

Models of Neural Coding in Motor Cortex

And Their Application to Neural Prostheses

MICHAEL BLACK, JOHN DONOGHUE, ELIE BIENENSTOCK, WEI WU, YUN GAO,

MIJAIL SERRUYA

BROWN UNIVERSITY

Computer Science Neuroscience

Applied Mathematics

EMERY'S OVERVIEW

My approximation of what Emery said:

Balance and exploit basic science, engineering, and clinical goals.

NEURAL PROSTHESIS

THE LINK SEPARATED

- * Stroke (e.g. in brain stem).
- * Spinal cord injuries
 - Approximately 200,000 cases in the USA
 - 11,000 new cases/year
 - Fifty-six percent in 16 to 30 year age group
 - 0.7% Recover
- * Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig's disease)
 20,000 cases with 5,000 new cases/year
- * Multiple Sclerosis
- * Blindness
- * Hearing impairment

BRAIN-MACHINE INTERFACES

"Mad" scientist

"If I could find ... a code which translates the relation between the reading of the encephalograph and the mental image ...the brain could communicate with me." "Donovan's Brain", Curt Siodmak, 1942

A NEURAL PROSTHESIS

Focus on central rather than peripheral nervous system.

KEY QUESTIONS

1. **Measurement**: What can we measure? From where? How?

2. **Encoding**: How is information represented in the brain?

3. **Decoding**: What algorithms can we use to infer the internal "state" of the brain?

4. **Interface**: How can we build practical interfaces and train people to use them?

SENSING THE BRAIN

IMPLANT AREA

MI arm area of motor cortex.

- * firing rates of cells correlated with hand motion (velocity, position, acceleration?)
- * accessible

* *hypothesis*: natural for controlling motion of a prosthesis.

NEURAL IMPLANT

Bionic Technologies:

Electrode array Neural connector

100 electrodes,400µm separation4x4 mm

NEURAL IMPLANT

Chronically implanted.

Stable recording for 2-3 years (not necessarily same cells every day). Spikes as well as local field potentials.

Take what you get.

EXAMPLE RESPONSES

Latest Results with NeuroPort: 200 neurons from two arrays.

"PINBALL" TASK

Task: Hit random targets on the screen.

Motions: fast, unconstrained

Data (4.5 minutes):

- Position (Velocity, Acceleration)
- 1.5 minutes needed for training
- Firing rate (42 cells, nonoverlapping 70ms bins)

EXPERIMENAL PARADIGM

CLOSED-LOOP CONTROL

GENERATIVE MODEL

 $\vec{x}_k = f_2(\vec{x}_{k-1}) + \vec{w}_k$

Encoding:

in M=70ms

$$\vec{z}_k = f_1(\vec{x}_k) + \vec{q}_k$$
 noise (e.g.
Normal or
Poisson)

neural firing rate of N=42 cells

behavior (e.g. hand position, velocity, acceleration)

ENCODING

Cosine tuning (Georgopoulos et al '82). Single cell:

 $z_k = h_0 + h_x \sin(\boldsymbol{q}_k) + h_y \cos(\boldsymbol{q}_k)$

Encoding

Moran & Schwartz ('99):

$$z_k = s_k (h_0 + h_x \sin(\boldsymbol{q}_k) + h_y \cos(\boldsymbol{q}_k))$$

= $h_1 + h_x v_{x,k} + h_y v_{y,k}$ (Linear in velocity).

ENCODING

Linear encoding of position

$$z_k = b_0 + b_x x_k + b_y y_k$$

ENCODING SUMMARY

* Firing rate is approximately linearly related to hand position and velocity.

* Linear models relating firing to accleration, jerk, snap, ... also improve the encoding but with diminishing returns.

* Firing rates of cells are not conditionally independent (need to model the correlations) [Hatsopoulos et al '98].

DECODING

- Georgopoulos et al. (1986)
- Taylor et al. (2002)
- Zhang et al (1998)
- Brown et al. (1998)
- Wessberg et al.(2000)
- Gao et al. (2002)
- Principe et al (2002)
- Serruya et al.(2002)

Population Vector (only velocity)

"two step Bayes" Recursive Bayesian (hippocampal place cells)

Linear filter, ANN Particle filter ad hoc Kalman model

Linear filter (position) (closed loop)

DECODING MODEL

- * sound probabilistic framework.
- * make explicit our assumptions about the data and noise.
- * indicate the uncertainty of the estimate.
- * requires a small amount of "training" data.
- * provide on-line estimation of hand position with short delay (within 200ms).
- * more accurate estimates than previous methods (population vectors or linear filters).

