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Chapter 1

Introduction and Framework

The goal of human motion tracking, in as few words as possible, is to know where

someone is. Specifically, we want to know where someone is in three dimensions

given a series of video sequences from multiple cameras. Commercial motion tracking

systems usually employ various optical or magnetic markers, and thus are solving

a less demanding subproblem: instead of tracking human beings, they’re tracking

bright points and inferring the human being. We are attempting to track human

motion with minimal assumptions about clothing or image backgrounds.

1.1 The Problem of Human Motion Estimation

Tracking with minimal assumptions is a demanding task. In Figure 1.1, we see an

illustration of many prominent difficulties.

• Poor image quality: Grainy images result in noisy measurements, and motion

blur obscures limb edges.

• Self-Occlusion: Even when a subject is in plain view, limbs are often obscured

by other parts of the body. By consequence, any effective tracking system must

be robust to the momentary disappearance and reappearance of limbs.

• Inaccurate body model: At a certain level of detail, any model of the human

body will be inaccurate. People come in varying proportions, and a good model

must be robust to wide variation in human appearance.

1
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Figure 1.1: Human motion tracking is a demanding task.

• Loose clothing: Even with an accurate body model, loose clothing ambiguates

limb location and muddles appearance.

• Limb-like structures: Without constraints on scene background characteris-

tics for a capture sequence, it is easy to misidentify miscellaneous scene elements

as subject substructure.

• Bad lighting: Excessively dim or excessively bright lighting conditions make

feature detection more challenging.

An effective tracking system must model a great deal of uncertainty. In this work

we present a system designed to track humans using video sequences from multiple

cameras. We frame the problem as a Bayesian inference task (Section 1.4) and use

a particle set (Section 1.5) to model the rather ornery distribution of potential body

configurations given our input video sequences. First, however, we will discuss the

body and camera models at the heart of our tracking system.

1.2 The Body Model

Limbs in the body are represented as tapered cylinders, scaled independently

along each basis vector. The hands and feet are not included in the body model
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Figure 1.2: The body model: The body model as seen from four viewing angles in
the visualizer.

Figure 1.3: Parameterizing the body: φ describes the rotational and translational
quantities used to describe a configuration of tapered cylinders which, in turn, serves
to model the body of the subject.

used throughout this work. The skeleton is arranged hierarchically, and each joint

is parameterized by a number of Euler angle rotations. (The specifics of the pa-

rameterization can be seen in Table 1.1) This kinematic model is prone to infamous

singularities,[11] and tracking results would benefit from a switch to a well-behaved

parameterization. Quaternions, which effectively eliminate the kinematic singulari-

ties, are one possibility; the twists and exponential maps proposed by Bregler and

Malik[1] are another.

In addition to the dynamic rotational parameters, each limb may be translated

some static distance from its parent joint. This translational offset is useful when

modeling limbs that are connected schematically but separated from one another in

space (such as an arm and the torso, or the head and the torso).
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Joint # prms Joint # prms Joint # prms

World Position 3 R. Shoulder 1 L. Shoulder 1
World Rotation 3 R. Elbow 1 L. Elbow 1

R. Hip 1 L. Hip 1 R. Knee 1
L. Knee 1 Neck 2

Table 1.1: Specific body model parameterization: The 16-dimensional state
space is broken into 6 global translation and rotation parameters and 10 intrinsic
model parameters. Because the subject is walking in the tracking sequence, we need
not model the full range of motion at the hip or shoulder.

1.3 The Camera Model

In the field of synthetic computer graphics, a linear camera model is typically

sufficient for generated imagery. Specifically, a line in space will typically project to a

line in the film plane. However, even special-purpose lenses designed for use in motion

capture applications have significant defects, especially in the corners, and the linear

model is no longer adequate. Our system allows a camera model to exist in multiple

“levels of detail.” All tracking calculations are performed with a procedural non-

linear camera projection, user-level camera actions1 are performed by a slightly less

complicated model, and certain functions — silhouette edge determination, screen

projections of three-dimensional models, et cetera — are the realm of an even simpler

camera interface. This allows for the easy incorporation of new camera models when

necessary, and keeps response times quick for the interactive visualizer.

We used the Tsai camera model[17] for all camera calculations involved with

tracking and two-dimensional visualization. Unlike a tradition linear camera model,

the Tsai model accounts for lens distortion and common defects in charge-coupled

device manufacturing. The actual center of projection is often not at the center of

the CCD array, and without a robust camera model, tracking in three dimensions —

especially with multiple cameras — would be prohibitively difficult.

1Only the three-dimensional visualizer allows for viewer motion
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1.4 Bayesian Inference

Given a series of images ~It = {I1, I2, · · · , It}, we want to determine the model

parameterization φt at time t. We would like to sample from the distribution p(φt|~It),

which is known as the posterior distribution.

We would like to reformulate p(φt|~It) to incorporate the temporal prior distribution

p(φt|φt−1) and an image likelihood p(It|φt). We make a first-order Markov assumption

and arrive at the following:

p(φt|~It) =

∫

p(φt, φt−1|It, ~It−1) dφt−1

Bayes’ rule, in general, states that

p(A|B) =
p(B|A)p(A)

p(B)

We apply Bayes’ rule to the integrand, yielding

p(φt, φt−1|It, ~It−1) =
p(It, ~It−1|φt, φt−1)p(φt, φt−1)

p(It, ~It−1)

We observe the appearance of the temporal prior p(φt|φt−1). We transform the

above and apply Bayes’ rule to p(~It−1|φt−1), eventually yielding

p(φt|~It) = κp(It|φt)

∫

p(φt|φt−1)p(φt−1|~It−1)dφt−1

A complete proof is given in Sidenbladh[14]. Many of the terms in the above

relation have individual significance.

• p(φt|~It) is the posterior distribution. In words, the posterior represents the

probability of model configurations given the input image sequence ~It.

• p(It|φt) is the likelihood distribution. We carefully examine the likelihood term

later in this document. Essentially, given a model parameterization φt, the

likelihood specifies the probability that one would see the image It.

• p(φt|φt−1) is the temporal prior distribution. The prior distribution “predicts”

a subsequent model configuration φt conditioned on a previous model config-

uration φt−1. The prior distribution used in our implementation is basic, and
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there is much room for improvement here.2

• p(φt−1|~It−1) is the posterior at time t− 1. This expands recursively until t = 0,

at which point the model configuration is a known quantity.

1.5 Particle Filtering

We want to model the posterior, p(φt|~It). We note that, in the relation above, the

posterior for time t is dependent on the posterior for t − 1. The recursive definition

stops at time t0, as the initial configuration is given to us. We model the posterior

distribution as a particle set[6], and run Condensation[8], beginning at time t0.

Given a set of k particles, we associate a parameterization φst with the sth particle

at time t. We also store a weight at each particle which indicates its importance in

the larger distribution. These weights are normalized such that the weights of all

particles sum to 1.

For each time step t, we perform the following operations:

1. Take k samples
{

φ1
t−1, · · · , φ

k
t−1

}

from the posterior distribution at time t− 1.

(To sample from the particle set, we pick a random number between 0 and

1, then find the particle whose weight occupies that space in the cumulative

particle weight distribution)

2. Propagate each particle through the prior distribution to generate k particles
{

φ1
t , · · · , φ

k
t

}

.

3. Propagate these k particles through the likelihood p(It|φt).

4. Assign a non-normalized weight to each particle based upon its image likelihood

and the probability of the prior propagation.

5. Normalize all weights and repeat this process for time t+ 1.

This is the essence of Isard and Blake’s Condensation algorithm, cited above.

2Sidenbladh, Black, and Fleet present a more intelligent prior distribution in their ECCV2000
paper[16]
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Figure 1.4: The advantages of multiple cameras: With multiple cameras, we are
more likely to find a good view of each limb in a body parameterization.

1.6 Tracking with Multiple Cameras

In monocular tracking, depth ambiguities are among the most prominent dif-

ficulties. With only one camera, any motion perpendicular to the film plane will

be difficult to detect. Since we are given multiple calibrated cameras, many depth

ambiguities can be resolved.[9][5] However, in some cases, only one camera has a non-

occluded view of a limb, and in such circumstances we are reduced to the monocular

case.

