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Abstract

This paper develops a control-theoretic approach

to the problem of decoding neural activity in mo-

tor cortex. Our goal is to infer the position and

velocity of a subject's hand from the neural spik-

ing activity of 25 cells simultaneously recorded in

primary motor cortex. We propose to model the

encoding and decoding of the neural data using a

Kalman �lter. Towards that end we specify a mea-

surement model that assumes the �ring rate of a

cell within 50ms is a stochastic linear function of

position, velocity, and acceleration of the hand.

This model is learned from training data along

with a system model that encodes how the hand

moves. Experimental results show that the recon-

structed trajectories are superior to those obtained

by linear �ltering. Additionally, the Kalman �lter

provides insight into the neural encoding of hand

motion. For example, analysis of the measure-

ment model suggests that, while the neural �ring

is closely related to the position and velocity of

the hand, the acceleration is redundant. Further-

more, the Kalman �lter framework is exploited to

recover the optimal lag time between hand move-

ment and neural �ring.

1. Introduction

This paper describes a new control-theoretic model for
the encoding of hand movement in motor cortex and
for inferring, or decoding, this movement from the �r-
ing rates of a population of cells. We argue that such
an approach should (1) have a sound probabilistic foun-
dation; (2) explicitly model noise in the data; (3) indi-
cate the uncertainty in estimates of hand position; (4)
make minimal assumptions about the data; (5) provide
on-line estimates of hand position with short delay (less
than 200ms); (6) provide insight into the neural coding
of movement. The Kalman �ltering method proposed
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Figure 1: Reconstructing 2D hand motion. (a) Training:

spiking activity is recorded while the subject tracks a tar-

get by moving a jointed manipulandum on a 2D plane. (b)

Decoding: true target trajectory (thin) and reconstruction

using the Kalman �lter (thick).

here provides a rigorous and well understood framework
that addresses these issues. Combined with advances
in multi-electrode recording in awake, behaving, sub-
jects, the method may be appropriate for the precise
neural control of external devices (Isaacs et al., 2000,
Wessberg et al., 2000, Serruya et al., 2002).

Simultaneous recordings are acquired from an array
consisting of 100 microelectrodes that is implanted in the
primary motor cortex (MI) of a Macaque monkey. Us-
ing the experimental paradigm of (Paninski et al., 2001),
the monkey viewed a computer monitor and gripped
a two-link, negligible-friction manipulandum that was
moved on a tablet parallel to the oor (Figure 1a). In
each trial, the monkey's task was to manually follow a
target that moved smoothly and randomly on the screen
with visual feedback of its hand position presented on
the screen. For the data analyzed here, there are 182
trials, each of which is approximately 8 � 10 seconds
long. The hand position, velocity, and acceleration were
recorded every 50 ms along with the �ring rate for each
of 25 neurons within the previous 50ms.

Our primary goal is to reconstruct hand trajectory
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from the spiking activity (Figure 1b) with the ultimate
goal of providing control of prosthetic devices for the
severely disabled. We see this as a problem of inferring
behavior from noisy measurements. Our approach devel-
ops a Kalman �lter framework (Gelb, 1974) for model-
ing the relationship between �ring rates in motor cortex
and the position and velocity of the subject's hand. The
method builds on previous work (Brown et al., 1998) by
applying these techniques to infer smooth hand motion
from motor cortical activity. In the Kalman framework,
the hand movement (position, velocity and acceleration)
is modeled as the system state and the �ring rate is mod-
eled as the observation (measurement). The approach
speci�es an explicit generative model that assumes the
observation (�ring rate in 50ms) is a linear function of
the state (hand kinematics) plus Gaussian noise. Simi-
larly, the hand state at time t is assumed to be a linear
function of the hand state at the previous time instant
plus Gaussian noise. The Kalman �lter approach pro-
vides a recursive, and on-line, estimate of hand kinemat-
ics from the �ring rate in non-overlapping 50ms bins.

