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Abstract
Finding privacy bugs in software today usually requires oner-
ous manual audits. Code analysis tools could help, but existing
tools aren’t sufficiently practical and ergonomic to be used.

Paralegal is a static analysis tool to find privacy bugs in Rust
programs. Key to Paralegal’s practicality is its distribution of
work between the program analyzer, privacy engineers, and
application developers. Privacy engineers express a high-level
privacy policy over markers, which application developers
then apply to source code entities. Paralegal extracts a Pro-
gram Dependence Graph (PDG) from the program, leveraging
Rust’s ownership type system to model the behavior of library
code. Paralegal augments the PDG with the developers’ mark-
ers and checks privacy policies against the marked PDG.

In an evaluation on eight real-world applications, Paralegal
found real privacy bugs, including two previously unknown
ones. Paralegal supports a broader range of policies than infor-
mation flow control (IFC) and CodeQL, a widely-used code
analysis engine. Paralegal is fast enough to deploy interac-
tively, and its markers are easy to maintain as code evolves.

1 Introduction
Applications that handle sensitive user data must comply with
privacy policies and legal frameworks like the GDPR [35],
access control, and data retention limitations. Even within a
single organization, the number of developers modifying a
shared codebase on a daily basis makes it difficult to correctly
implement and adhere to these requirements [36, 84]. Today,
organizations rely on manual audits by privacy experts or
external consultants to check if their code respects privacy
properties. Such manual audits are laborious, error-prone, and
unlikely to happen frequently [69, 72].

Paralegal is a program analysis tool that helps developers
find possible privacy problems in their code before deploy-
ment. For example, an organization might want to check that
all data associated with a user is deleted when they remove
their account. With Paralegal, application developers provide
meaning to abstractions like “user data” by annotating con-
crete code elements with markers. Privacy engineers mean-

while articulate a high-level policy saying that deletion func-
tions must exist for all types that represent user data, and that
the program must call those functions (e.g., “all types marked
as user data must flow into deletion functions”). Paralegal
models the application by generating its marked Program De-
pendence Graph (PDG), i.e., a PDG with markers propagated
to the appropriate nodes. It then evaluates the policy against
the PDG and reports violations to developers.

Paralegal aims to be a practical system for daily use by
developers in an integrated development environment (IDE)
or a continuous integration (CI) toolchain. While Paralegal
is based on a rich literature on bug finding and policy en-
forcement tools, it contributes two key ideas that improve the
practical applicability of such tools on real-world software.

First, Paralegal introduces markers as a layer of separa-
tion between policy and code that distributes the specification
effort between respective experts. Privacy engineers author
policies over markers as a vocabulary of semantically mean-
ingful terms, but developers maintain the association of code
elements to markers as the code base evolves. This results in
policies that are easier to read and robust to code changes. It
also allows Paralegal to precisely identify the code relevant
to the policy, which it uses to optimize the analysis.

Second, Paralegal leverages the Rust programming lan-
guage for scalability, precision, and reduced specification ef-
fort. Rust’s ownership type system controls aliasing and muta-
tion and allows Paralegal to approximate a function’s effects
by its type. Paralegal leverages such approximations to deal
with third party library code when source code is unavailable
or when the code is complex and hard to analyze, e.g., as is
the case in standard library code. Both these cases tradition-
ally require non-trivial, manual modeling effort. Paralegal
further relies on these approximations for scalability. Since
markers identify the policy-relevant parts of the codebase,
Paralegal cheaply approximates a function’s effects via its
type signature if no marker is reachable in the function’s body
or its callees. Rust also encourages static dispatch via its trait
system, and aliasing-restricted references via its ownership
model. Both make data and control flow analysis, as employed



by Paralegal, more precise.
We have four success criteria for Paralegal: (i) Paralegal

should find real privacy bugs, (ii) policies should be expres-
sive, maintainable, and independent from the application code
minutiae, (iii) policies should be auditable by non-developers,
and (iv) Paralegal should scale to real-world applications.