We have established that multiple cameras increase the likelihood of observing

limb motion in the film plane. Additionally, our likelihood determination will be

more accurate when we view limbs from an amenable angle. When tracking, we

boost the relative importance of limbs which are most visible from any given camera.

This topic is addressed in more detail in Section 3.2.1.



Chapter 2

Taking Image Measurements

The Bayesian approach to human motion estimation places a heavy burden upon

the likelihood term, p(It|φt). Without a robust likelihood model, tracking will break

down quickly; when images correlate with a candidate body parameterization (which

is stored in a particle), it is essential that the likelihood model reward such a param-

eterization. Moreover, the likelihood model must penalize a body parameterization

that is implausible with respect to an image of the subject at the appropriate moment.

The posterior distribution — at least from the standpoint of particle filtering —

should exhibit the following characteristics:

• Local maxima should appear for parameterizations which project a maximal

number of limbs onto limb-like structures in the image

• The likelihood for the entire model should not penalize too harshly for a single

unlikely limb. The limb can be occluded by an object extrinsic to the model

itself (like a tree or a desk), or turned away from the camera.

• If most but not all of the model is aligned properly, the particle should not be

given an excessively low likelihood; it should just be measurably less likely than

a better parameterization with greater image correlation.

• As parameterizations gradually vary from the ideal to utter misalignment, the

associated likelihoods should gradually tend towards a minimum. If the tran-

sition is too sudden, the particle filter will not naturally converge towards the

ideal parameterizations and will instead have to find such parameterizations

8
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through stochastic good fortune. In a search space as large as the human body,

this is not practical.

2.1 Measurement Functions

Any likelihood model clearly must consider the image It in order to estimate

p(It|φt). Our likelihood model creates dynamic mappings based upon simple scalar

measurements extracted from an image or images. The likelihood model can be

broken down into two distinct steps:

1. Use an image and a model configuration to make a measurement.

2. Use such a measurement, conditioned on past measurements, to determine a

non-normalized log likelihood.

We factor out the second step by making certain assumptions about the measure-

ments attained in the first step. Namely, we assume the following:

• All measurements are real numbers between 0 and 1.

• A larger measurement value indicates a greater likelihood for the given sample.

We reformulate the likelihood p(It|φt) in terms of a measurement function m(It)

as pm(m(It, φt)|~mk). We define the vector ~mk as the last k measurements from the

measurement function m. We define ~m = ~m∞ In most respects these measurements

behave like non-normalized likelihoods, but it is more productive to think of them as

energy values. In Section 3.1 we discuss the process of likelihood determination given

a set of outputs from a measurement function. First, we must expand our discussion

of the measurement functions themselves.

2.1.1 The Appropriate Scale of a Measurement Function

In order to determine the final probability p(It|φt), we attempt to find independent

subsets of It — call them It1, It2, · · · , Itk — and compute

p(It|φt) = p(It1 ∪ It2 ∪ · · · ∪ Itk|φt) = p(It1|φt) · p(It2|φt) · · · p(Itk|φt) .
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In Sidenbladh[14], the “independent” likelihood terms each consider only a pixel in

the original It; however, for most measurement criteria, the likelihoods of neighboring

pixels are not independent. When measuring oriented edge detection, for instance, a

strong response from one pixel on the edge of a proposed limb location is certainly

dependent upon the edge likelihoods of other pixels incident to the proposed limb

silhouette. Consequently, merely taking the product of the per-pixel probabilities is

not sufficient.

In fact, it is more correct to assume the opposite: namely, that all the samples

are completely dependent. In this case, we must take the kth root of the composite

formulation of p above:

p(It|φt) = p(It1 ∪ It2 ∪ · · · ∪ Itk|φt) = (p(It1|φt) · p(It2|φt) · · · p(Itk|φt))
1
k

This is a better approximation than our first attempt, but ultimately it also is

theoretically incorrect and ineffective in practice; a measurement at one place on

a projected limb does not necessarily predict all other measurements for that limb

projection. So, if we are to break It into pixel-level subsets, we can neither assume

complete independence nor complete dependence. The exact probabilistic interde-

pendence between the individual likelihoods p(It1|φt), · · · , p(Itk|φt) cannot be feasibly

computed.

We step around this problem by recording our discrete measurements at the scale

of individual limbs, and not at the level of individual pixels. This, too, is not the-

oretically ideal, as individual limb likelihoods are also neither entirely independent

nor entirely dependent; however, this formulation is an improvement. The number of

probabilistic approximations made is significantly smaller, and as such this approach

may have greater theoretical viability. The prohibitively large number of incorrect

dependency estimations while evaluating likelihoods per-pixel results in an eccentric

posterior distribution for the particle set. Sections 3.2.3 and 4.2 address this topic in

greater detail.

One could potentially take measurements at the scale of a single particle; in this

case, we would be examining only the trivial subset of It, so there would be no

presumption of dependence or independence. However, it is impractical to model

this mapping while only considering the low-dimensional output of a measurement

function (which in turn considers the high-dimensional space of images and body
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configurations). This approach would require measurement criteria far more advanced

and stateful than those presented in this document.

2.1.2 Image Pyramids

All input frames are treated as “image pyramids.” Instead of merely storing

the given raster data, the images build self-representations at various scales. Each

successive scale has half the linear resolution of the previous scale and represents

a Gaussian blur of its lower neighbor in the pyramid. Many measurement functions

generate more meaningful results at higher pyramid levels, as the successively “lower”

low-pass filtering helps to compensate for insufficiencies in the body model or, to a

lesser extent, the camera projection. (See Figure 2.1)

2.1.3 Occlusions

Many limbs in any given body configuration will be either partially or entirely

occluded by other limbs or objects extrinsic to the model (tables, chairs, trees, et

cetera). It is difficult to determine the appropriate “measurement” for such limbs; an

occluded object has an undefined appearance. The model as a whole must still have

a likelihood, so we cannot simply discard such cases. Assigning a measurement of 0

(or any other constant) would also be incorrect, as a hidden limb is not necessarily in

the wrong place — such an action would favor limbs that are visible over limbs that

are not, though the visible versions may not line up well with image features.

Such limbs and points should be treated as if they were neither particularly likely

nor unlikely, but completely average and unremarkable; this way, a limb will not

be rewarded or penalized if partially or fully occluded. We elaborate on this in

Section 3.1.4; to summarize, we take the median value of recent outputs for the given

measurement function over the given image set.
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(a) (b)

(c) (d)

Figure 2.1: Images at Multiple Scales: In (a) we see the original source image at
the lowest “pyramid level”. In (b), (c), and (d), we see successively higher pyramid
levels. In this work, we never consider pyramid levels coarser than that shown in (d).
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2.2 Specific Measurement Criteria

Now that we have established the role of the measurement function in the like-

lihood formulation, we will examine several measurement criteria in depth. As dis-

cussed in Section 2.1, the likelihood term p(It|φt) can be rewritten as p(m(It, φt)|~mk),

where m(It, φt) is a measurement function. (The likelihood p(m|~mk) is addressed

more carefully in Section 3) In our case, m must be a mapping to a scalar from

the space of parameterizations φ and images I. It would be reasonable to define

the codomain of m as a low-dimensional vector space (as mentioned in the previous

subsection), though for the sake of simplicity we do not do so.

As mentioned previously, all measurements are taken per-limb. Each limb is

parameterized by some [potentially trivial] subset of φt and a number of static pa-

rameters. These static parameters — length, non-uniform scaling factors, radii, fixed

translational offsets, et cetera — define the general appearance of the limb, and the

dynamic parameters φt ordain its position and orientation in the world. Each image

It is associated with a specific camera, and the respective camera parameters are used

to project the limb into the image plane. Because the limbs are modeled as tapered

cylinders, the silhouette along the body of the limb appears as a pair of projected

line segments.

Each measurement function is given both the image and the limb location in image

space. Information about occlusions is also included in the limb description, as many

points on the limb may not be visible due to self-occlusions in the model. Some

measurement functions consider only points along the side silhouettes of the limb,

and others consider a larger collection of points on the interior of the limb projection.