In contrast to previous work, this probabilistic ap-
proach provides a measure of con�dence in the result-
ing estimates. This can be extremely important when
the output of the decoding method is to be used for
later stages of analysis. The results of reconstructing
hand trajectories from pre-recorded neural �ring rates
are compared with those obtained using more tradi-
tional linear �ltering techniques (Serruya et al., 2002,
Warland et al., 1997) using overlapping 550ms windows.
The results indicate that the Kalman �lter provides bet-
ter results than the linear �lter.

In addition to providing a probabilistic inference
framework that improves on the ad hoc linear �lter, the
Kalman �lter also provides a new tool for gaining in-
sight into the neural coding. Training the Kalman �lter
involves recovering an observation matrix that linearly
relates hand motions with neural �ring. By analyzing
this matrix we see that both position and velocity of the
hand are related to neural activity while acceleration is
much less important. Moreover, the framework gives us
a principled way of determining the optimal \lag" be-
tween hand motion and the neural activity.

1.1 Related Work

Many mathematical algorithms have been proposed
to model the encoding of hand motion by neural
�ring activity and to decode this activity to re-
cover the motion information from multi-cell record-
ings. For example, Georgopoulos and colleagues
(Georgopoulos et al., 1986) have used a center-out task
in which the subject moved the hand from a central lo-
cation to one of eight radially located targets. They
suggested that the movement direction may be encoded
by the neural ensemble in the arm area of motor cortex

(MI), and the ensemble activity of the cells was combined
using a population vector algorithm.

Based on their work, Moran and Schwartz
(Moran and Schwartz, 1999) encoded both the in-
stantaneous speed and direction using the population
vector. They showed that the cell's activity is modu-
lated with speed when the subject moves the arm in the
preferred direction. Also they suggested that spiking
activity precedes, or lags, the corresponding movement
and this lag may vary between cells. This population
vector approach has been used for the real-time neural
control of 2D and 3D cursor movement. The approach
appears to work well but lacks a formal mathematical
foundation and provides no estimate of uncertainty.
These factors make it diÆcult to extend this approach
to more the complex analysis of temporal movement
patterns.

Traditional linear �ltering has also been used for de-
coding (Paninski et al., 2001, Warland et al., 1997) and
can be used to achieve real-time neural control of a
2D cursor (Serruya et al., 2002). This approach re-
quires the use of data over a long time window (typ-
ically 500ms to 1s). Such a long window of tempo-
ral integration may not be appropriate for faster or
more complex (higher frequency) motions. Other ap-
proaches based on Arti�cial Neural Networks (ANN)
(Warland et al., 1997) and principal component analysis
(PCA) (Chapin and Nicolelis, 1999, Isaacs et al., 2000)
have similar limitations.

What is needed is a probabilistically grounded method
that uses data in small time windows (e.g. 50ms)
and integrates that information over time in a recur-
sive fashion. The Condensation algorithm has been
recently introduced as a Bayesian decoding scheme
(Gao et al., 2002), which provides a probabilistic frame-
work for causal estimation and is shown superior to the
performance of linear �ltering when suÆcient data is
available (e.g. �ring rates for several hundred cells).
Note that the Condensation method is more gen-
eral than the Kalman �lter in that it does not as-
sume linear models and Gaussian noise. While this
may be important for neural decoding as suggested in
(Gao et al., 2002), current recording technology makes
the method impractical for real-time control.

The Kalman �lter has been widely used for es-
timation problems ranging from target tracking to
vehicle control (Brown and Hwang, 1997, Gelb, 1974,
Jacobs, 1993). Here we apply this well understood the-
ory to the problem of decoding hand kinematics from
neural activity in motor cortex. This builds on the work
of (Brown et al., 1998) that uses a Kalman �lter to es-
timate the position of a rat from the �ring activity of
hippocampal place cells.

In Section 2., we describe the mathematical framework
and algorithm for the Kalman �lter and apply it to our
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decoding problem. Section 3. presents the experimental
results and discusses them while Section 4. concludes
with a discussion and summary of future work.