We evaluate our prototype on eight real-world Rust web
applications. Paralegal finds both known and unknown pri-
vacy issues in them: Paralegal would have caught five known
bugs and found two previously unknown bugs. We compare
Paralegal’s approach with IFC and CodeQL, a practical code
analysis tool supported by GitHub [15]. We find that Para-
legal can express a broader range of policies than IFC, that
Paralegal finds bugs more reliably than CodeQL, and that Para-
legal’s markers reduce the complexity of policies compared to
CodeQL. We also investigate Paralegal’s maintenance effort
in evolving applications by applying it to 1,000+ commits
spanning 2.5 years of development of Atomic [5], and find
that marker changes are rare and no modifications to the pol-
icy were needed to keep enforcing it. Finally, we find that
Paralegal’s optimizations to reduce PDG size allow it to run
in seconds, making it suitable for frequent and interactive use.

Paralegal is open-source [33] and our prototype is currently
being evaluated for use at a large internet company. This
company already has extensive static analysis tooling, but
sees value in Paralegal as a complement to it. Specifically,
teams at the company are exploring applications of Paralegal
to ensure secrecy of cryptographic keys, to enforce encryption-
at-rest, and to check that mitigations for speculative execution
attacks are executed in hypervisor code.

In summary, this paper makes four key contributions:
1. The Paralegal static analyzer, which checks high-level

properties against low-level, evolving code bases.
2. The marker abstraction to decouple policies and code; and

techniques to efficiently generate precise marked PDGs
from Rust code and model the behavior of library code.

3. A flexible policy framework that compiles policies in a
high-level language into queries on marked PDGs.

4. Case studies reporting on our experience of applying Para-
legal to eight real-world Rust web applications.

Paralegal has some limitations. As a static analyzer, it can only
reason about information known at compile time and must
abstract over all possible executions. Paralegal’s policy flexi-
bility also means that there is no universally sound approxima-
tion during PDG construction. As such, Paralegal’s soundness
and completeness are policy-dependent (see §4.1.3).

2 Motivation and Background
A practical privacy bug finder must be ergonomic for develop-
ers and deal with the realities of real-world codebases, includ-
ing widespread use of libraries and frequent code change.

Specialized tools achieve practicality by targeting a single
domain or type of policy. These systems operate on widely-
used programming languages (e.g., Java, Python, Javascript,

or SQL) and bake an understanding of the domain into the
system—e.g., Android apps in DroidSafe [42], tabular data an-
alytics in PrivGuard [77], or ORM-based MERN (MongoDB,
Express.js, React.js, NodeJS) apps in RuleKeeper [38]. Impor-
tantly, this domain modeling helps these systems understand
the semantics of API functions, libraries, and frameworks
without having to analyze their code. However, these tools
are limited to checking domain-specific properties and cannot
support libraries outside their domain model.

At the other extreme are general security-typed program-
ming languages. This category includes languages designed
for information flow control [47, 63, 67] and security-typed
ORMs [49], as well as proof assistants that encode security
policies into dependent types [11]. These languages generally
require a purely-functional programming style or extensive an-
notations on application and libraries, may require manually-
authored proofs, and are not widely used in practice.

Prior code analyzers let users encode policies as queries
over an Abstract Syntax Tree (AST) or a flow-based model
of a codebase. Systems that target common programming
languages (e.g., C [79], Java [46], PHP [10], Node.js [57], and
Ethereum contracts [73]), exist, but all suffer from practical-
ity limitations around library code and policy ergonomics.
All of these systems either ignore library code or require de-
velopers to provide and maintain manually-written models
to convey its behavior. For example, consider CodeQL [9],
a “semantic code analysis engine” maintained by GitHub
that has backends for languages including C++, Java, and
Python. CodeQL’s developers maintain extensive, manually-
written models of C++ libraries such as std and boost [16,
17], and users must equally model other libraries they use.
Code analyzers also rarely integrate with the codebase be-
ing analyzed, but instead encourage policy writers to query
syntactic code constructs. For example, CodeQL policies of-
ten use regular expressions over identifiers to select source
code elements. While helpful for use cases where the goal
is to identify syntactic patterns (e.g., retry loops [71]), this
design makes CodeQL brittle for enforcing custom semantic
properties over changing code.