2.2.1 Oriented Edge Detection

Given the 2-dimensional projected shape of a limb, we can look for edges in the

image corresponding to the lateral edges of the limb in question. This is perhaps

the most obvious measurement, and one of the first utilized in model-based human

motion tracking.[12] We perform this task at multiple pyramid levels for a number of

samples distributed evenly along the limb projection silhouette.

In particular, we employ a “steered” edge detector. This routine examines the
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Figure 2.2: Trial measurement locations: The positions shown here correspond
to the domain of the measurement function plots. An ideal measurement function
would show a peak near frame 4. (This corresponds to domain value 240) For an
example of such a plot, see Figure 2.3
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Figure 2.3: Oriented edge measurement results: Both plots correspond to ori-
ented edge measurement values along the path illustrated in Figure 2.2. The plot on
the left demonstrates the variation in response strength and character across pyramid
scales. The plot on the right combines measurements from all pyramid levels. The
peak at the center is the actual limb location in the image, and the false peaks at
either side are the result of a “half-detection” when the right edge of the projected
limb lay on the left edge of the actual limb (and vice versa)

gradient of the image with respect to an edge angle θ. Specifically, for a pyramid

level σ and the subsequent image Iσ, we designate its first partial derivatives of image

brightness as Iσx and I
σ
y . (See Figure 2.4) Given an orientation θ, we can determine

the steered edge measurement g at a position (x, y) in the image using the following

formula:1

g(x, y, θ, Iσ) = sin(θ)Iσx (x, y)− cos(θ)I
σ
y (x, y)

We do not take a fixed number of samples per limb, but take a fixed number of

samples per unit length along the lateral silhouette edges of the limb. (See Figure

2.5) We take the absolute value of each computed sub-measurement g along a limb,

then divide by the number of samples taken.

In general, the edge detection is more effective at the higher pyramid levels. Be-

cause adjacent pixels are not as similar near the top of image pyramid, edge responses

are larger. Additionally, limb representations are rarely bordered by perfectly straight

1When using images with multiple color channels, we apply g(x, y, Iσ) to all channels and choose
the channel component with the maximal absolute value
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Oriented edge detection: Images (a) through (f) demonstrate oriented
edge measurements at the lowest pyramid level given an identical source image and a
changing parameter θ. (The pixel intensities are negated for printability) Specifically,
θ =

{

0, π
3
, 2π

3
, π, 4π

3
, 5π

3

}

in the images (a) through (f) respectively.
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(a) (b)

Figure 2.5: The constancy of measurement frequency in one-dimensional
image space: Both (a) and (b) show the actual pixel locations of the individual
oriented edge sub-measurements for a limb parameterized further and closer to the
camera respectively. The number of samples taken in the image per unit distance is
constant.

lines in the actual image, and thus the coarser image scales better model the uncer-

tainty of appearance in the models.

The final edge measurement, for a limb, is a function of the limb projection L, the

image I, and its first partial derivatives of image brightness. κ represents the max-

imum possible value of r, and division by cκ guarantees that the final measurement

value lies between 0 and 1. We define the measurement function as follows:

Measure-Edge(L, θ, I)

1 θ ← The angle of the limb silhouette edge

2 a← 0

3 c← 0

4 for σ ← {1, 2, 3, 4}

5 do for Sample points (x, y) on lateral silhouette of L

6 do if (x, y) is not occluded

7 then c← c+ 1

8 a← a+ g(x, y, Iσ)

9 return a
cκ
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Note that c will equal zero if (and only if) all sampled points are occluded. In this

case, the median measurement is assigned to this limb. (More detail can be found in

Section 3.1.4)

Ignoring any occluded points, this algorithm reduces a summation over n positions

(x, y) ∈ silhouette(L):

Measure-Edge(L, θ, I) ≈
1

4nκ

4
∑

σ=1

∑

(x,y)∈sil(L)

sin(θ)Iσx (x, y)− cos(θ)I
σ
y (x, y)
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Figure 2.6: Oriented ridge measurement results: The plot corresponds to ori-
ented ridge measurement values gathered along the path illustrated in Figure 2.2.
Because the oriented ridge measurement is scale-specific, there are not separate plots
for each pyramid level. As seen in the oriented edge measurement plot, there are
notable false positives on either side of the actual leg in the image.

2.2.2 Oriented Ridge Detection

Where edge detection examines the first partial derivatives of an image, ridge de-

tection examines the second partial derivatives. “Ridges” are bumps in the brightness

function of the image. We want a way to detect such bumps of the appropriate scale

and orientation for any given limb in our image. The ridge measurement is only valid

for a single scale. There are two steps: finding the appropriate scale, then taking the

oriented second derivative.

Sidenbladh[14] determined the following formula to compute the image scale factor

s for a limb of pixel width w:

s =Max(0,−24.0 + 4.45 · w)

We then determine the appropriate 0-indexed pyramid level σ according to the fol-

lowing formula:

σ = log4(3 · s+ 1)

Now, given a pyramid level σ and thus the image Iσ, we designate its second

partial derivatives of image brightness as Iσxx, I
σ
xy, and I

σ
yy. Given an orientation θ,

we can determine the steered ridge measurement r at a position (x, y) in the image
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Figure 2.7: Oriented ridge detection: Here we see a source image with the oriented
ridge response superimposed in white. The measurement is parameterized by the left
calf. The calf responds well, as we would hope. Though it is difficult to see, there are
also strong false-positive measurements in the background at either side of the limb.

using the following formula:2

g(x, y, θ, Iσ) =
∣

∣(sin2(θ))Iσxx(x, y) + (cos
2(θ))Iσyy(x, y)− 2 sin(θ) cos(θ)I

σ
xy

∣

∣

In Sidenbladh[14] and Lindeberg[10], the ridge measurement includes an analogous

subtractive term oriented at θ+π/2. In theory, this term prevents the ridge response

from misidentifying blobs as ridges in the image. Unfortunately, many legitimate

ridges are also weakened or eliminated in the process, and as such we do not employ

the subtractive term.

As with background subtraction and template matching (which are discussed in

subsequent sections), we take a fixed number of samples per unit area in the image.

2When using images with multiple color channels, we apply g(x, y, Iσ) to all channels and choose
the channel component with the maximal absolute value
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(See Figure 2.9) Thus, limbs which appear larger in projection will be sampled more

carefully. κ represents the maximum possible value of r; dividing through by cκ

ensures that the final measurement value lies between 0 and 1. So, given a limb L

of width w, an image I, and its second partial derivatives of image brightness, we

perform the ridge measurement as follows:

Measure-Ridge(L, θ, I)

1 θ ← The angle of the limb silhouette edge

2 a← 0

3 c← 0

4 σ ← log4 (3 · (Max(0,−24 + 4.45 · w)))

5 for Sample points (x, y) uniformly across L

6 do if (x, y) is not occluded

7 then c← c+ 1

8 a← a+ r(x, y, Iσ)

9 return a
cκ

As with the oriented edge measurement function, the median measurement is as-

signed if c = 0 at procedure termination. This algorithm also reduces to a summation

over n positions (x, y) ∈ silhouette(L) when we ignore occlusions:

Measure-Ridge(L, θ, I) ≈
1

4nκ

∑

(x,y)∈sil(L)

g(x, y, θ, Iσ)

where σ is defined as above.
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2.2.3 Background Subtraction

For stationary cameras, we can use the static elements in a scene to help us de-

termine what is foreground and what is background in a given image. Since the

visible portions of the model will necessarily be in the foreground, background sub-

traction is an excellent way to prune the parameter space. Results improve with the

incorporation of background subtraction.[3]

For our test data, background images — images where the subject is not present —

were provided. Such images could be generated automatically given enough footage

of a scene; for each pixel, one could compute the median intensity value over time

and consider this to be the background. In either case, we can test whether any

pixel in the source image differs significantly from the corresponding pixel in the

background image. The background subtraction criterion presumes that the areas of

difference between the source and background images correspond with some portion

of the model projection. Given that presumption, a background image can easily rule

out many model configurations. (Figure 2.8 shows the results of per-pixel background

subtraction)

The measurement process is straightforward. A series of locations are chosen

uniformly3 across the limb projection. At each sample location, the brightness value

of the image at that location is compared to the respective brightness value of the

background. If these values lie within an experimentally-discovered threshold of each

other, then an accumulation value is incremented by a value i inversely proportional

to the number of samples taken at non-occluded positions. (i is, specifically, the

reciprocal of the number of samples taken. This guarantees that the measurement

function will not generate numbers larger than 1, as per the constraints outlined

above)

Where the oriented edge measurement function only examined pixels incident to

the projected silhouette edges of the test limb, the background subtraction mea-

surement function examines pixels inside the [convex] silhouette. In fact, the edge

pixels are of the least meaning, as this is where the tapered-cylindrical limb model is

weakest.

