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Abstract

Much of the research on video-based human motion cap-

ture assumes the body shape is known a priori and is rep-

resented coarsely (e.g. using cylinders or superquadrics to

model limbs). These body models stand in sharp contrast

to the richly detailed 3D body models used by the graphics

community. Here we propose a method for recovering such

models directly from images. Specifically, we represent the

body using a recently proposed triangulated mesh model

called SCAPE which employs a low-dimensional, but de-

tailed, parametric model of shape and pose-dependent de-

formations that is learned from a database of range scans of

human bodies. Previous work showed that the parameters

of the SCAPE model could be estimated from marker-based

motion capture data. Here we go further to estimate the pa-

rameters directly from image data. We define a cost function

between image observations and a hypothesized mesh and

formulate the problem as optimization over the body shape

and pose parameters using stochastic search. Our results

show that such rich generative models enable the automatic

recovery of detailed human shape and pose from images.

1. Introduction

We address the problem of markerless human shape and

pose capture from multi-camera video sequences using a

richly detailed graphics model of 3D human shape (Fig-

ure 1). Much of the recent work on human pose estimation

and tracking exploits Bayesian methods which require gen-

erative models of image structure. Most of these models,

however, are quite crude and, for example, model the hu-

man body as an articulated tree of simple geometric primi-

tives such as truncated cones [8]. Arguably these generative

models are a poor representation of human shape.

As an alternative, we propose the use of a graphics model

of human shape that is learned from a database of detailed

3D range scans of multiple people. Specifically we use

the SCAPE (Shape Completion and Animation of PEople)

model [1] which represents both articulated and non-rigid

deformations of the human body. SCAPE can be thought

of as having two components. The pose deformation model

captures how the body shape of a person varies as a func-

tion of their pose. For example, this can model the bulging

of a bicep or calf muscle as the elbow or knee joint varies.

The second component is a shape deformation model which

captures the variability in body shape across people using a

low-dimensional linear representation. These two models

are learned from examples and consequently capture a rich

and natural range of body shapes, and provide a more de-

tailed 3D triangulated mesh model of the human body than

previous models used in video-based pose estimation.

The model has many advantages over previous de-

formable body models used in computer vision. In partic-

ular, since it is learned from a database of human shapes

it captures the correlations between the sizes and shapes of

different body parts. It also captures a wide range of hu-

man forms and shape deformations due to pose. Modeling

how the shape varies with pose reduces problems of other

approaches associated with modeling the body shape at the

joints between parts.



Figure 1. SCAPE from images. Detailed 3D shape and pose of a

human body is directly estimated from multi-camera image data.

Several recovered poses from an image sequenceof a walking sub-

ject are shown.

While recent work in the machine vision community has

focused on recovering human kinematics from video, we

argue that there are many motivations for recovering shape

simultaneously. For example, anthropomorphic measure-

ments can be taken directly from the recovered body model

and may be useful for surveillance and medical applica-

tions. For some graphics applications, having direct access

to the shape model for a particular subject removes an addi-

tional step of mapping kinematic motions to 3D models.

Our current implementation estimates the parameters of

the body model using image silhouettes computed from

multiple calibrated cameras (typically 3-4). The learned

model provides strong constraints on the possible recov-

ered shape of the body which means that pose/shape esti-

mation is robust to errors in the recovered silhouettes. Our

generative model predicts silhouettes in each camera view

given the pose/shape parameters of the model. A fairly stan-

dard Chamfer distance measure is used to define an image

likelihood and optimization of the pose/shape parameters

is performed using a stochastic search technique related to

annealed particle filtering [7, 8]. Our results show that the

SCAPE model better explains the image evidence than does

a more traditional coarse body model.

We provide an automated method for recovering pose

throughout an image sequence by using body models with

various levels of complexity and abstraction. Here we ex-

ploit previous work on 3D human tracking using simpli-

fied body models. In particular, we take the approach of

Deutscher and Reid [8] which uses anneal particle filter-

ing to track an articulated body model in which the limbs

are approximated by simple cylinders or truncated cones.

This automated tracking method provides an initialization

for the full SCAPE model optimization. By providing a

reasonable starting pose, it makes optimization of the fairly

high-dimensional shape and pose space practical.