GENERATIVE MODEL

OPTIMAL "LAG"

Measurement Equation

Firing precedes motion:

* Uniform: lag j time steps (1 time step = 70ms)

$$\vec{z}_{k-j} = H \ \vec{x}_k + \vec{q}_k$$
 $j = 0,1,2,3,4$

* Non-uniform: lag $(j_1, j_2, \dots, j_{42})$ time steps

TRAINING

$$H = \operatorname{argmin}_{H} \sum_{k} \| \vec{z}_{k} - H\vec{x}_{k} \|^{2}$$

$$A = \operatorname{argmin}_{A} \sum_{k} \| \vec{x}_{k+1} - A\vec{x}_{k} \|^{2}$$

$$Q = \operatorname{cov} \left(\{ \vec{z}_{k} - H\vec{x}_{k} \}_{k} \right) \\ = (\mathbf{z} - H\mathbf{x})(\mathbf{z} - H\mathbf{x})^{\mathrm{T}}$$

$$W = \operatorname{cov} \left(\{ \vec{x}_{k+1} - A\vec{x}_{k} \}_{k} \right) \\ = (\mathbf{x}_{k+1} - A\mathbf{x}_{k})(\mathbf{x}_{k+1} - A\mathbf{x}_{k})^{\mathrm{T}}$$

Centralize the training data, such that $E(\{\vec{z}_k\}) = 0, \quad E(\{\vec{x}_k\}) = 0$

BAYESIAN INFERENCE

Infer behavior from firing. p(behavior at k | firing up to k) = $p(\vec{x}_{k} | \vec{Z}_{k}) = \mathbf{k} p(\vec{z}_{k} | \vec{x}_{k}) p(\vec{x}_{k} | Z_{k-1})$ likelihood prior observation model $\overline{z}_k \sim ? \ (H \ \overline{x}_k, Q)$ $p(\vec{x}_{k} | \vec{Z}_{k-1}) = \int p(\vec{x}_{k} | \vec{x}_{k-1}) p(\vec{x}_{k-1} | \vec{Z}_{k-1}) d\vec{x}_{k-1}$ $\vec{x}_{k} \sim N(A\vec{x}_{k-1}, W) \quad N(\hat{x}_{k-1}, P_{k-1})$ system model

RECONSTRUCTION AND LAG

Methods	CC	$MSE (cm^2)$
	(x , y)	
Kalman (0ms lag)	(0.77, 0.91)	6.96
Kalman (70ms lag)	(0.79, 0.93)	6.67
Kalman (140ms lag)	(0.81, 0.93)	6.09
Kalman (210ms lag)	(0.81, 0.89)	6.98
Kalman (280ms lag)	(0.76, 0.82)	8.91
Kalman (non-uniform)	(0.82, 0.93)	5.24

Note: MSE approx 7.2 with diagonal covariance (conditional independence)

Mijail Serruya

BEYOND LINEAR GAUSSIAN

Generalized Linear Models (GLM).

$$\boldsymbol{h}_{k} = H \overline{\boldsymbol{x}}_{k} = g(\boldsymbol{m}_{k})$$

 $\boldsymbol{m}_{k} = g^{-1}(H \overline{\boldsymbol{x}}_{k})$
Natural log for
Poisson

$$z_k \sim N(g^{-1}(H\bar{x}_k), \mathbf{Q})$$

Generalized Additive Model (GAM).

$$\boldsymbol{h}_{k} = g(\boldsymbol{m}_{k}) = \sum_{i} s_{i}(x_{k,i})$$
4th order splines.

GAM OF POSITION

GAM OF VELOCITY

FACTORED SAMPLING

Non-Gaussian Posterior:

- non-Gaussian or non-linear likelihood
- non-linear temporal prior

Isard & Blake '96

Particle set = {
$$\vec{x}_{k}^{(i)}, p^{(i)}$$
}, $i = 1..N$

PARTICLE FILTER

Isard & Blake '96

DECODING ACCURACY

Method	MSE	хсс	усс
LGM (indep)	7.17	0.8	0.92
GLM (indep)	6.36	0.79	0.89
LGM (full cov)	6.13	0.81	0.93
GAM (indep)	6.04	0.84	0.9

QUESTIONS AT THE INTERFACE

- * training paralyzed subjects
- * controlling "unnatural" devices
 - cursors
 - robotic arms, hands.
 - mobile robots
- * controlling multiple devices
 - switching contexts
 - adaptation
- * Where should the computation take place (brain or computer)?

* What level of autonomous control/perception is needed?

CURRENT/FUTURE WORK

- * 3D motion and joint angles.
- * Incorporating local field potentials.
- * Non-parametric tuning functions

- * Recognizing patterns of motion (gestures).
- * Plasticity.
- * Robot control (service robots, semi-autonomous).
- * Recording from multiple brain areas.

SUMMARY

* Firing rate of MI cells is approximately linearly related to position, velocity, and acceleration of the hand.

* Modeling the full covariance matrix is important for decoding.

• independent Gaussian or independent Poisson does worse

* The Kalman filter is optimal if the model is linear and the noise is Gaussian.

• the firing can be made approximately Gaussian.

* Useful estimates of hand motion can be derived from only 42 cells and a 1.5 minutes of training data

• cursor control suggests a neural prosthesis may be practical

CONCLUSIONS

We are on the verge of having *biologically-embedded* hybrid neural-computer systems.

In animal models we have demonstrated continuous 2D cursor control and limited robotic control.

The work opens opportunities to study

- * how the brain represents and processes information
- * computational models of biological control
- * novel hybrid control systems
- * new robotic systems and prostheses

THANKS

M. Fellows, Neuroscience **D. Sheinberg**, *Neuroscience* **N. Hatsopoulos**, *Neuroscience* **W. Patterson**, *Engineering* A. Nurmikko, Engineering G. Friehs, Brown Medical School S. Geman, Division of Applied Mathematics **D. Mumford**, *Division of Applied Mathematics* L. Paninski, NYU, Center for Neural Science S. Shoham, Princeton Support:

National Science Foundation, ITR Program. The Keck Foundation

The National Institutes of Health