As with the oriented ridge criterion, the background subtraction measurement

3The process is outlined in greater detail in Section 2.2.4



23

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.8: Background subtraction per camera: Images (a), (b), and (c) show
the first of many input images from each of the three cameras used in this dataset.
Images (d), (e), and (f) show the [provided] background images from these three
cameras, and (g), (h), and (i) represent the negated difference between (a)/(b)/(c)
and (d)/(e)/(f) respectively. Note that portions of the background-subtracted images
— like the right calf in (i) — appear nearly as white as the background proper.
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(a) (b) (c)

Figure 2.9: The constancy of measurement frequency in two-dimensional
image space: Images (a), (b), and (c) show the actual pixel locations of the individ-
ual background subtraction sub-measurements for a limb parameterized further and
then increasingly closer to the camera. The number of samples taken in the image
per unit area is constant.

function takes a number of samples proportional to the projected area of the given

limb L. (See Figure 2.9) In other words, limbs with smaller projection areas using

a given camera will have fewer terms in their measurement summation, and thus

have a smaller computational footprint. Likewise, larger projection areas earn more

computational resources and thus a more accurate estimation given the greater input

fidelity.

Specifically, given a limb L, an image I, a background image B, and a threshold

ν, the background subtraction measurement is defined as follows:

Measure-BGSubtr(L, I, B)

1 a← 0

2 c← 0

3 for σ ← {1, 2, 3, 4}

4 do for Measured points (x, y) on body of L

5 do if (x, y) is not occluded

6 then c← c+ 1

7 if |Iσ(x, y)−Bσ(x, y)| > ν

8 then a← a+ 1

9 return a
c
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Figure 2.10: Background subtraction measurement results: Both plots corre-
spond to background subtraction measurement values along the path illustrated in
Figure 2.2. The plot on the left demonstrates the variation in response strength and
character across pyramid scales. The noisy results at the lowest pyramid level are
due to threshold contention. The plot on the right combines measurements from all
pyramid levels. There is a noteworthy false positive as the measurement finds the left
leg despite the incoherence of orientation.

As we have seen before, c will equal zero if (and only if) all sampled points are

occluded. In this case, the median measurement is assigned to this limb.

Small variations in the CCD responses over time add noise to the images. The

low-pass filtering that takes place in the image pyramid largely compensates for this,

so it is important to consider all pyramid levels.
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2.2.4 Template Matching

Like the background subtraction measurement function, the template matching

measurement function examines points within the limb boundary, and not on the

silhouette as in the edge and ridge measurements. Template matching is unique in

that it examines two image/limb pairs: one at the current moment in time, and one

from the first capture frame.

The template matching measurement assesses whether a given limb projection

correlates with the same limb in the first frame; this initial image of the limb acts

as a template, hence “template matching.”[2] The computation is done at multiple

scales, as small variations in shading and texture are less problematic at the higher

pyramid levels.

Specifically, given an image at time t and an image at time t0, we determine two

limb projections, Lt and Lt0 . We parameterize both 2D limb projections in terms

of scalars a and b, 0 < a, b < 1. A pair of two-dimensional basis vectors (~ut, ~vt)

and (~ut0 , ~vt0)
4 are constructed for both limbs; ~ut runs along Lt’s silhouette edge, and

~vt runs between the points a fraction a along Lt’s two silhouette edges. (~ut0 , ~vt0) are

defined similarly. We find points (xt, yt) = a ·~ut+b ·~vt and (xt0 , yt0) = a ·~ut0+b ·~vt0 . A

single component of the template matching measurement function at position (xt, yt)

within Lt and (xt0 , yt0) within Lt0 can be expressed as follows:

b(xt, yt, xt0 , yt0 , It, It0) = 1−
|It(xt, yt)− It0(xt0 , yt0)|

κ

The scaling factor κ is defined to be twice the maximal possible pixel intensity

value; dividing by cκ (below) guarantees that the final measurement lies between 0

and 1. The “1−” preserves the property of increasing likelihood: we want to reward

limb configurations that show the least change between It0(xt0 , yt0) and It(xt, yt);

hence, a matching template.

For images It and It0 , limbs Lt and Lt0 , and the κ specified above, the complete

template matching measurement function is defined as follows:

Measure-Template-Matching(Lt, Lt0 , It, It0)

1 a← 0

4In actuality, ~ut and ~vt are paired with an origin point Pt to define the projected limb coordinate
system. For the sake of notational clarity, Pt will be elided in this discussion.
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Figure 2.11: Template matching measurement results: Both plots correspond to
template matching measurement values along the path illustrated in Figure 2.2. The
t0 frame is shown in Figure 2.2, and Lt0 is positioned over the right calf of the subject.
The t frame (the second frame) appears many times in Chapter 4. The plot on the
left demonstrates the variation in response strength and character across pyramid
scales. The plot on the right combines measurements from all pyramid levels. As
with the background subtraction measurement function, there is a noteworthy false
positive as the measurement finds the left leg despite the incoherence of orientation.

2 c← 0

3 for σ ← {1, 2, 3, 4}

4 do for Measured points (xt, yt) and (xt0 , yt0) on body of Lt and Lt0

5 do if (xt, yt) and (xt0 , yt0) are not occluded

6 then c← c+ 1

7 a← a+ b(xt, yt, xt0 , yt0 , I
σ
t , I

σ
t0
)

8 return a
c

Again, if c = 0 at procedure termination, the median measurement value is used

instead. Ignoring occlusions, for n position pairs in It and It0 , this measurement can

be approximated by a simpler summation.

Measure-Template-Matching(Lt, Lt0 , It, It0) ≈

1

4n

4
∑

σ=1

∑

(xt,yt,xt0
,yt0

)∈Lt,Lt0

b
(

xt, yt, xt0 , yt0 , I
σ
t , I

σ
t0

)
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2.3 Measurement Tradeoffs

All of the measurement criteria described thus far have relative strengths and

weaknesses. The oriented edge and ridge measurement functions do not easily distin-

guish between limbs and other objects with straight sides, and the other measurement

functions do not check limb orientation. In general, we want implausible model con-

figurations to be cleanly and routinely rejected by at least one measurement model.
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(a) (b) (c) (d)

(e) (f) (g)

(i) (j)

Figure 2.12: Countertop misidentification: The plot domain is illustrated by the
limb positions in images (a) through (h). The oriented edge measurement function
generated (i), and the background subtraction measurement function generated (j).
There are prominent peaks in (i) due to the strong edge on the countertop. The
background subtraction measurement function recognizes that these image areas are
nearly identical to the background, and thus does not make a similar mistake. This
illustrates the deductive capacity of background subtraction.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.13: Orientation misidentification: The plot domain is illustrated by the
limb positions in images (a) through (f). The oriented ridge measurement function
generated (g), and the background subtraction measurement function generated (h).
Because the spinning limb is positioned — at least partially — within the model
torso, there are many prominent peaks in (h). However, since the limb is oriented
incorrectly, the ridge measurement function does not respond significantly.



Chapter 3

Dynamic Likelihood Determination

In the previous section, we examined the notion of a generic measurement function

based on some heuristic criterion. We can think of these measurements as energy

values, but not as probabilities.1 In order to eventually measure the relative likelihood

of a given particle, we must devise a method to map from the raw measurements to

probabilities. This was discussed at the beginning of Chapter 2; specifically, we want

to define p(m(It, φt)|~mk) for each distinct measurement function m.