Results are presented for multiple subjects (none present

in the SCAPE training data) in various poses.

2. Related Work

We exploit the SCAPE model of human shape and pose

deformation [1] but go beyond previous work to estimate

the parameters of the model directly from image data. Pre-

vious work [1] estimated the parameters of the model from

a sparse set of 56 markers attached to the body. The 3D lo-

cations of the markers were determined using a commercial

motion capture system and provided constraints on the body

shape. Pose and shape parameters were estimated such that

the reconstructed body was constrained to lie inside the

measured marker locations. This prior work assumed that

a 3D scan of the body was available. This scan was used to

place the markers in correspondence with the surface model

of the subject.

We go beyond the original SCAPE paper to estimate the

pose and shape of a person directly from image measure-

ments. This has several advantages. In particular, video-

based shape and pose capture does not require markers to be

placed on the body. Additionally, images provide a richer

source of information than a sparse set of markers and hence

provide stronger constraints on the recovered model. Fur-

thermore, we show shape recovery from multi-camera im-

ages for subjects not present in the shape training set.

Previous methods have established the feasibility of esti-

mating 3D human shape and pose directly from image data

but have all suffered from limited realism in the 3D body

models employed. A variety of simplified body models

have been used for articulated human body pose estimation

and tracking including cylinders or truncated cones (e.g.

[8]) and various deformable models such as superquadrics

[9, 14, 20] and free-form surface patches [17]. These mod-

els do not fit the body shape well, particularly at the joints

and were typically built by hand [14] or estimated in a

calibration phase prior to tracking [9, 17, 20]. Detailed

but fixed, person-specific, body models have been acquired

from range scans and used for tracking [6] by fitting them to

voxel representations; this approach did not model the body

at the joints.

Kakadiaris and Metaxas used generic deformable mod-

els to estimate 3D human shape from silhouette contours

taken from multiple camera views [11] and tracked these

shapes over multiple frames [12]. Their approach involved

a 2-stage process of first fitting the 3D shape and then track-

ing it. In contrast, pose and shape estimation are performed

simultaneously in our method. Their experiments focused

on upper-body tracking in simplified imaging environments

in which near-perfect background subtraction results could

be obtained.

In related work Plänkers and Fua [15] defined a “soft”

body model using 3D Gaussian blobs arranged along an

articulated skeletal body structure. The relative shapes

of these “metaballs” were defined a priori and were then

scaled for each limb based on an estimated length and width



parameter for that limb. Left and right limbs were con-

strained to have the same measurements. The surface of

the body model was then defined implicitly as a level sur-

face and an iterative optimization method was proposed to

fit each limb segment to silhouette and stereo data. Most

experiments used only upper body motion with simplified

imaging environments, though some limited results on full

body tracking were reported in [16].

Also closely related to the above methods is the work of

Hilton et al. [10] who used a VRML body model. Their

approach required the subject to stand in a known pose for

the purpose of extracting key features from their silhouette

contour which allowed alignment with the 3D model. Their

model has a similar complexity to ours (∼20K polygons)

but lacks the detail of the learned SCAPE model.

In these previous models the limb shapes were modeled

independently as separate parts. This causes a number of

problems. First, this makes it difficult to properly model

the shape of the body where limbs join. Second, the decou-

pling of limbs means that these methods do not model pose

dependent shape deformations (such as the bulging of the

biceps during arm flexion). Additionally none of these pre-

vious method automatically estimated 3D body shape using

learned models. Learning human body models has many

advantages in that there are strong correlations between the

size and shape of different body parts; the SCAPE model

captures these correlations in a relatively low-dimensional

body model. The result is a significantly more realistic

body model which both better constrains and explains im-

age measurements and is more tolerant of noise. In previous

work, generic shape models could deform to explain erro-

neous image measurements (e.g. one leg could be made

fatter than the other to explain errors in silhouette extrac-

tion). With the full, learned, body model, information from

the entire body is combined to best explain the image data,

reducing the effect of errors in any one part of the body; the

resulting estimated shape always faithfully represents a nat-

ural human body. The SCAPE representation generalizes

(linearly) to new body shapes not present in the training set.