2. Methods

Our goal is to estimate the state of the hand at the cur-
rent instant in time, i.e. xk = [x; y; vx; vy; ax; ay]

T
k rep-

resenting x-position, y-position, x-velocity, y-velocity,
x-acceleration, and y-acceleration at time tk = k�t
where �t = 50ms in our experiments. The Kalman
�lter (Gelb, 1974, Welch and Bishop, 2001) model as-
sumes the state is linearly related to the observations
zk 2 <C which here represents a C�1 vector containing
the �ring rates at time tk for C observed neurons within
50ms. In our experiments, C = 25 cells.

This generative model of neural �ring is formulated as

zk =Hkxk + qk ; (1)

where k = 1; 2; � � � and H 2 <C�6 is a matrix that lin-
early relates the hand state to the neural �ring. We
assume the noise in the observations is zero mean and
normally distributed, i.e. qk � N(0;Qk);Qk 2 <C�C .
Below we will discuss how to estimate Hk and the co-
variance matrix Qk from training data.

The states are assumed to propagate in time according
to the system model

xk+1 = Akxk +wk; (2)

where Ak 2 <6�6 is the coeÆcient matrix and the noise
term wk � N(0;Wk);Wk 2 <6�6. This states that the
hand kinematics (position, velocity, and acceleration) at
time k + 1 is linearly related to the state at time k.
Once again we assume these estimates are normally dis-
tributed and we will learn Ak and Wk from training
data.

In practice, Ak;Hk;Wk;Qk might change with time
step k. However, here we make the common simplifying
assumption they are constant. Thus we can estimate
them from training data using least squares estimation.

2.1 Learning (System Identi�cation)

In this subsection, we elaborate how to learn the param-
eters in the model equations (1) and (2).

Assume there are M time steps in the training data
(containing states fxkg and the associated �ring rates
fzkg, k = 1; : : : ;M). Let xi;k be ith element of xk
at time tk (i.e. x-position, y-position, x-velocity, y-
velocity, x-acceleration, or y-acceleration) and zj;k be
the neural �ring rate in 50ms of the jth cell at time
tk; i = 1; : : : ; 6; j = 1; : : : ; C; k = 1; : : : ;M .

If Ak;Hk;Wk;Qk are independent of k, we can omit
the subscript and denote them as A;H;W;Q. We esti-

mate coeÆcient matrices A and H by least squares:

A = argmin
A

M�1X
k=1

jjxk+1 �Axk jj
2;

H = argmin
H

MX
k=1

jjzk �Hxkjj
2;

where jj � jj is the conventional L2 norm.
The solutions of above equations are

A = X2X
T
1 (X1X

T
1 )
�1; H = ZXT (XXT )�1;

where
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x1;1 � � � x1;M
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!
:

Furthermore, using the estimated A and H, we can
estimate W and Q by

W = (X2 �AX1)(X2 �AX1)
T =(M � 1)

and
Q = (Z�HX)(Z�HX)T =M:

With the estimated A;H;W;Q, the �ring rate and the
hand motion are encoded by equations (1) and (2) re-
spectively.

2.2 Estimation (Kalman Filter Algorithm)

Given the generative encoding model de�ned above, we
turn to the problem of decoding; that is, reconstructing
hand motion from the �ring rates of the cells.
For each xk , reconstruction using the Kalman �lter

algorithm has two steps:

i): (a priori step) predict xk from the state equation
(2). This estimate is denoted by x̂�k ;

ii): (a posteriori step) update x̂�k by using the in-
formation of the �ring rate at time tk. The updated
estimate is denoted by x̂k.