In Sidenbladh[15], the likelihood was trained using hand-marked limb positions in

a variety of test images. This technique requires significant user intervention, and in

the attempt to model all images with one distribution, input sequences with unusual

statistical properties (very bright, very dark, et cetera) will often yield inaccurate

likelihood information. Partly for these reasons, and partly due to the lack of training

data for the newly devised measurement functions, these trained likelihoods were not

used in this work. With appropriate training data and an adequately automated

marking process, the trained likelihoods would be a desirable addition to the tracking

framework.

1In fairness, they do resemble probabilities in many ways: they must take on values between 0
and 1, and the higher values are generally more probable. However, no larger presumptions are
made about the relative likelihood associated with a given measurement

31
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(a) (b)

(c) (d)

Figure 3.1: Measurement function histograms: Plots (a), (b), (c), and (d) rep-
resent the measurement function histograms for oriented edge detection, oriented
ridge detection, background subtraction, and template matching respectively. These
histograms were constructed after tracking three frames with 1000 particles.

3.1 Building a Distribution

As measurements are extracted from an image sequence, we build histograms from

the return values of each measurement function. (See Figure 3.1) The codomain of

the measurement functions — namely the range [0,1] — is broken into a number

of histogram buckets. With each measurement, the appropriate histogram bucket

counter is incremented by one. Over time, this builds an “energy distribution,” which

we must use to construct an appropriate likelihood mapping.

It is tempting to hand-craft a [potentially] intricate procedural solution to this
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problem. A complicated piecewise likelihood mapping could be devised. However, it

is certainly simpler, more efficient, and debatable more effective to build a Gaussian

mapping over the measurement codomain. In order to define the Gaussian, we must,

of course, determine the mean and variance µ and σ.

3.1.1 Finding the Mean

We remember that the “best” possible measurement for any measurement function

will be given a value of 1. We thus infer that the likelihood must be maximized for

any measurement m = 1. µ must be greater than or equal to all measurements;

otherwise, the greatest measurement will not have the greatest probability. For the

set of all measurements M = {m1,m2, · · · ,mk}, the mean µ is defined as

µ ≥Max(M)

The variance σ is less obvious. Variance determination will be discussed in Section

3.1.3.

3.1.2 False Positives and False Negatives

As demonstrated earlier, none of the measurements are perfect. With the eventual

motivation of variance determination for the measurement-specific Gaussian distri-

butions, it would be illuminating to address the topic of measurement failure.

Measurement functions return two forms of “bad data”: they may either return

a high value for a tested limb configuration that is not, in fact, projected onto the

desired limb in the image, or the measurement function may return a low value when

a tested limb configuration does, in fact, project onto or near the proper limb in

the image. As one might intuit, we denote these two failure case classes as “false

positives” and “false negatives” respectively.

Both false positives and false negatives beget undesirable tracking results. If we

use a diverse set of measurement criteria, it is unlikely that all measurement functions

will return a false positive for a bogus limb parameterization. Thus, false positives

in one measurement function will likely be “recognized” as such by at least one of

the other measurement functions. If any one measurement fails, the given particle
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can (and will) be penalized by multiplication with a low probability for the given

measurement.

That said, many of the strongest responses for some measurements lie on table

edges or improperly rotated limbs. (See Section 2.3) Thus, false positives often result

in disproportionately high likelihoods for “bad” particles. When the next set of

particles are generated, these mistakes are “propagated”2 forward at the expense of

better parameterizations. False negatives are also damaging for self-evident reasons;

if a measurement function is not able to recognize a valid limb parameterization, then

tracking suffers.

The choice of variance for our likelihood mapping will be a tradeoff between false

positives and false negatives. If our variance is too large, there will be little proba-

bilistic difference between valid and invalid parameterizations. If our variance is too

small, many good particles will be thrown away.

3.1.3 Finding the Variance

Variance determination is difficult to generalize. With the edge measurement

function, we want to discard virtually all particles with measurements below a cer-

tain threshold. However, with the background subtraction, the top half of the mea-

surement histogram is worth keeping; in that case, we need a comparatively larger

variance.

We could specify a static variance for each measurement function. This would be

an acceptable solution in many ways. However, such a scheme would be inadequate

in certain situations:

• Many measurement functions will return results at different scales for different

input image sets. For instance, edges will be less pronounced in images that are

generally darker.

• If or when tracking breaks down in a sequence, we would like the variance to

grow and the likelihood mapping to be more forgiving in an effort to sample

2The mistakes are actually made when sampling the the posterior, which is not a proper propa-
gation.
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Figure 3.2: Variance with respect to λ: The non-decreasing function (shown in
both plots) represents the cumulative plot of the measurement histogram values. The
relationship between λ and σ can be seen in the plot above. The successively smaller
Gaussian distributions correspond to λ values of 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. The
horizontal lines corresponding to each λ value intersect the cumulative plot directly
above the domain value σ measurement units from the mean µ = 1.0.
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more broadly from the posterior particle distribution. A fixed variance makes

this an impossibility.

Still, there must be some user-dependent parameter to indicate the relative size

of variances from distinct measurement likelihood mappings. In this work, we define

the variance σ such that the top (1 − λ) fraction of the measurements lie within σ

of the mean µ. Thus, if mmax is the maximal measurement and mλ is the smallest

measurement such that a fraction λ of the measurements are smaller, the variance σ

is defined such that

σ = mmax −mλ

So, for background subtraction, λ is relatively small, and for edge detection λ

is relatively large. (See Figure 3.2) The heuristic λ has a significant effect on the

eventual quality of tracking results. If set too low, the particle filter will waste

particles on unlikely configurations; if set too high, the particle distribution becomes

eccentric and tracking is consequently fickle. Using a particle filter to model the

posterior, we define an eccentric distribution such that a relatively small number

of particles hold a relatively large portion of the weight across all particles. An

eccentric posterior expresses less information about the actual posterior, and is usually

inaccurate. Finding an appropriate value for λ is an experimental process — our

results can be found in Section 4.2. As we shall see, an appropriate choice of λ

enables robust tracking through heterogenous data sets.

Adjusting to Changes in Image Statistics

The above method for variance determination is robust to certain changes in

image statistics. In many situations, images from a single sequence will become

darker, lighter, or noisier over time; in most situations, images taken from distinct

tracking sequences will have remarkably different statistics. A dynamic mapping with

a fixed variance would not be an effective method in this case; as images get darker,

for instance, one would hope that the variance for edge detection would constrict

automatically. (See Figure 3.3)
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(a) (b)

Figure 3.3: Oriented edge variance with respect to image brightness: The
domain in these plots are measurement values. The jagged plots are oriented edge
measurement histograms, and the Gaussians are likelihoods — conditioned on the
measurement histograms — for given measurement values. The plot in (a) shows the
likelihood mapping for the oriented edge measurement given our normal test sequence
as input. The plot in (b) shows the same distribution when the input images have
half of their original brightness. The mean and variance dynamically adjust to the
change in image statistics; the edges in the darker image will be less pronounced in
the measurement function, but the oriented edge likelihood will not be affected.

(a) (b)

Figure 3.4: Variance of likelihood mapping with respect to tracking fidelity:
Plot (a) shows the background subtraction measurement histogram and likelihood
Gaussian for normal tracking. In (b), we propagate through the prior 5 times before
taking the next set of measurements. This results in less accurate particle and limb
proposals. The histogram is consequently more chaotic, and the variance of the
likelihood mapping dynamically expands to compensate for the compromised tracking
efficacy.
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Adjusting to Changes in Tracking Efficacy

We would like our generated mappings to accommodate poor tracking results.

If the tracking degrades or the prior distribution p(φt|φt−1) is unable to accurately

predict body position, the measurement functions will generally return lower values.

We would like to see the likelihood mappings broaden to increase the search space in

this scenario.

To test this, we repeatedly propagate through the prior distribution for a test

particle, thereby magnifying any inaccurate predictions in the prior. After a fixed

number of samples from the prior, we take a measurement and add it to our histogram.