Finally, there have been several non-parametric methods

for estimating detailed 3D body information using voxel

representations and space carving [3, 4, 5, 13]. While flex-

ible, such non-parametric representations require further

processing for many applications such as joint angle extrac-

tion or graphics animation. The lack of a parametric shape

model means that it is difficult to enforce global shape prop-

erties across frames (e.g. related to the height, weight and

gender of the subject). Voxel representations are typically

seen as an intermediate representation from which one can

fit other models [6, 21]. Here we show that a detailed para-

metric model can be estimated directly from the image data.

Figure 2. Algorithm Overview. A learning phase is used to build

the 3D body model from range scans and follows the approach

proposed in [1]. Our contribution provides a method for fitting the

pose and shape parameters of the model to image data.

3. SCAPE Body Model

We briefly introduce our implementation of the SCAPE

body model and point the reader to [1] for details. Our

approach to 3D human shape and pose estimation has two

main phases (Figure 2): A learning phase in which the hu-

man shape space is modeled, and a fitting phase in which

body model parameters are estimated to match the observed

shape in images.

The first phase involves learning the SCAPE model from

3D scans acquired using a Cyberware whole body scanner

and merged into triangular meshes. The meshes are divided

into two sets (Figure 3): A pose set containing the same

subject in 70 diverse poses, and a body shape set containing

10 people with distinctive body shape characteristics stand-

ing in roughly the same standard pose. The former is used

to model pose-induced variations of shape, while the latter

is used to model shape variation between different people.

We define a template mesh in a canonical standing pose

that is present in both data sets. The template mesh is

hole-filled and subsampled to contain 25,000 triangles with

12,500 vertices. The remaining instance meshes are brought

into full correspondence with the template mesh using a

non-rigid mesh registration technique [1]. A skeleton re-

construction algorithm [1] is applied to the pose set to seg-

ment the template mesh into 15 body parts and to estimate

joint locations.

SCAPE Overview. The template mesh acts as a ref-

erence mesh that is morphed into other poses and body

shapes to establish correspondence between all meshes.

Let (x1, x2, x3) be a triangle belonging to the template

mesh and (y1 , y2, y3) be a triangle from an instance mesh.

We define the two edges of a triangle starting at x1 as

∆xj = xj − x1, j = 2, 3.

The deformation of one mesh to another is modeled as

a sequence of linear transformations applied to the triangle

edges of the template mesh:

∆y = RDQ∆x (1)



Figure 3. 3D Body Meshes. Two example meshes from the pose

set, the template mesh, and two example meshes from the body

shape set (left to right).

where Q is a 3× 3 linear transformation matrix specific for

this triangle corresponding to non-rigid pose-induced defor-

mations such as muscle bulging. D is a linear transforma-

tion matrix corresponding to body shape deformations and

is also triangle specific. Finally, R is a rigid rotation matrix

applied to the articulated skeleton and specific to the body

part containing the triangle.

Rigid deformations. Given an instance mesh y, the rigid

alignment R for each body part b can be easily computed

in closed form given the known point correspondences be-

tween y and the template mesh [1].

Non-rigid pose-dependent deformations. Since the 70

meshes in the pose set belong to the same person as the tem-

plate, their body shape deformation transformations D are

simply 3×3 identity matrices. Given the rigid alignment be-

tween meshes, the residual transformation Q can be solved

for by optimizing the deformation registering the template

edges ∆x with the instance mesh edges ∆y:

Q = arg min
Q

∑

||RQ∆x− ∆y||2 (2)

where the summation is over the edges of all triangles in the

mesh (with some abuse of notation).

During video-based tracking, we will encounter new

body poses not present in the training database and need to

predict the pose-dependent deformation of the mesh. Con-

sequently we use the 70 training examples to learn the coef-

ficients α of a linear mapping from rigid body poses repre-

sented by R to pose-dependent deformations Qα(R). Then

for any new pose we can predict the associated deformation.