Here we follow the conventional notation (see
(Welch and Bishop, 2001) for a review).
To evaluate the performance of the estimation, we de-

�ne the a priori and a posteriori errors as

e�k = xk � x̂�k ; and ek = xk � x̂k: (3)

Assume x�k ;xk 2 <6 are unbiased estimates, then the
error can be characterized by the covariance matrix (in
the one dimensional case, the covariance matrix is just
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the square of Euclidean distance between the real and es-
timated values). We de�ne the a priori and a posteriori

estimate error covariance matrices by

P�k = E[e�k e
�
k

T
]; Pk = E[ekek

T ]; (4)

respectively.
The a posteriori estimator is our �nal estimation for

the state. The accuracy of it can be evaluated under
MSE (mean-square error), which is, here, the trace of
matrix Pk for each k. To simplify the estimation pro-
cess, we assume the estimators are linear. Thus, we can
denote the a posteriori state estimate as a linear combi-
nation of an a priori estimate and a weighted di�erence
between an actual measurement and a measurement pre-
diction as shown below (See (Gelb, 1974) for details):

x̂k = x̂�k +Kk(zk �Hx̂�k ): (5)

In equation (5), the di�erence (zk �Hkx̂
�
k ) is called

the measurement innovation and the matrixKk is called
the gain matrix. The Kk which minimizes the MSE (i.e.
tr(Pk)) has the form (also see (Gelb, 1974)):

Kk = P�kH
T (HP�kH

T +Q)�1: (6)

Note that Q is the measurement error matrix. If the
error is signi�cant, the gain Kk weighs lightly whereas
if the error is not, the gain Kk weighs heavily. Thus the
e�ect of new measurements on the state depends on the
reliability of the data.
With all the above terms, we can describe the Kalman

�lter algorithm to reconstruct the state from the given
�ring rate:
I. Discrete Kalman �lter time update equations:

At each time tk, we obtain the a priori estimate from
the previous time tk�1, then compute its error covariance
matrix:

x̂�k = Ax̂k�1; (7)

P�k = APk�1A
T +W: (8)

II. Measurement update equations:

Using the estimate x̂�k and �ring rate zk, we update
the estimate using equation (5), and compute its error
covariance matrix. The process is described by:

Kk = P�kH
T (HP�kH

T +Q)�1; (9)

x̂k = x̂�k +Kk(zk �Hx̂�k ); (10)

Pk = (I�KkH)P�k : (11)

At each time instant, the Kalman �lter iterates be-
tween the above two steps and provides an \on-line" es-
timate of hand kinematics every 50ms. Note that Equa-
tion (8), (9) and (11) are independent of the test data.
Thus we can compute them \o�-line" before the \on-
line" estimation. Actually, this is a very nice property

of Kalman �lter which enables us to a priori estimate the
performance of the reconstruction. Let P = limk!1Pk,
then tr(P) estimates the mean-squared error of the re-
construction.

3. Experimental Results

The experiments below use 182 pre-recorded trials
(Paninski et al., 2001). Cross-validation is used in test-
ing both encoding and decoding. The 182 trials are di-
vided into seven sets of 26 trials. For each of the seven
sets, we train the model (A, H,W, Q) with the remain-
ing six data sets and test the reconstruction performance
for the 26 trials in the excluded set. In this way we test
the model on all 182 trials such that the test data is
always excluded from the training data.

In each testing trial, we let the predicted initial con-
dition equal the real initial condition and P�0 = 0. Then
the update equations in Section 2. are applied. Some
example reconstructed trajectories are shown in Figure
2. By inspection, the reconstructions suggest that the
mean �ring rates do encode information about the arm
movement and that the Kalman �lter algorithm is a re-
liable way to decode the movement.

Figure 3 shows the reconstruction of each component
of the state variable for one example trial. We notice
that the reconstruction of position and velocity is fairly
successful, but the method fails to recover acceleration.
This is discussed below.

Conventional r2 squared error is used here to illus-
trate the accuracy of the reconstruction in both x- and
y-position:

r2 =

�
1�

P
k(xk � x̂k)

2P
k(xk � �x)2

; 1�

P
k(yk � ŷk)

2P
k(yk � �y)2

�
;

where xk and yk are the true values and �x and �y are the
mean of these x and y values respectively.