We find that the variance of the given measurement’s likelihood mapping increases

with respect to “normal” sampling. Thus, as tracking fidelity suffers, the mapping

adjust accordingly. (See Figure 3.4)

3.1.4 Details of the Measurement Likelihoods

To summarize, given a single measurement function m we can determine a likeli-

hood (a log likelihood, more precisely) for that measurement by evaluating a Gaussian

parameterized on past measurements and a heuristic λ. This mapping is defined with

respect to a specific measurement function, but adjusts dynamically to changing im-

age and tracking conditions.

In order to make this system efficient, we only recalculate the mean and vari-

ance periodically. The actual likelihood mappings are built upon the last k samples.

Smaller k values allow for shorter periods of adjustment to changes in image statistics,

et cetera, though the measurement histogram will not be well populated if k is too

small.

If a measured limb is entirely occluded, no measurement can be faithfully extracted

from the input image sequence. Given this case of total occlusion, we do not know if

the limb is likely or unlikely. We assume that the measurement for the given limb is

the median of all measurements taken thus far for the given measurement function.

moccluded(L) =Median({All previous measurements from m})

After assigning this measurement value, we evaluate the measurement likelihood
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mapping as per usual. In the absence of other information we must guarantee that

occluded limbs neither increase nor decrease the relative likelihood for their particle;

assigning the median measurement is the theoretically appropriate mechanism for

maintaining the relative likelihood of model configurations (i.e., particles) with and

without occluded limbs.

3.2 Building the Distribution Across All Particles

We have shown how to compute a [non-normalized] likelihood for one measure-

ment. This value is specific to a single measurement function, a single limb, a single

camera, and a single particle. However, there are multiple distinct measurement

functions, limbs, cameras, and particles. In Sidenbladh[14], log probabilities are ac-

cumulated for each particle and then normalized across the distribution afterwards.

Sidenbladh also restricted input to monocular sequences and the scale of the indi-

vidual measurements was smaller.3 We instead form a particle distribution for each

measurement, normalize those distributions, then combine to form a single cumula-

tive distribution across all particles which we then normalize one last time. After that

final normalization, we can sample from the cumulative distribution in the particle

filter. Simply adding the probabilities together is not effective due to the differences

in the Gaussian distributions for the distinct measurement likelihood mappings.

3.2.1 One Particle, One Measurement Function

We will approach this problem from the top down. We must calculate the like-

lihood — or, more specifically, the log likelihood — of each particle for each mea-

surement function. We begin by outlining the “naive approach,” and then go on to

describe heuristics that generally improve tracking results.

3Measurements in this work are taken per limb, but in Sidenbladh[14] they are taken far more
frequently; each examined point in the image had a one-to-one correspondence with an accumu-
lated log probability. This distinction is discussed more carefully in Section 2.1.1
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The Naive Approach

One could iterate over all limbs and accumulate the log likelihoods. The final log

likelihood l for an image I, the set of limbs B = {b1, b2, · · · , bk}, and measurement

function m would thus be

log (l (I, B,m)) =
k

∑

i=1

log (ρ (µ(m), σ(m)) (I, bi))

This does, in fact, work, but we can improve our results significantly by adding

two relative limb weighting heuristics.

Manual Limb Weights

Some limbs are easier to detect than others. Namely, the outermost extremities

are the easiest to spot. Additionally, if the calves, forearms, and head are in the right

position, we expect that the torso, thighs, and upper arms are also approximately

correct. Thus, we track with non-uniform limb weights. (See Figure 3.1)

We can formulate the original model likelihood, for the time being, as a product:

l (I, B,m) =
k

∏

i=1

ρ (µ(m), σ(m)) (I, bi)

We then define a set of exponents El = {el1, el2, · · · , elk} such that

1 =
k

∑

i=1

eli
k

k =
k

∑

i=1

eli

We reformulate the original model likelihood as

l (I, B,m) =
k

∏

i=1

(ρ (µ(m), σ(m)) (I, bi))
eli

And observe that the original formulation is a special case, where eli = 1 for all

1 ≤ i ≤ k. This new formulation allows the user to specify the relative importance

of various limbs. For instance, the head is crucial to successful tracking, whereas the

torso is nearly impossible to track effectively with our measurement models; thus, we

could assign a high value to ehead and a low value to etorso. In practice, this heuristic

substantially improves tracking results.
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Limb Weight

R. Thigh 0.392157
R. Calf 1.307190
L. Thigh 0.392157
L. Calf 1.307190
Torso 0.065359

R. Up. Arm 0.065359
R. Forearm 1.960784
L. Up. Arm 0.065359
L. Forearm 1.960784

Head 2.483660
Sum 10

Table 3.1: A static limb weighting heuristic: Each limb is assigned a static weight
in the body model. These weights are then normalized such that the sum across all
limbs is equal to the number of limbs in the model. The pre-normalized values were
determined experimentally.



42

Limb Weight

R. Thigh 1.055356
R. Calf 0.877345
L. Thigh 1.000584
L. Calf 0.665880
Torso 0.944177

R. Up. Arm 1.114166
R. Forearm 0.839794
L. Up. Arm 1.244135
L. Forearm 1.031666

Head 1.226896
Sum 10

Limb Weight

R. Thigh 1.294253
R. Calf 1.434852
L. Thigh 0.871124
L. Calf 0.442202
Torso 1.093947

R. Up. Arm 0.723565
R. Forearm 0.910396
L. Up. Arm 1.114277
L. Forearm 0.768695

Head 1.346688
Sum 10

Limb Weight

R. Thigh 1.756245
R. Calf 1.434011
L. Thigh 0.563740
L. Calf 0.254320
Torso 1.011449

R. Up. Arm 0.419396
R. Forearm 0.864819
L. Up. Arm 1.578187
L. Forearm 0.791437

Head 1.326396
Sum 10

Table 3.2: A view-dependent limb weighting heuristic: Each limb is assigned
an initial weight of 1 − | cos(θ)|, where θ represents the angle between the limb axis
and the vector to the camera. The weights are then normalized such that the sum of
all weights equals the number of limbs in the model.

View-Dependent Limb Weights

The manual limb weighting heuristic demonstrably enhances model likelihood de-

termination. We can augment these static weighting coefficients with dynamic infor-

mation about the camera-limb relationship. As the camera’s view vector approaches

the axis vector of the limb in world space, the reliability of any measurement informa-

tion degrades significantly: the silhouette detection is inadequate for acute viewing

angles. The limb model’s faults are most apparent when viewed along the axis. Thus,

we can generate and normalize a second limb weighting heuristic based on the dot

product of the view vector and the limb axis. (See Figure 3.2)
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As in the static case, we define a set of exponents Ev = {ev1, ev2, · · · , evk} such

that, for limb axis vbi and camera viewing vector vc,

evi =
k

κ
(1− |vbi · vc|)

where

κ =
k

∑

i=1

(1− |vbi · vc|)

We can see that

∑

i=1

kevi =
k

κ

∑

i=1

k(1− |vbi · vc|) =
k

κ
· κ = k

and we reformulate the original model likelihood as

l (I, B,m) =
k

∏

i=1

(ρ (µ(m), σ(m)) (I, bi))
evi

If all limbs are viewed from the same incident angle, then this is identical to the

original formulation. Otherwise, limbs which are expected to have the most accurate

measurements are prioritized in the log likelihood summation. Likewise, any limb

which is barely visible due to the view angle will be play an inconsequential role in

the final likelihood. Kakadiaris[7] proposes a more advanced technique along these

lines.