Non-rigid body shape-dependent deformations. For

each of the 10 instance meshes of different people in the

body shape set we estimate the rigid alignment R between

parts and use this to predict the pose-dependent deformation

Q with the linear mapping from above. Then the shape-

depended deformation D is estimated as

D = arg min
D

∑

||RDQ∆x− ∆y||2. (3)

Learning the SCAPE model. Given the body shape de-

formations D between different subjects in the body shape

set and the template mesh, we construct a low dimensional

linear model of the shape deformation using principal com-

ponent analysis (PCA). Each D matrix is represented as a

column vector and is approximated as DU,µ(β) = Uβ + µ

where µ is the mean deformation, U are the eigenvectors

given by PCA and β is a vector of linear coefficients that

characterizes a given shape. We keep the first 6 eigenvectors

which account for 80% of the total shape variance. Note

that the shape coefficients for a specific person can be re-

covered by projecting the estimated deformation D onto the

PCA subspace.

Finally, a new mesh y, not present in the training set,

can be synthesized given the rigid rotations R and shape

coefficients β by solving

y(R, β) = arg min
y

∑

||RDU,µ(β)Qα(R)∆x− ∆y||2.

(4)

This optimization problem can be expressed as a linear sys-

tem that can be solved very efficiently.

4. Stochastic Optimization

During the fitting phase, estimating body shape and pose

from image data involves optimization over the rigid limb

transformations R, linear shape coefficients β, and global

location T of the body in the world coordinate system. We

compactly represent the rotation matrices R using 37 Euler

joint angles r (after dropping some DOFs for non-spherical

joints). We search for the optimal value for the state vector

s = (β, r, T ) within a framework of synthesis and evalua-

tion. For a predicted state s, a mesh is generated using Eq. 4,

rendered to the image view given known camera calibration

and compared to extracted image features.

State prediction is handled within an iterated importance

sampling framework [7]. We represent a non-parametric

state space probability distribution for state s and image

data I as f(s) ≡ p(I|s)p(s) with N particles and asso-

ciated normalized weights {si, πi}
N
i=1. We note that we do

not make any rigorous claims about our probabilistic model,

rather we view the formulation here as enabling an effective

method for stochastic search.

We define a Gaussian importance function g(k)(s) from

which we draw samples at iteration k of the search. This is

initialized (g(1)(s)) as a Gaussian centered on the pose de-

termined by the initialization method (section 4.1) and the

mean body shape (β parameters zero). Particles are gen-

erated by randomly sampling from g and normalizing the

likelihood by the importance: si ∼ g(s), πi = f(si)
g(si)

.

This process is made effective in an iterative fash-

ion which allows g to become increasingly similar

to f . At iteration k + 1, an importance function

g(k+1) is obtained from the particle set at iteration k:

g(k+1) =
∑N

i=1 π
(k)
i N (s

(k)
i , Σ(k)).



To avoid becoming trapped in local optima, predicted

particles are re-weighted using an annealed version of the

likelihood function: f(k)(s) =
(

p(I|s)
)t(k)

p(s), where t(k)

is an annealing temperature parameter optimized so that ap-

proximately half the samples get re-sampled.

4.1. Initialization

There exist a number of techniques that can be used to

initialize the stochastic search; for example, pose prediction

from silhouettes [19], voxel carving skeletonization [5], or

loose-limbed body models [18]. Here we employ an ex-

isting human tracking algorithm [2] based on a cylindrical

body model. The method is initialized in the first frame

from marker data, and the position and joint angles of the

body are automatically tracked through subsequent frames.

The method uses an annealed particle filtering technique for

inference, uses fairly weak priors on joint angles, enforces

non-interpenetration of limbs and takes both edges and sil-

houettes into account. The recovered position and joint an-

gles together with the mean body shape parameters are used

to initialize the stochastic search of the SCAPE parameters.

5. Image Cost Function

We introduce a cost function p(I|s) to measure how well

a hypothesized model fits image observations. Here we rely

only on image silhouettes which have been widely used in

human pose estimation and tracking. The generative frame-

work presented here, however, can be readily extended to

exploit other features such as edges or optical flow.