Paralegal targets Rust, a mainstream programming lan-
guage whose ownership type system provides Paralegal with
the ability to usefully approximate the effects of external li-
brary code. Paralegal thus avoids domain-specificity or a need
for pervasive flow models to enforce policies over data flow-
ing in and out of library code. Paralegal decouples policies
and source code using lightweight markers that developers
attach to program elements and maintain with their code.

3 Paralegal Overview
Paralegal catches privacy bugs in Rust programs by extracting
a model of the dependency relationships between values at
compile time and checking whether this model satisfies a
policy written by a privacy engineer. We illustrate Paralegal’s
workflow using an example based on a real-life bug in Plume,



1 #[paralegal::marker(user_data)]
2 struct Comment { ... }
3
4 impl Database {
5 #[paralegal::marker(make_delete_query, arguments = [id])]
6 fn prepare_delete(&mut self, id: u32, table: &str) {...}
7 }
8
9 impl User {

10 #[paralegal::analyze]
11 fn delete_user(&self, db: &mut Database) {
12 let my_data: UserData = self.get_my_data();
13 db.prepare_delete(self.id, "users");
14 for post in &my_data.posts {
15 db.prepare_delete(post.id, "posts");
16 }
17 for comment in &my_data.comments {
18 db.prepare_delete(comment.id, "comments");
19 }
20 db.execute();
21 }
22 }

Figure 1: Paralegal alerts developers to missing code (red)
to delete a user’s comments when deleting their account in
Plume [66]. (Code simplified and error handling omitted.)

a federated blogging application [66].
Plume lets users create posts and comments. If a user

deletes their account, the application must delete their posts,
comments, and the user metadata. Figure 1 shows the user
deletion code. delete_user on User takes a database handle as
an argument. It constructs deletion queries for the user them-
selves and each of their posts and comments, then executes
those queries. This function contained a privacy bug: the code
in red was missing, so user comments were not deleted [64].
Given a suitable privacy policy, Paralegal catches this bug.

First, a privacy engineer formalizes a policy in Paralegal’s
policy language (Figure 2a). They express the policy in terms
of markers. Here, the marker user_data describes the concept
of personal data, and deletes describes the concept of deleting
data. Markers allow privacy engineers to formulate the policy
at the level of the design of a program, rather than its concrete
implementation. The privacy engineer produces the policy in
Figure 2a and sends it to a developer.

The developer leverages her application knowledge to ap-
ply the policy’s markers to relevant program entities. She
applies the user_data marker to the types Post, Comment, and
User. When she tries to apply the deletes marker, however, she
discovers that there is no correct place to put it. If she applies
it to the prepare_delete function, the policy would pass if a
deletion query is simply constructed; nothing ensures that the
application actually executes the query. She cannot put it on
execute either: execute is a generic function that handles all
types of queries, so applying the deletes marker here would
allow any executed query to satisfy the policy.

Since the privacy engineer is unfamiliar with implementa-

1 Somewhere:
2 1. For each "user data" type marked user_data:
3 A. There is a "source" that produces "user data" where:
4 a. There is a "deleter" marked deletes where:
5 i) "source" goes to "deleter"

(a) The initial Plume user deletion policy.

1 Somewhere:
2 1. For each "user data" type marked user_data:
3 A. There is a "source" that produces "user data" where:
4 a. There is a "deleter" marked make_delete_query where:

5 i) "source" goes to "deleter"
6 and
7 ii) There is a "execute" marked executes where:
8 A) "deleter" goes to "execute"

(b) The revised Plume user deletion policy.

