When combined with the RAM-Rmax algorithm, the result is

the Sensor Choosing for Relocatable Action Model-Rmax (SCRAM-Rmax) algo-

rithm. This algorithm can take in multiple classifiers and learn which one most

accurately clusters the states with similar dynamics.

Experiments showed the importance of learning proper classification when us-

ing SCRAM-Rmax in comparison with several RAM-Rmax agents with different
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classifier inputs. SCRAM-Rmax was also shown to perform more efficient ex-

ploration by learning important perceptual features instead of assuming that all

features matter.

The contribution of this algorithm is the ability for an agent to learn the

relocatable action model (RAM) Markov decision process (MDP) of an environ-

ment with multiple perceptual cues. The only domain knowledge that such an

agent has is the assumption of continuous and isotropic states, allowing for the

calculation of η.
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Chapter 6

Conclusion

This dissertation has introduced the idea of using perception-based state-space

clustering for learning the relocatable action model (RAM) Markov decision pro-

cess (MDP) of an environment. Using this model, an agent can transfer experience

between similar states to perform efficient exploration.

In Chapter 3, the RAM-Rmax algorithm was introduced to demonstrate the

benefits of generalization in the transition function. This algorithm was run in

both the Sandbag and RockyRoad experimental environments and showed the

level of generalization provided to the agent is important and can be determined

using terrain classification.

Chapter 4 examined an agent’s ability to learn proper clusterings from the

reward function using the RAM-näıve algorithm. Experiments showed that in a

limited number of runs, an agent can learn the latent structure of an environment

with action-independent transitions and develop a near-optimal policy resulting

in a large cumulative reward. These experiments also demonstrated the balance

between extra exploration to learn the optimal policy exactly, and the quicker

return of reward by settling for a near-optimal policy.

The last chapter outlined the issue of improper classification and proposed the

SCRAM-Rmax algorithm to solve this problem. This algorithm was compared to

the RAM-Rmax algorithm with several different inputs in multiple experiments to

show both the need for proper classification and the speed with which it can be

learned.
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6.1 Future Extensions

The experimental results discussed have shown the large benefits of using a RAM

MDP to limit the exploration process. Many of these environments were manu-

factured to demonstrate a specific point, but the motivation behind the examples

are scalable to larger robotic domains. For example, a full-size car’s dynamics

may not vary greatly between a rocky surface and a paved one, but would vary

if the vehicle were on an on incline or facing a wall. This section will present

several future areas of research that can generalize the RAM family of algorithms

to more domains.

In the majority of the experiments in this document, an overhead camera was

used to obtain perceptual information. In many domains, such a camera is not

available. For this reason, research into other perceptual channels is necessary

to evaluate the use of relocatable action models for efficient exploration. Several

sensors that can be used are distance sensors to detect objects in the path of the

robot, an accelerometer to detect the pitch of the robot, a stereo-vision camera

to detect surface texture, or surface mapping to detect whether the robot is on

a sloped surface. For these sensors to be used for generalizing experience, some

issues need to be addressed.

6.1.1 Anisotropic Worlds

Throughout this dissertation, the assumption was made that an agent’s dynamics

are the same in a particular x, y location independent of the robot’s orientation.

This assumption does not always hold (e.g. traveling uphill versus traveling down-

hill) and can lead to a poor model of the world. When a world is anisotropic—

having different properties in different directions—the way in which states are

clustered must be altered.

In order for the RAM family of algorithms to work in an anisotropic world,
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states would have to be clustered not only based on location, but also orientation.

For instance, an agent could use terrain classification to determine that there are

two different types of locations. These clusters would have to be broken down

further to include different orientations. Instead of having two clusters, there

might be eight clusters—facing north, south, east, and west in each cluster.

The addition of more clusters would require more exploration, but a more

accurate world model would be obtained. The approach detailed here is an inter-

mediate way of handling the tradeoff between a detailed model of the environment

and limited exploration.