Our cost function is a measure of similarity between two

silhouettes. For a given camera view, a foreground silhou-

ette F I is computed using standard background subtraction

methods. This is then compared with the idealized silhou-

ette F H , generated by projecting a hypothesized mesh into

the image plane. We penalize pixels in non-overlapping

regions in one silhouette by the shortest distance to the

other silhouette (cf. [19]) and vice-versa. To do so, we pre-

compute a Chamfer distance map for each silhouette, CH

for the hypothesized model and CI for the image silhou-

ette. This process is illustrated in Figure 4.

The predicted silhouette should not exceed the image

foreground silhouette (therefore minimizing F H ·CI), while

at the same time try to explain as much as possible of it (thus

minimizing F I ·CH). Both constraints are combined into a

cost function that sums the errors over all image pixels p

− log p(I|s) =
1

|p|

∑

p

(

aF H
p ·CI

p +(1−a)F I
p ·C

H
p

)

, (5)

where a weighs the first term more heavily because the im-

age silhouettes are usually wider due to the effects of cloth-

ing. When multiple views are available, the total cost is

taken to be the average of the costs for the individual views.

H

I

(a) (b) (c) (d) (e)
Figure 4. Cost function. (a) original image I (top) and hypoth-

esized mesh H (bottom); (b) image foreground silhouette F
I and

mesh silhouette F
H , with 1 for foreground and 0 for background;

(c) Chamfer distance maps C
I and C

H , which are 0 inside the

silhouette; the opposing silhouette is overlaid transparently; (d)

contour maps for visualizing the distance maps; (e) per pixel sil-

houette distance from F
H to F

I given by
∑

p F
H
p ·C

I
p (top), and

from F
I to F

H given by
∑

p
F

I
p · C

H
p (bottom).

6. Results

Figure 5 shows representative results obtained with our

method. With 3 or 4 camera views we recover detailed mesh

models of three different people in various poses and wear-

ing sports and street clothing; none of the subjects were

present in the SCAPE training set. In contrast, voxel carv-

ing techniques require many more views to reach this level

of detail. The results illustrate how the SCAPE model gen-

eralizes to shapes and poses not present in the training data.

While we have not performed a detailed analysis of the

effects of clothing, our results appear relatively robust to

changes in the silhouettes caused by clothes. As long as

some parts of the body are seen un-occluded, these provide

strong constraints on the body shape; this is an advantage of

a learned shape model.

Results for an entire sequence are shown in Figure 6.

Even though the optimization was performed in each frame

independently of the others frames, the body shape re-

mained consistent between frames. In general, our frame-

work is capable of explicitly enforcing shape consistency

between frames. We can either process several frames in a

batch fashion where the shape parameters are shared across

frames or employ a prior in tracking that enforces small

changes in shape over time; this remains future work.

6.1. Comparison with the Cylindrical Body Model

Figure 7 presents the results obtained for one frame in

each camera view used. First, we note that the optimization



Figure 5. SCAPE-from-image results. Reconstruction results based on the views shown for one male and two female subjects, in walking

and ballet poses, wearing tight fitting as well as baggy clothes. (top) Input images overlaid with estimated body model. (middle) Overlap

(yellow) between silhouette (red) and estimated model (blue). (bottom) Recovered model from each camera view.

Figure 6. First row: Input images. Second row: Estimated mesh models. Third row: Meshes overlaid over input images. By applying

the shape parameters recovered from 33 frames to the template mesh placed in a canonical pose, we obtained a shape deviation per vertex

of 8.8 ± 5.3mm, computed as the mean deviation from the average location of each surface vertex.

can tolerate a significant amount of noise in the silhouettes

due to shadows, clothing and foreground mis-segmentation.

Second, the figure illustrates how the fitted SCAPE body

model is capable of explaining more of the image fore-

ground silhouettes than the cylindrical model. This can po-

tentially make the likelihood function better behaved for the

SCAPE model. To quantify this, we have computed how

much the predicted silhouette overlapped the actual fore-

ground (precision) and how much of the foreground was

explained by the model (recall).

33 frames Precision Recall

Cylinder Model 91.07% 75.12%

SCAPE Model 88.13% 85.09%



Figure 7. Same pose, different camera views. Each row is a dif-

ferent camera view. 1
st column: image silhouettes. 2

nd column:

3D cylindrical model. 3
rd column: overlap between image sil-

houettes and cylindrical model. 4
th column: 3D shape model. 5

th

column: overlap between image silhouettes and SCAPE model.