Merging Heuristics

We can easily merge these two heuristics. (See Figure 3.3) We define the set of

exponents E = {e1, e2, · · · , ek} such that

ei =
k

κ
eli(1− |vbi · vc|)

where

κ =
k

∑

i=1

eli(1− |vbi · vc|)

Again,
∑

i=1

kei =
k

κ

∑

i=1

keli(1− |vbi · vc|) = k
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Limb Weight

R. Thigh 0.424211
R. Calf 1.175526
L. Thigh 0.402195
L. Calf 0.892192
Torso 0.063254

R. Up. Arm 0.074642
R. Forearm 1.687819
L. Up. Arm 0.083349
L. Forearm 2.073443

Head 3.123369
Sum 10

Limb Weight

R. Thigh 0.500963
R. Calf 1.851279
L. Thigh 0.337183
L. Calf 0.570539
Torso 0.070572

R. Up. Arm 0.046678
R. Forearm 1.761920
L. Up. Arm 0.071883
L. Forearm 1.487681

Head 3.301302
Sum 10

Limb Weight

R. Thigh 0.698835
R. Calf 1.902044
L. Thigh 0.224320
L. Calf 0.337326
Torso 0.067078

R. Up. Arm 0.027814
R. Forearm 1.720619
L. Up. Arm 0.104664
L. Forearm 1.574621

Head 3.342680
Sum 10

Table 3.3: Merged heuristics for relative limb weighting: The heuristics de-
scribed in Sections 3.2.1 and 3.2.1 are combined into a merged heuristic. The static
limb weights are multiplied by the geometric term 1− |cos(θ)|, then normalized such
that the sum of all weights equals the number of limbs in the model. This is the
heuristic used when generating the results for this paper.
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As before,

l (I, B,m) =
k

∏

i=1

(ρ (µ(m), σ(m)) (I, bi))
ei

We return to the log domain for numerical stability, yielding

log (l (I, B,m)) =
k

∑

i=1

ei · log (ρ (µ(m), σ(m)) (I, bi))

3.2.2 Merging Likelihoods Across Measurement Functions

Because there is neither a guarantee nor even the slightest possibility that the non-

normalized likelihoods sum to one — one cannot naively multiply the non-normalized

particle likelihoods across all measurement functions. Instead, we must normalize the

particle weight distributions for each measurement function individually, then merge

them afterwards.

Thus, for any measurement function m, we have an initial distribution of n non-

normalized log likelihoods (one for each particle). Before normalization, we must

transform each likelihood log(πiorig) in the measurement-specific distribution as fol-

lows:

LogMax = Max(log(π1
orig), log(π

2
orig), · · · , log(π

n
orig))

πitrans = eLogMax−log(πi
orig) For all 1 ≤ i ≤ n

πinorm =
πtrans

∑n

i=1 πtrans

For all 1 ≤ i ≤ n

We compute π1,··· ,n
norm for each measurement distribution, then multiply the distribu-

tions together per-particle4 and renormalize the cumulative distribution once again.

The cumulative particle distribution becomes more eccentric as more likelihoods

are merged in. By multiplying the likelihoods, we presume that they are independent

across measurement criteria; in many cases — namely for the edge and ridge likeli-

hoods — this is not the case. It is thus sometimes more effective to only use either

the edge or ridge measurement criteria. Plots and more discussion of eccentricity can

be found in Section 4.2.

4This “multiplication” is done in the log domain for numerical stability
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3.2.3 The Final Particle Distribution

After taking measurements, building measurement likelihood mappings, evaluat-

ing these distributions, building particle distributions, merging them, and normaliz-

ing, we have a distribution over the particles for the current moment t. Throughout

the results chapter, we often refer to the “best” or most likely particles; these are,

as one might expect, the particles with the greatest weight in the posterior distribu-

tion. With pre-trained likelihoods, one often ends up with an undesirable posterior

distribution in which nearly all of the cumulative weight is shared between a small

collection of particles within the larger particle set. (Section 4.2 contains plots of such

eccentric distributions) The dynamic measurement mappings allow us to generate a

final particle distribution with varied levels of eccentricity.



Chapter 4

Results

Having presented the theoretical framework and the details of our likelihood

model, it is now appropriate to present our tracking results. The input sequence

comes from the MoBo Database[13] at Carnegie Mellon University. There were many

cameras in the room, but only three with accurate calibration information. The initial

body configuration was specified manually. All camera input frames were synchro-

nized.

Our results are presented in several sections. In Section 4.1, a single limb is

tracked as an illustration of the particle filter. Section 4.2 demonstrates the effects

of λ on tracking results and the eccentricity of the associated particle distributions.

Section 4.3 illustrates the troubles involved with monocular tracking. Section 4.4

presents the experimental results of measurement model combinations on lower-body

tracking; both the quality of the motion estimation and the eccentricity of the particle

distributions change substantially with the incorporation of multiple measurement

models. Finally, Sections 4.5.1 and 4.5.2 show our best efforts to estimate human

motion given the techniques presented in this document.

47
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4.1 Illustrating the Particle Filter
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We try to track a single limb through this 90-frame sequence. The posterior

distribution is modeled with 150 particles, and at each frame we display the n most

probable limb configurations (as determined by our weighted particle set). In the

first image array, n = 75 (the better half of the particles), and in the second, n = 10.

The limb projection corresponding to the most likely particle is drawn in blue with

an orange border. The other limbs are drawn in colors ranging from green to orange

to red; green limbs are more likely and red limbs are less likely.

We only consider images from a single camera. The oriented edge and background
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subtraction measurement models were enabled for this sequence.

The first frame shows all particles set to the manually-determined initial param-

eterization. Throughout, we notice that the green particles generally correlate well

with limbs or — at the very least — limb-like structures in the image. The back-

ground subtraction measurement criterion keeps limbs on the body, and the edge and

ridge criteria weed out particles that are aligned poorly. The prior had to be adjusted

slightly for this test, as there was insufficient variance in the prior for the positional

velocity1.

As the left leg occludes the right leg, the tracking breaks down as one might

anticipate. By frame 10, there are highly probable particles on both legs. From

here on, with some exceptions, we see the particle filter successfully track both legs

simultaneously. The occlusion created ambiguity, but both legs are thus considered

for the remainder of the monocular sequence.

It is worth noting that many of the limb configurations — and even the more

probable limb configurations — may seem “shorter” than other limbs because they are

turned away from the camera. These particles are poor matches in three dimensions,

but they are plausible here due to the lack of depth information in a monocular

setting.

Without the rest of the lower body to provide guidance, tracking a single calf

is impractical without multiple cameras. As we will see later on, increasing the

parameter space — perhaps surprisingly — improves tracking results by providing

certain positional constraints on limbs.

1Variances for angular and positional velocity priors are distinct from one another. There are
only 3 positional parameters, all of which pertain to the root of the model skeleton. In this case,
the “root” (the knee) accelerates more rapidly through space than when tracking the full body.
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4.2 Ideal λ Values

The λ heuristic was introduced in Section 3.1.3. The variance σ for a measurement

likelihood p(m|~m) is inversely proportional to the choice of λ for that measurement.

As mentioned earlier, there are two opposing ideals which determine our choice for λ:

1. We require that λ be large enough for roughly optimal tracking results when

using a given measurement criterion.

2. Given the above precondition, we require that λ be as small as possible (in the

interests of a “healthy” particle distribution).

To determine an appropriate λ value for each measurement function, we try to

track the lower body using a single measurement function for likelihood determina-

tion. We track with multiple cameras, but for clarity the tracking results are presented

from the perspective of only one camera. 1000 particles were used throughout.

4.2.1 Plotting Eccentricity

In this section we will present figures which graphically represent the eccentricity

of a particle distribution. To create the plots, the following steps are taken:

1. A set L = {π1, π2, · · · , πn} is built from the normalized particle likelihoods.

2. The set L is sorted to generate the new Ls, also of cardinality n.

3. For each of n items in Ls, a point (
k
n
,
∑k

i=1 Lsi
) is plotted, and a line drawn

from the previous plotted point.

In other words, we make a cumulative plot of the particle distribution. Due to

the sorting step, the rate of change for the cumulative plot must always be positive.

Additionally, the points (0, 0) and (1, 1) will always appear in the plot. If all particles

have equal likelihood, the plot will be linear. If the cumulative likelihood is distributed

among only a small fraction of particles — in other words, if the distribution is

eccentric — the plot will approach the point (1, 0), though it can never reach this

point since the normalized distribution must sum to 1. For an example of these plots,

see Figure 4.1.
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4.2.2 Oriented Edge Detection

The oriented edge results for λ = {0.6, 0.7, 0.8, 0.9, 0.95} can be seen in Figure

4.1. Tracking was roughly comparable for λ = 0.9 and λ = 0.95, and was slightly

worse when λ = 0.8. In the latter case, tracking was unable to recover after frame 32

because much of the weight in the particle set was essentially wasted on particles that

were far from the legs. Tracking was ineffective for the λ = 0.6 and λ = 0.7 cases.