6.1.2 Transitions Between Classes

For clustering based on perceptual information, this work assumed that a state

belonged completely to one cluster. As discussed in Section 4.3, sometimes infor-

mation is lost when performing this type of state-space clustering. An example

of this loss of information is when a robot’s back wheels are on a rocky surface

and its front wheels are on a smooth surface. Assuming that this state is the

same as either an all smooth or all rocky surface will lead to error in the learned

dynamics model and, in the case of SCRAM-Rmax, can lead to error in learning

the classifier.

One way to improve upon our method is to consider additional classes of states

that are in transitional locations; this prevent the loss of important information.

However, adding this level of precision would affect the amount of necessary

exploration which, depending on the task, might not be worth the cost.

6.1.3 Perceptual Information Obtained During Trial

In each of our experiments, the agent had all the perceptual information at the

start of the experiment. This information allowed for more efficient exploration,
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but is not entirely practical. An agent may not be able to obtain a complete map

of the world before beginning exploration, but it can still generalize experience

between states as perceptual information becomes available.

For instance, an agent that does not know in advance the location of walls in

the environment can still learn about their effects and perceptual cues, thereby

allowing for the transfer of experience to future states where walls are perceived.

To utilize perceptual information not available prior to the start of a run

during planning, an agent can initialize its sensor to either an optimistic or “I

don’t know” value. If the initialization is optimistic, the agent’s planner can

perform value iteration and planning as normal assuming that there are no walls,

and update its model when it encounters a wall. This initialization will allow

the agent to focus more on traveling directly to the goal instead of calculating

probabilities and planning around where walls might be.

If the agent initializes the sensor values of all states to “I don’t know”, on the

other hand, the agent can calculate the expected value for each of the possible

dynamics models for the state in question and choose the highest possible value.

This process allows for the agent to consider different configurations of the world

and plan for the best possible reward.

Both of these ways of initializing the sensors allows for optimism in the agent’s

planning and will result in more efficient exploration than if the agent explored

the environment to learn the actual sensor values. The difference in the two

approaches is the amount of planning and calculation that the agent performs.

The cost of calculation, and, therefore the better approach, is dependent on the

domain.

6.1.4 Knowledge Transfer

As expressed throughout this document, exploration is a large expense in robot

domains, and, therefore, to learn a robot’s dynamics model every time a new task
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is presented is burdensome and impractical. One solution to this problem is to

transfer a robot’s dynamics model between tasks. Assuming that the perceptual

data is consistent between tasks, an agent would be able to store the perceptual

data from the initial task, and perform state-space clustering across tasks. This

approach would allow for an agent to perform entirely new tasks using previously

experienced outcomes. Thus, “transferring” acquired knowledge between tasks.

For instance, if an agent uses color-based terrain classification, it can learn

about black surfaces in one task and store the information. Then, if in a second

task the agent encounters pavement, it can use experience from the first task to

calculate probable next states. The difficulty introduced by doing this would be

the potential need to re-cluster the perceptual data. This situation could occur,

for example, if the second task were actually a finer tuned clustering than the

first task, differentiating between gravel and pavement. Without storing all of

the data from the first task, the agent would not be able separate the previous

experiences based on the new clusters.

6.1.5 Continuous Domains

All of the experiments presented in this dissertation have been in discrete envi-

ronments. Brunskill et al. [2008] created the CORL algorithm, which adapted

the RAM-Rmax algorithm to continuous domains. To do so, it modeled outcomes

as Gaussian distributions. This solution not only allowed for efficient learning

in continuous domains, it had the added bonus that the agent’s calculation time

remained constant with the amount of experience.
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6.2 Summary