The cylindrical model has 3% better precision because it

is smaller and consequently more able to overlap the image

silhouettes. On the other hand, the SCAPE model has 10%

better recall because it is able to modify the shape to better

explain the image silhouettes.

6.2. Convergence

We illustrate the process of convergence in Figure 8 in

two different scenarios. The top row contains a real ex-

ample of converging from the mean PCA shape and the

pose estimated by the cylindrical tracker to the final fit of

pose and shape to silhouettes. The bottom row shows syn-

thetically generated silhouettes using a SCAPE model with

shape parameters close to the initialized shape but with a

distant pose. Except for the right leg which was trapped in

local optimum, the likelihood formulation was able to at-

tract the body and the right arm into place.

6.3. Anthropometric Measurements

Once the shape parameters have been estimated in each

frame, we can then place the mesh with the corresponding

Figure 8. Top: Convergence from coarse tracking. Bottom:

Convergence from a distant initial pose. In both cases the opti-

mization is based on 4 views.

Figure 9. T-pose. Pose useful for extracting anthropometric mea-

surements once shape was recovered from images.

shape in an appropriate pose for extracting anthropometric

measurements. From the T-pose in Figure 9 we can easily

measure the height and arm span for each shape.

33 frames Actual Mean StDev

Height (mm) 1667 1672 15
Arm Span (mm) 1499 1492 16

The actual values for the height and arm span are within

half a standard deviation from the estimated values, with a

deviation of less than 7mm. For reference, one pixel in our

images corresponds to about 6mm.

Other measurements that could also be estimated are leg

length, abdomen and chest depths, shoulder breadth etc. by

measuring distances between relevant landmark positions

on the template mesh, or mass and weight by computing the

mesh volume. This suggests the potential use of the method

for surveillance and medical applications.

6.4. Computational Cost

Most of the computing time is taken by the likelihood

evaluations. Our stochastic search is over a 40-D pose space

plus a 6-D shape space and we perform as many as 1,500

likelihood evaluations for one frame to obtain a good fit.

Our implementation in Matlab takes almost a second per

hypothesis. Half of that time is taken by a linear system

solver for reconstructing the 3D mesh, and half is taken by



rendering it to a Z-Buffer to extract silhouettes in 4 views.

Hardware acceleration together with partitioned sampling

and a lower resolution mesh for early iterations would re-

duce the computing time.

7. Discussion and Conclusions

We have presented a method for estimating 3D human

pose and shape from images. The approach leverages a

learned model of pose and shape deformation previously

used for graphics applications. The richness of the model

provides a much closer match to image data than more

common kinematic tree body models. The learned repre-

sentation is significantly more detailed than previous non-

rigid body models and captures both the global covaria-

tion in body shape and deformations due to pose. We have

shown how a standard body tracker can be used to initial-

ize a stochastic search over shape and pose parameters of

this SCAPE model. Using the best available models from

the graphics community we are better able to explain im-

age observations and make the most of generative vision

approaches. Additionally, the model can be used to extract

relevant biometric information about the subject.

Here we worked with a small set of body scans from

only ten subjects. We are currently working on using scans

of over a thousand people to achieve a much richer model of

human body shapes. Recovering a richer model will mean

estimating more linear shape coefficients. To make this

computationally feasible, we are developing a deterministic

optimization method to replace the stochastic search used

here. Currently we have not exploited graphics hardware

for the projection of 3D meshes and the computation of the

cost function; such hardware will greatly reduce the com-

putation time required.

Here we did not impose constraints on the shape vari-

ation over time. In future work, we will explore the ex-

traction of a single consistent shape model from a sequence

of poses. Additionally, we will add interpenetration con-

straints while estimating the SCAPE parameters.

Our long term goal is to exceed the level of accuracy

available from current commercial marker-based systems

by using images which theoretically provide a richer source

of information. We expect that, with additional cameras

and improved background subtraction, the level of detailed

shape recovery from video will eventually exceed that of

marker-based systems.
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