Figure 2: Example specification for user data deletion
written in Paralegal’s policy language (§4.3). Policy
clauses,"variables", and markers are highlighted.

tion details, they wrote a policy that does not quite fit with the
application logic. The developer is faced with a choice: she
can either refactor the application to work with the policy as
written, or she can work with the privacy engineer to revise
the policy. She goes back to the privacy engineer, explains the
problem, and both together revise the markers and write a new
policy—for all types of user data, there must exist a query to
delete them, and that query must be executed (Figure 2b). The
developer applies the new markers to the application. This
give-and-take between privacy engineers and developers is a
common Paralegal workflow.

The developer then regularly runs Paralegal to check the
policy as she works on the application (e.g., in CI or as an
IDE plugin). When faced with the erroneous delete_user func-
tion, Paralegal reports the error shown in Figure 4. Internally,
Paralegal produced the marked PDG shown in Figure 3 and
detected that there is no path from a node marked Comment to
a node marked make_delete_query (and from make_delete_query

to executes). The developer fixes the bug by adding the red
code in Figure 1, and Paralegal’s check passes again.

4 Design
Paralegal is comprised of three components: PDG construc-
tion (§4.1) as an abstraction of the program, markers (§4.2)
as a semantic vocabulary, and policies (§4.3) that constrain
how marked entities in the program can interact.

4.1 Program Dependence Graph

The PDG [37] is a generic representation of a program that
can be reliably extracted for applications in any domain. For
example, Figure 3 shows a simplified PDG for the Plume
application in Figure 1. Paralegal constructs this PDG from
Rust’s MIR, a control-flow graph (CFG) intermediate repre-



self.id @ start

my_data.posts @ L12db @ L13

user_data

id @ L15→startself @ L15→start

make_delete_query

self @ L15→end

my_data.comments @ L12

id @ L18→start

make_delete_query

self @ L18→start

self @ L18→end

user_data

db @ L20
executes

prepare_delete @ L15

prepare_delete @ L18

delete_user @ L20

Figure 3: Partial and simplified PDG for the Figure 1 example.
Solid rectangles are PDG nodes, dashed rectangles are func-
tion scopes, and teal bubbles are markers. The red subgraph
represents the missing comment-deletion code. “Lk” = line
k in Figure 1. “start” and “end” refer to the function entry
and exit locations, respectively.

sentation in the Rust compiler.
To check policies on realistic codebases with reasonable

accuracy, the PDG must be sensitive to dependencies at a fine
granularity. Specifically, the PDG needs three properties:

Flow-sensitivity allows the PDG to distinguish between
the values of data at different program locations. For instance,
the value of db at §3 is not the same as the value of db on §3,
so the PDG has separate nodes for each. By contrast, a flow-
insensitive PDG would represent db with a single node, only
reflecting the value of db at the end of the program, once all
of the queries have been prepared and executed. This single-
node representation would allow a program that calls execute

before preparing the queries to pass the policy, even though
such a program would not actually delete any data.

Context-sensitivity allows the PDG to distinguish between
different calling contexts to the same function. Without con-
text sensitivity, the PDG would represent the body of the
prepare_delete function only once. This would mean that, for
instance, its self argument is only one PDG node. Each call
to prepare_delete (§3) then connects its inputs to that one
self node in the PDG. It would therefore appear as though
self.id, post.id, and comment.id are all arguments to the first
prepare_delete call (§3), even though only self.id is. As a con-
sequence, the policy could not detect a bug where a developer
moves the execute call to §3.