This dissertation has shown that relocatable action models with state-space clus-

tering determined by perceptual information enables efficient exploration in robot-

navigation tasks. The RAM-Rmax algorithm was introduced to demonstrate the

benefits of using a relocatable action model (RAM) Markov decision process

(MDP) to model robot-navigation environments using terrain classification to

cluster states with similar dynamics models. Then, experiments showed that by

feeding the reward function into a hierarchical clustering algorithm, an agent can

learn the clustering function for the RAM-näıve algorithm and still perform more

efficient exploration than algorithms that assumed no similarities in the state

space. Finally, the SCRAM-Rmax algorithm showed that an agent can choose

from a set of classifiers to accurately cluster the states with similar dynamics with

limited exploration. Experiments showed that each of these algorithms performed

better in the given domains than current state-of-the-art algorithms. Extensions

of this work were also proposed to adapt these algorithms to be applicable in

more robot-navigation domains.
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Appendix A

State-space Aggregation versus RAM MDP

As mentioned in Chapter 1, relocatable action model (RAM) Markov decision

processes (MDP) allow for generalization while keeping the a complete model of

the environment. For this reason, a RAM MDP can be used to perform state-space

aggregation as shown in Section A.1. However, not all generalization performed

by a RAM MDP can be done by state-space aggregation. An example of this is

shown in Section A.2.

A.1 State-space aggregation using a RAM MDP

To examine how a RAM MDP can be used to perform state-space aggregation,

let us re-examine the MDP of the robot-navigation task from Chapter 1, shown

in Figure A.1 where states s5, s10, s15, s20, and s25 are goal states. The aggregate

model is shown in Figure A.2.

For clarity, the mapping from states in the original model, to states in the

aggregate model can be called the clustering function, ξ. This clustering function

can be used as the type function, κ, in the RAM MDP formalism. To represent

this function graphically in the RAM MDP, each state in the aggregate model

has been given a color. These color are shown in the RAM MDP in Figure A.3.

An aggregate model also contains information about transitions, T, in the

form of

T (c, a) = c′.

where c′ is the probability distribution over possible next clusters and a is
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Figure A.1: A Markov Decision Process (MDP) model for a robot navigation task
where states s5, s10, s15, s20, and s25 are goal states.
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Figure A.2: An aggregate model of the environment modeled in Figure A.1. Each
state represents a cluster of states with similar values in the original model.
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Figure A.3: A RAM MDP representing the state-space aggregation shown in
Figure A.2.
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the action taken. However, the since the agent running state-space aggregation

is given information from the environment in terms of the original model, the

transitions learned are actually in the form of

T (ξ(s), a) = T (c, a) = c′.

Of the three functions in the RAM formalism, the type function, κ (S → C);

the relocatable action model, t (C × A → O); and the next-state function, η

(S × O → S ′), there is not a function that directly maps cluster-action pairs to

next clusters, this function would have to be calculated by

T (c, a) = κ(η(s, t(c, a))).

?? shows the steps to solve for c′ for taking action a1 from state s7 where o1

is an outcome that represents a change in the x dimension by +1. While solving

the RAM MDP takes more calculations, the amount of exploration necessary

to learn the model is the same as using state-space aggregation which, in the

robot-navigation domain, is more costly than calculations.

T (ξ(s7), a1) = κ(η(s7, t(κ(s7), a1)))

= κ(η(s7, t(c2, a1)))

= κ(η(s7, o1))

= κ(s8)

= c3

A.2 Representing a RAM MDP with aggregation

To examine how an aggregate model cannot fully incorporate all of the information

of a RAM MDP, let us re-examine the RAM MDP of the robot-navigation task

from Chapter 1, shown in Figure A.4 where state s25 is a goal state. An aggregate
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Figure A.4: A RAM MDP model of a two-dimensional robot-navigation environ-
ment with two clusters. State s25 is a goal state
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Figure A.5: An aggregate model of the environment modeled in Figure A.4. The
type function of the RAM MDP was used to perform clustering.
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model using the type function of the RAM MDP as the cluster function is shown

in Figure A.5.

To solve for the next state, s′, in a RAM MDP an agent would use the equation

η(s, t(κ(s), a)) = s′.

