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EMERY’S OVERVIEW

Experimentation

Data 
Analysis

Theory

My approximation of what Emery said:

Clinical Application

Balance and exploit basic science, engineering, and clinical goals.



NEURAL PROSTHESIS

Sensation

Action



THE LINK SEPARATED

* Stroke (e.g. in brain stem).
* Spinal cord injuries

Approximately 200,000 cases in the USA
11,000 new cases/year
Fifty-six percent in 16 to 30 year age group
0.7% Recover

* Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig’s disease)
20,000 cases with 5,000 new cases/year

* Multiple Sclerosis
* Blindness
* Hearing impairment



BRAIN-MACHINE INTERFACES

“If I could find … a code which translates the relation 
between the reading of the encephalograph and the mental 
image …the brain could communicate with me.”

“Donovan’s Brain”, Curt Siodmak, 1942

Brain

“Mad” scientist Nancy Davis 
(Reagan)



A NEURAL PROSTHESIS

EEG

single and 
multi-
neuron
activity

Voluntary 
control 
signal

mathematical 
algorithm

Computer cursor
and

keyboard entry
Robotic arm

Stimulation of Muscles,
Spinal Cord, and Brain

Source: Mijail Serruya

Focus on central 
rather than 
peripheral nervous 
system.



KEY QUESTIONS

1. Measurement: What can we measure?  From where?  
How?

2. Encoding: How is information represented in the 
brain?  

3. Decoding: What algorithms can we use to infer the 
internal “state” of the brain?  

4. Interface: How can we build practical interfaces and 
train people to use them?



SENSING THE BRAIN

fMRI
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IMPLANT AREA

B

PMA

Central
Sulcus

Arcuate

SMA
MIMI

5 mm

MI arm area of motor cortex.
* firing rates of cells correlated with hand motion (velocity, 
position, acceleration?)
* accessible
* hypothesis: natural for controlling motion of a prosthesis.

PMA



NEURAL IMPLANT

100 electrodes, 
400µm separation
4x4 mm

Bionic 
Technologies:

Neural 
connector

Electrode 
array



NEURAL IMPLANT
 

500 µm 

Bone 

Connector 

Silicone 

Dura 

White Matter 

400 µm 

Cortex 

I 

III 

V 

VI 

Arachnoid 
space 

Connector Acyrlic 

Chronically implanted.
Stable recording for 2-3 years  (not necessarily same cells every day).
Spikes as well as local field potentials.
Take what you get.



EXAMPLE RESPONSES
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57 unitsLatest Results with NeuroPort: 200 neurons 
from two arrays.



“PINBALL” TASK

Motions: fast, unconstrained

Data (4.5 minutes):
• Position (Velocity, Acceleration)
• 1.5 minutes needed for training
• Firing rate (42 cells, non-

overlapping 70ms bins)

Task: Hit random targets on 
the screen.



off-line data processing

EXPERIMENAL PARADIGM

neural 
signals

neural reconstruction

mathematical
algorithm

hand position

Kalman
Filter

Firing
rates

observations

inference/decoding



on-line direct neural control

CLOSED-LOOP CONTROL

neural reconstruction

visual feedback

Kalman
Filter

Firing
rates

observations

inference/decoding



GENERATIVE MODEL

kkk qxfz vvv += )(1

kkk wxfx vvv += − )( 12

neural firing rate of N=42 cells 
in M=70ms behavior (e.g. hand position, 

velocity, acceleration)

noise (e.g. 
Normal or 
Poisson)

Encoding:



ENCODING

)cos()sin(0 kykxk hhhz θθ ++=

Cosine tuning (Georgopoulos et al ’82). Single cell:

θk = hand direction 
at time k

Not sufficient for 
continuous control.
Speed?
Position?
Acceleration?
Noise model?



ENCODING

kyykxx

kykxkk

vhvhh
hhhsz

,,1

0 ))cos()sin((
++=

++= θθ

Moran & Schwartz (’99):

(Linear in velocity).



ENCODING

kykxk ybxbbz ++= 0

Linear 
encoding of 
position



ENCODING SUMMARY

* Firing rate is approximately linearly related to hand  
position and velocity.

* Linear models relating firing to accleration, jerk, snap, 
… also improve the encoding but with diminishing 
returns.

* Firing rates of cells are not conditionally independent 
(need to model the correlations) [Hatsopoulos et al ’98].



DECODING
• Georgopoulos et al. (1986)
• Taylor et al. (2002)

• Zhang et al  (1998) “two step Bayes”
• Brown et al. (1998) Recursive Bayesian 

(hippocampal place cells)

• Wessberg et al.(2000) Linear filter, ANN
• Gao et al. (2002) Particle filter
• Principe et al (2002) ad hoc Kalman model

• Serruya et al.(2002) Linear filter (position)
(closed loop)

Population Vector
(only velocity)



* sound probabilistic framework.
* make explicit our assumptions about the data and 

noise.
* indicate the uncertainty of the estimate.
* requires a small amount of “training” data.
* provide on-line estimation of hand position with 

short delay (within 200ms).
* more accurate estimates than previous methods 

(population vectors or linear filters).