In Figure 2 (e) and (f) the shapes of the reconstructed
trajectories are similar to the true trajectories but they
are spatially shifted resulting in a large r2 error. The
correlation coeÆcient provides a more appropriate mea-
sure of trajectory shape reconstruction: cc = P

k
(xk � �x)(x̂k � �̂x)pP

k
(xk � �x)2

P
k
(x̂k � �̂x)2

;

P
k
(yk � �y)(ŷk � �̂y)pP

k
(yk � �y)2

P
k
(ŷk � �̂y)2

!
:

3.1 Stability

Equation (8), (9) and (11) de�ne the evolution of the
gain matrix Kk and error matrices Pk;P

�
k . For reliable

estimates these matrices should be stable. Figure 4 il-
lustrates that they stabilize (converge) very quickly and
then remain constant.
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Figure 3: Reconstruction of each component of the system variable for one trial: true target trajectory (thin) and reconstruction

using the Kalman �lter (thick).
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Figure 2: Reconstruction on some test trials: true target

trajectory (thin) and reconstruction using the Kalman �lter

(thick).

3.2 Comparison with linear �ltering

Linear �ltering is a popular method for relating hand
position and �ring activity (Georgopoulos et al., 1986,
Serruya et al., 2002, Warland et al., 1997). Let xk be
the x-position at time tk = k�t (�t = 50ms), k =
0; � � � ;M � 1, where M is the number of time steps in a
trial. Assume xk is a linear combination of �ring rates of
all obtained neurons at time tk�N ; tk�N+1; � � � ; tk with a
constant o�set, i.e.

xk = a+
X
v

NX
j=0

rvk�jf
v
j ;

where a is the constant o�set, rvk�j is the �ring rate of
neuron v at time tk�j . The ffvj g are the �lter coeÆ-
cients.
Let x = (x0; � � � ; xM�1) is the real x-position (we can

do the same for y-position). We de�ne response matrix
R as (Warland et al., 1997)
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−K
k
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− −P
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k+1
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Figure 4: The L2 norm of the di�erence of the consecutive

matrices for Pk;P
�

k
and Kk. As k increases, the norm de-

creases exponentially (since its logarithm decreases linearly).

2
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� � � � � � � � � � � � � �
1 r1M�1 � � � r1M�N � � � rCM�1 � � � rCM�N

3
77775 :

The reconstruction x̂ is obtained as

x̂ = Rf̂ ;

where the �lter f̂ = [â; f̂10 ; � � � ; f̂
1
N�1; � � � ; f̂

C
0 ; � � � ; f̂CN�1]

T

is estimated by minimizing the square di�erence between
x̂ and x, i.e.

f̂ = argmin
f

kRf � xk = (RTR)�1RTx:

Here we take N = 10; that is we are linearly relating
hand position and neural �ring over 550ms. The linear
�lter reconstruction is shown in Figure 5. Compared
with Figure 2, we see that the Kalman �lter reconstruc-
tion is smoother and more similar to the real trajectory,
while that of linear �lter appears chaotic. In Figure 3
we see that the Kalman �lter roughly reconstructs veloc-
ity in addition to position. This suggests that velocity
is correlated with �ring and that the comparison with
linear �ltering on position alone may be unfair (though
the linear �lter uses more data at a given time instant).
Note that the linear �lter can implicitly capture in-

formation about the relationship between position and
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Figure 5: Reconstruction on the test trials using the linear

�lter: true target trajectory (thin) and reconstruction using

the linear �lter (thick).

velocity because it exploits data over multiple time in-
stants. In the experiments here however, position and
velocity are nearly conditionally independent by design
(Paninski et al., 2001). This gives an advantage to the
Kalman �lter which explicitly models velocity as part of
the system state.

In cross-validation, each trial is chosen as test data
once and only once, and the r2 error and correlation

coeÆcient of its reconstruction (by both the linear and
Kalman �lters) are calculated. While the r2 error of
the Kalman reconstruction was better than the linear
�lter reconstruction about half the time, the correlation
coeÆcient was better 91% of the time for the x-position
and 80% of the time for y-position.