Ultimately, we chose λ = 0.9 as per the heuristics outlined above in Section 4.2.

4.2.3 Oriented Ridge Detection

Again, we test the oriented ridge measurement for λ = {0.6, 0.7, 0.8, 0.9, 0.95} can

be seen in Figure 4.2. The tracking results are generally unimpressive for the ridge

measurement, but they are more “precisely unimpressive” for λ = {0.9, 0.95}. In

addition, the ridge response is prone to false positives, and this motivates the choice

of a high λ value. Thus, we define λ = 0.9.

4.2.4 Background Subtraction

We test λ = {0.3, 0.4, 0.5, 0.6, 0.8} for the background subtraction measurement.

For λ > 0.5, we see an unacceptably eccentric particle set. Tracking is adequate for

λ = 0.4 and slightly more precise for λ = 0.5. As such, we set λ = 0.45 for the

background subtraction measurement.

4.2.5 Template Matching

The template matching results for λ = {0.3, 0.4, 0.5, 0.6, 0.7} can be seen in Figure

4.4. The results are excellent across the board, though the posterior variance is smaller

when λ > 0.4. We thus set λ = 0.45.
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Frame λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 0.95

5

10

15

25

30

Figure 4.1: Oriented edge tracking results with respect to λ: The distributions
(top) are plotted according to the specifications in Section 4.2.1. The tracking broke
down shortly after frame 30 for λ = 0.8.
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Frame λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 0.95

7

15

23

31

Figure 4.2: Oriented ridge tracking results with respect to λ: The distributions
(top) are plotted according to the specifications in Section 4.2.1.
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Frame λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.8

5

15

25

32

45

Figure 4.3: Background subtraction tracking results with respect to λ: The
distributions (top) are plotted according to the specifications in Section 4.2.1. The
tracking results were generally equivalent for λ > 0.4, though the eccentricities for the
higher λ values would prohibit robust tracking with multiple measurement models.
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Frame λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7

3

7

11

15

Figure 4.4: Template matching tracking results with respect to λ: The dis-
tributions (top) are plotted according to the specifications in Section 4.2.1.
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Frame: 5 10 15 20 25

Camera 1:

Figure 4.5: Tracking results when considering camera 1 exclusively.

Frame: 3 6 9 14 15

Camera 1:

Camera 2:

Camera 3:

Figure 4.6: Tracking results when considering camera 2 exclusively: By the
end of the sequence, the model has veered off course with respect to cameras 1 and
3.

4.3 Monocular Tracking

In the sequences presented in this section, we use 1000 particles to track the

lower body. The edge and background subtraction measurement criteria were used

throughout. As one might expect, the results that appear reasonable from the primary

camera are less coherent from the other viewing angles. Multi-camera results are

available in Section 4.4; even though fewer particles were used in these multi-camera

trials, there are substantial improvements in tracking accuracy.
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Frame: 1 3 5 7 9

Camera 1:

Camera 2:

Camera 3:

Figure 4.7: Tracking results when considering camera 3 exclusively: Camera
3 has little chance of tracking the legs in this sequence, as nearly all of the motion is
perpendicular to the film plane. Tracking breaks down rapidly.
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4.4 Combining Measurements

Frame: 3 6 9 12 15

E/R:

E/BgS:

E/T:

R/BgS:

R/T:

BgS/T:
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Frame: 3 6 9 12 15

E/R/BgS:

E/BgS/T:

R/BgS/T:

All:

In this section we try to track the lower body with 500 particles and all 3 cameras.

The second and third cameras are not shown here. The results (and the cumulative

posterior distribution plots in Figure 4.8) are largely self-explanatory, but a few points

are worthy of special emphasis:

• In the background subtraction and template matching combination, the tracking

results are very good even though the posterior distribution is quite eccentric.

The eccentricity is largely due to the dependency between the measurements

and the breadth of the histograms; the tails of the likelihood Gaussian approach

zero, and only with these two measurement criteria do the measurements often

map to the low tails of the likelihood.
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2 Meas:

3 Meas:

4 Meas:

Figure 4.8: The effect of measurement combinations on the posterior dis-
tribution: The cumulative plots of the posterior distributions become more eccen-
tric as additional measurement criteria are considered. Note that for measurements
which are increasingly dependent probabilistically, the cumulative distribution is es-
pecially eccentric. (E.g., background subtraction and template matching) The magni-
fied (right) cumulative plot for the posterior distribution after using 4 measurements
is given context by the plots for 3 measurements.
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• The combination of all four measurement criteria performs notably worse than

some of the 3-way combinations. This, too, is due to the increase in invalid de-

pendency assumptions and extremely low tail values for some likelihood Gaus-

sians.
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4.5 Extended Tracking Results

4.5.1 Tracking Modulo Arms

Frame: 0 2 4 6 8

Camera 1:

Camera 2:

Camera 3:

Frame: 10 12 14 16 18

Camera 1:

Camera 2:

Camera 3:
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Frame: 20 22 25 26 28

Camera 1:

When tracking the lower body with the edge and background subtraction mea-

surement criteria, the legs tend to creep up into the torso. We can address this

problem by incorporating the template matching measurement, but we can also sta-

bilize the legs by adding the torso and head to the model. The head constrains the

model, and the legs cannot climb up the body as seen in parts of Section 4.4. It is

interesting to note that, at least in this case, increasing the parameter search space

actually improves tracking results substantially.
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4.5.2 Full-Body Tracking

Frame: 0 1 2 3 4

Camera 1:

Camera 2:

Camera 3:

Frame: 5 6 7 8 9

Camera 1:

Camera 2:

Camera 3:
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Ultimately, we are unable to track the full-body through the entire input sequence.

Tracking breaks down once the subject’s left arm occludes his torso, at which point

the edges are harder to find. In addition, the subject’s right arm is only visible from

camera 3 for many frames. Consequently, its motion — which is perpendicular to

camera 3’s film plane — is not easily tracked. Given a fourth view from the subject’s

right side, tracking the full body would probably be much easier. Even after the arms

are lost, the legs, torso, and head maintain adequate tracking. These results were

generated using 12000 particles, but 5000 particles worked nearly as well.



Chapter 5

Conclusions

We have documented a system designed to track a human through video sequences

with few input preconditions. We use a model-based approach based upon Bayesian

inference, and approximate the posterior distribution with a particle set.

We found that the particle filter is less effective when the particle distribution

becomes eccentric. To help guard against such a circumstance, we broke likelihood

determination into two steps: one for a raw measurement, and one for a dynamic

likelihood mapping. This mapping was parameterized by the heuristic λ. By experi-

mentally optimizing λ, our particle distribution was well-behaved and we consequently

achieved improved tracking results.

Additionally, we found that multiple cameras — as one would expect — stabilized

tracking in three dimensions by disambiguating limb locations in the depth dimension

for any one specific camera.

5.1 Future Work

This work focused primarily on the sub-problem of likelihood determination. As

such, with minimal work, one could build many other tracking models[4] around the

likelihood system proposed here. Specifically, belief propagation holds promise for

human motion tracking: limb parameterizations are independent, and joints have

greater flexibility due to a spring-like message passing framework.

None of the measurement functions were of significant procedural complexity.
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Countless measurement criteria could be devised which would, on their own, re-

turn more reliable information than those presented in this work. In particular,

we would like to incorporate a measurement based upon optical flow from frame to

frame,[1][14] as well as a measurement designed to find median distances to strong

properly-oriented edges for a given limb configuration.

Were we to take the median value for each pixel over the image sequence, we

could dynamically determine the background images. With automatic background

subtraction and multiple cameras, we should be able to significantly constrain the

search space for initialization, even in input sets without provided background im-

ages. Using a body model with independent limb parameterizations, we could propose

potential initial configurations for the body rather than hand-initialize the pose our-

selves.
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