DECODING MODEL
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GENERATIVE MODEL

Observation Equation:

6 X 6 matrixSystem Equation:

kkk wxAx vvv +=+    1
L

v

,2,1,0                  

),0(~
=k

k WNw

kkk qxHz vvv +=   



kkjk qxHz vvv +=−   

* Uniform: lag  j time steps (1 time step = 70ms)

OPTIMAL “LAG”

* Non-uniform: lag time steps),,,( 4221 jjj ⋅⋅⋅

4,3,2,1,0=j

Firing precedes motion:

Measurement Equation
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TRAINING

Centralize the training data, such that

0})({E   ,0})({E == kk xz vv



),(~   QxHz kk
vv ?

likelihood

observation model

∫ −−−−− = 11111 )|()|()|( kkkkkkk xdZxpxxpZxp vvvvvvv

prior

),ˆ( 11 −− kk PxN),(~ 1 WxAx kk −
vv N
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BAYESIAN INFERENCE

Infer behavior from firing.

p(behavior at k | firing up to k) =



RECONSTRUCTION (TEST DATA)
true
reconstructed



Methods                               CC MSE
(x , y)

Kalman (0ms lag)           (0.77, 0.91)        6.96
Kalman (70ms lag)         (0.79, 0.93)        6.67
Kalman (140ms lag)     (0.81, 0.93)        6.09
Kalman (210ms lag)       (0.81, 0.89)        6.98
Kalman (280ms lag)       (0.76, 0.82)        8.91

Kalman (non-uniform)   (0.82, 0.93)        5.24

RECONSTRUCTION AND LAG

)( 2cm

Note: MSE approx 7.2 with diagonal covariance (conditional independence)



CLOSED LOOP NEURAL CONTROL

Target

Neural control

Mijail Serruya

Linear filters 
built on-line.



BEYOND LINEAR GAUSSIAN

)(1
kk xHg v−=µ

)( kkk gxH µη == v

∑==
i

ikikk xsg )()( ,µη

Generalized Additive Model (GAM).

4th order splines.

Generalized Linear Models (GLM).

)),((~ 1 Qkk xHgNz v−

Natural log for 
Poisson



GAM OF POSITION



GAM OF VELOCITY
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FACTORED SAMPLING

Isard & Blake ‘96

Non-Gaussian Posterior:

- non-Gaussian or non-linear likelihood

- non-linear temporal prior

Nix ii
k ..1},,{ )()( =πv

Particle set =



PARTICLE FILTER

Isard & Blake ‘96

)|( 11 −− kk Zxp
vv

Posterior

Temporal dynamics

)|( 1−kk xxp
vv

samplesample

samplesample
)|( kk xzp vv

)|( kk Zxp
vv

Posterior

Likelihood

normalizenormalize



DECODING ACCURACY

0.90.846.04GAM (indep)

0.930.816.13LGM (full cov)

0.890.796.36GLM (indep)

0.920.87.17LGM (indep)
y ccx ccMSEMethod



QUESTIONS AT THE INTERFACE
* training paralyzed subjects

* controlling “unnatural” devices
• cursors
• robotic arms, hands.
• mobile robots 

* controlling multiple devices 
- switching contexts
- adaptation

* Where should the computation take place 
(brain or computer)?

* What level of autonomous control/perception is needed?



CURRENT/FUTURE WORK

* 3D motion and joint angles.
* Incorporating local field potentials.
* Non-parametric tuning functions

* Recognizing patterns of motion (gestures).
* Plasticity.
* Robot control (service robots, semi-autonomous).
* Recording from multiple brain areas.



SUMMARY
* Firing rate of MI cells is approximately linearly related to 
position, velocity, and acceleration of the hand.

* Modeling the full covariance matrix is important for decoding.

• independent Gaussian or independent Poisson does worse

* The Kalman filter is optimal if the model is linear and the noise 
is Gaussian.

• the firing can be made approximately Gaussian.

* Useful estimates of hand motion can be derived from only 42 
cells and a 1.5 minutes of training data

• cursor control suggests a neural prosthesis may be practical



CONCLUSIONS

We are on the verge of having biologically-embedded hybrid 
neural-computer systems.

In animal models we have demonstrated continuous 2D cursor 
control and limited robotic control.

The work opens opportunities to study
* how the brain represents and processes information
* computational models of biological control
* novel hybrid control systems
* new robotic systems and prostheses
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