While linear �ltering is extremely simple, it lacks
many of the desirable properties of the Kalman �lter.
The method requires long windows in which to collect
data. For rapid motions, this long time window will be
inappropriate yet smaller time windows lead to very in-
accurate results. Additionally, the linear �lter does not
make the system dynamics and noise models explicit. In
contrast, the Kalman �lter provides an explicit gener-
ative model, a clear probabilistic interpretation, an in-
cremental estimate of the state that improves over time,
and an estimate of the uncertainty in the state. Compu-
tationally, the Kalman �lter is simple to train and the
real-time implementation of tracking is trivial.

3.3 Analysis

The �ring rate was described above as a linear stochastic
function of position, velocity and acceleration. We a pos-
teriori consider the redundancy of the model. In Figure
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Figure 6: The maximum and mean of each column of ~H. The

position (1&2) and velocity (3&4) have much stronger e�ect

on the model than acceleration (5&6).

3, the reconstruction of position and velocity are reason-
able while acceleration is not well recovered. Heuristi-
cally, it appears that acceleration is redundant. There
are two reasons to support this. First, acceleration is a
second order di�erence of position, thus measurements
of acceleration tend to be very noisy in real data.

Second, by examining the linear coeÆcient matrix H
we can evaluate the signi�cance of acceleration in the
estimation. Recall that H encodes the relationship be-
tween the kinematics and the �ring rate. Each column
of H contains the C coeÆcients for a particular system
variable. The normalized magnitude of these coeÆcients
is related to how much each state variable contributes
to the model. Each column is normalized by the e�ec-
tive range of the state variable to create a new matrix
~H in which the absolute value of the coeÆcients are all
approximately scaled to the same range. The maximum
and mean of each column of ~H provide ad hoc measures
of the coeÆcient signi�cance and are plotted in Figure
6. By inspection of ~H it appears that the acceleration
has a weak e�ect on the model relative to position and
velocity.

We now explore the use of only position and velocity
to model the �ring rate and repeat the cross-validation
experiments above with this reduced state space. The
system state becomes xk = [x; y; vx; vy]

T
k and A, H, W,

Q are updated accordingly.

Figure 7 shows the Kalman �lter reconstruction on a
few test trials. Comparing Figure 7 with Figure 2, we
see that the simpli�ed model and the original model give
a visually similar reconstruction. This further supports
the conjecture that the acceleration is redundant.

3.4 Optimal lags

The physical relationship between neural �ring
and arm movement means there exists a positive
time lag between them (Moran and Schwartz, 1999,
Paninski et al., 2001). If an \optimal lag" can be found,
it should improve the model encoding and should
improve the accuracy of the decoding.

So far, zk is the vector of C cells' �ring rates at time
tk but positive and negative time lags may be consid-
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Figure 7: Reconstruction using just position and velocity:

true target trajectory (thin) and reconstruction using the

Kalman �lter (thick).
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Figure 8: Assuming all C = 25 cells have the uniform time

lag. This plot is the mean square error (MSE) when the lag

is 0; 1; � � � or 9 time steps.

ered instead. In this subsection, we discuss the optimal
time lag both uniformly (i.e. the same for all cells) and
non-uniformly. Di�erent lags produce di�erent data for
the zk. fPkg's are the a posteriori estimate error covari-
ances de�ned in equation (4). We exploit this Kalman
framework to �nd the optimal lag; that is, the one that
results in the lowest estimate error. Since fPkg con-
verges very fast, the optimal lag is obtained when the
trace of matrix Pk (for k large enough) is smallest over
all possible lags.

Uniform time lag: For each j 2 f0; 1; 2; � � � ; 9g, de-
�ne zk as the vector of C cells' �ring rates at time tk�j ,
then �t the model with training data. fPkg are com-
puted \o�-line". We plot the mean-square error tr(Pk)
for a large enough k in Figure 8, where j = 0; 1; � � � ; 9.

Figure 8 shows that the smallest estimation error is
achieved when the neural cells have lag for one or two
time steps (50-100ms). For longer lags, the error in-
creases monotonically with the lag time.