So, for a deterministic environment like Figure A.4, solving includes calculating

the next state from taking action a2 from state s13.

s′ = η(s13, t(κ(s13), a2))

= η(s13, t(c1, a2))

= η(s13, o1))

= s14

For this two dimensional environment, outcome o1 could be a change in the x

dimension of +1. To solve for s′ in the aggregate model, the agent would have to

perform

c′ = T (ξ(s13, a2))

= T (c1, a2)

= {c1, c2}

which actually tells the agent very little about its resulting state. This problem

with state-space aggregation is due to its over-generalization of the environment.

By creating a second, paired down model of the environment, vital information

is lost. The benefit of the RAM MDP is that the agent maintains all information

about the original environment and is still able to generalize experience across

states.
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Appendix B

Tested Surfaces

The materials used for surfaces in the experiments in this dissertation were chosen

after much experimentation. Below is a list of surface materials tested to alter

the robot’s dynamics.

Crushed walnut shells

To mimic the performance of sand without getting sand in the robot’s gears, I

tried a type of reptile litter made out of crushed walnut shells. This material

shifted too easily. The robot sunk below the surface and was not able to move in

the environment.

To keep the robot from sinking, I tried putting these walnut shells in a

large plastic sealable bag. However, the shiny surface led to difficulties with

the reflection-based tracking system. So, a felt bag was used instead (as men-

tioned in Chapter 3). This bag performed well, allowing the sand to shift without

letting the robot sink below the surface. One problem with this surface, though,

was introduced after several runs were performed. The more the robot travelled

along a path, the more the sand would sink in that area. Every few runs, the

sand would have to be shifted by hand to counteract this problem.

Shredded paper

To limit the robot’s traction, I tried another type of animal litter made out of

shredded paper. This material also shifted too easily. The robot sunk below the
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surface and was not able to move in the environment.

Rocks

Another surface that I tried was small polished rocks in the hope of having a

bumpy surface without the robot sinking. Unfortunately, the individual rocks

shifted too much and sometimes led to the robot getting stuck. Since we wanted

to have a uniform dynamics model for all parts of the environment made of

the same material, having a situation where the robot could not move was not

desirable.

Bubble wrap

To mimic the bumps of rocks without the slippage, I tried running the robot

on bubble wrap. This material, though, did not significantly differ the robot’s

dynamics in comparison to a smooth surface.

Grass

Since idea of a multi-surface environment came from the real world, I tried running

the robot on the grass outside of the CoRE building at Rutgers University. The

robot, though, was too small for this environment and the undercarriage of the

robot dragged on the grass.

Rocks embedded in wax

After trying the robot outside, I found one surface that seemed to have the desired

effect on the robot’s dynamics was rocks that had been embedded in dirt. The

variation of the rocks slowed down the robot and since the rocks were stationary,

the robot never actually got stuck. To mimic this surface, I created a surface of

rocks embedded in candle wax that was used in Chapters 3 and 5. This surface

allowed for the variability of rocks without the material slipping under the robot’s
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wheels. One difficulty of this surface was its fragility. Often transporting these

surfaces led to breakage.

Wax

Once wax was used for the bumpy surface, I tried using wax for a smooth, possibly

even slippery surface. However, the robot’s dynamics on the wax were the same

as its dynamics on carpet. Since the wax was so fragile and the carpet was in

abundance, I opted not to use plain wax surfaces.

Carpet

One problem with using the carpet floor of our laboratory in the same environ-

ment as the rocks embedded in wax was the border between the two surfaces. The

rocky surface was about two centimeters above the ground surface. Therefore the

transitions between that surface and the ground were usually quite abrupt. To

minimize these transitions, I used additional carpet squares on top of the labo-

ratory floor to even the heights of the two surfaces. This was the configuration

of both the RockyRoad environment from Chapter 3 and the real-dynamics en-

vironment in Chapter 5. In the real-dynamics environment, though, the carpet

squares were covered with a laminated construction paper to allow for the same

surface to have different visual properties.
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