Non-uniform time lag: More practically, the neu-
ral cells may not have uniform spiking activity during
the experiment. Some of them act very fast, whereas

others slowly. From the analysis of the uniform lag, it
seems that the optimal time lag of the cells should not
be too long. To simplify our data analysis, we assume
the optimal lag for all cells is less than 4 time steps (200
ms).
Due to the more subtle situation here, we reorganize

the notation: let li 2 f0; 1; 2; 3; 4g be the lag steps of ith
cell, i = 1; 2; � � � ; C; The kth �ring rate vector is zk =
(z1;k; z2;k; � � � ; zC;k), in which each zi;k is the �ring rate
of cell i at time step k � li. For each di�erent choice of
flig in f0,1,2,3,4g, train the Kalman �lter. The Kalman
�ltering algorithm generates the error covariance matrix
Pk (for k large enough). Letting msefli;i=1;2;���;Cg =
tr(Pk), our goal is to �nd the optimal flig, i.e.

flig = argminfli;i=1;2;���;Cgmsefli;i=1;2;���;Cg

A brute force search of all possibilities would require
computing the Kalman �lter result for 525 possibilities
for our data set. This is impractical so, instead, we as-
sume that the correlation of the �ring rate among the
cells is weak, and we can obtain the suboptimal time lag
from the following greedy algorithm:

1. Choose the initial lag li in f0,1,2,3,4g, i = 1; 2; � � � ; C.

2. For i=1 to C

Fix flj ; j 6= ig. Update li by the equation:

li = argminli2f0;1;2;3;4gmsefli;i=1;2;���;Cg:

3. Return fli; i = 1; 2; � � � ; Cg.

This algorithm requires that the Kalman �ltering al-
gorithm be applied to the training data only 5�25 = 125
times. We tried two initial conditions: one with a uni-
form lag of 50ms (1 time step), the other with random
lag. The greedy result is shown in Figure 9. The di�er-
ent initials conditions result in similar lags, which con-
�rms the assumption that the �ring of all cells have weak
correlation. Moreover, these two suboptimal time lag so-
lutions have the mean-square error 9:88 and 9:88, which
is much less than the that of uniform time lag in Fig-
ure 8 (where the minimum is 10:28 at a lag of 50ms).
This suggests that a non-uniform time lag is superior to
a uniform one.

4. Conclusions

In summary, we described the discrete linear Kalman
�lter and applied it to model hand movement and neu-
ral spiking activity. It is a rigorous probabilistic ap-
proach with a well understood theory. Experimental re-
sults show its superiority to linear �ltering. Moreover,
the recursive estimation in 50ms non-overlapping time
bins provides a computationally eÆcient �ltering algo-
rithm. In addition to decoding, the approach is useful for
analysis. For example, examination of the measurement
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Figure 9: (a) Initial lag: uniform (dashed line with star) and

random (solid line with circle); (b)Optimal lag: from uniform

initial (dashed line with star) and random initial (solid line

with circle).

matrix gives heuristic insight into the coding problem
(acceleration appears to not be encoded). Additionally,
the framework allows the analysis of optimal lag times
which result in improved state estimates. By making its
assumptions explicit and by providing an estimate of un-
certainty, the Kalman �lter o�ers signi�cant advantages
over previous methods.

However, there are some limitations in our model and
further work is needed. The Gaussian assumption for
the measurement noise might not be appropriate and
we are exploring a Poisson model of the neural �ring
(cf. (Brown et al., 1998)). The linear dynamic model is
a strong assumption for the relationship between move-
ment and �ring rate; this might be relaxed with a non-
linear (extended) Kalman �lter. Additionally, previous
work has suggested that a representation of velocity in
terms of direction and speed may be more appropriate
than x and y velocity. This results, however, in a non-
linear state update equation.

Finally, our current work is exploring the real-time
implementation of this method for neural control of 2D
cursor movement and further comparisons with popu-
lation vector methods (Moran and Schwartz, 1999) and
particle �ltering techniques (Gao et al., 2002).
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