Field-sensitivity allows the PDG to distinguish between
different fields of a structure. For example, a field-sensitive
PDG distinguishes posts and comments, even though they be-
long to a single variable, my_data. A field-insensitive PDG
would not be able to detect the original bug (shown in red),

1 'Deletion Policy' not satisfied.
2 No entrypoints satisfied rule 1.A.a.i
3 Entrypoint `delete_user'
4 Did not satisfy (Rule 1.A.a.i)
5 "source" goes to "deleter"
6 for this "source": (Rule 1.A)
7 12 | let my_data = self.get_my_data();
8 | ^^^^^^^
9 for the "user data" type: "Comments" (Rule 1)

10 Help: There is a "deleter" here:
11 13 | db.prepare_delete(self.id, "users");
12 | ^^^^^^^

Figure 4: Paralegal’s error for the Plume deletion bug.

because my_data (and therefore comments) does flow to delete.
Each kind of sensitivity increases the cost of PDG genera-

tion for both runtime and memory consumption. Paralegal mit-
igates these costs with the optimizations discussed in §4.1.2.

4.1.1 Definitions

Formally, the Rust CFG follows a superset of the grammar
in Figure 5 (left). In this simplified model, instructions are
either assignments, unconditional jumps, conditional jumps,
or returns. The left-hand side of an assignment is a place, or
an expression that refers to a specific region of memory (a
variable, a field of a place, or a dereference of a place). The
right-hand side can be constants, places, operations on places
(including address-of), or function calls. The actual Rust CFG
contains more details such as array indexing, but this subset
is sufficient to illustrate Paralegal’s behavior.

The Paralegal PDG follows the exact grammar in Figure 5
(right). A node in the PDG is a place p at a call string cs, and
an edge is an operation of kind ek at a call string. A call string
represents the sequence of locations ℓ0 . . . ℓk that uniquely
identify a given instruction in a call tree.

The fundamental goal of the Paralegal PDG is to encode
dependence within a Rust program. Dependence is a hyper-
property [14] of a program: informally, a variable y depends
on a variable x if there exists two executions of a program
such that changing x as input changes y as output, with all
else held equal. There are two kinds of dependencies: data-
dependencies, where the value of x directly affects y (such
as y = x+1), and control-dependencies, where the value of x
indirectly affects y (such as if x then y = 0 else y = 1).

A PDG represents dependencies as paths between nodes.
Say a PDG contains the edge:

psrc @cssrc
ek @cseff−−−−−→ pdst @csdst

then it should be the case that pdst at csdst directly depends
on the value of psrc at cssrc due to the effect ek at cseff . For
example, a PDG for the instruction y = x+1 would contain
the edge x data−−→ y (ignoring call strings). If there exists a path
from psrc to pdst in the PDG, or more formally:

psrc @cssrc
∗−→ pdst @csdst



Constant c Variable x Field i Function f Binop ⊕

Prog P ::= G+

CFG G ::= I∗

Instr I ::= p = rv | goto n

| if p then n1 else n2

| return
Place p ::= x | p.i | ∗p

Rval rv ::= c | p | p1 ⊕ p2

| &p | f (p∗)

PDG H ::= (N,E)

Node n ::= p@cs

Edge e ::= ek @cs

EKind ek ::= data | ctrl
Loc ℓ ::= f .k

CallStr cs ::= ℓ0 � ... � ℓk

Figure 5: Grammar for a core subset of the Rust CFG (top
and left) and for the Paralegal PDG (right).

then it should be the case that pdst at csdst transitively depends
on psrc at cssrc. We use the phrase “it should be” to indicate
that this is the ideal case where the PDG faithfully represents
dependencies. Paralegal’s PDG contains all true dependencies
for programs that use no unsafe features (e.g., FFI or pointer
arithmetic). §4.1.3 discusses cases outside this guarantee.

4.1.2 Analysis

To construct a PDG, Paralegal statically analyzes each instruc-
tion that is reachable from the entrypoints of the analysis.
Much of the PDG construction is standard practice—for de-
tails, see Ferrante et al. [37]. Our analysis benefits from the
choice of Rust as a host language in three key ways.

Monomorphization. Given a function call f (p1, . . . , pn),
Paralegal must determine which function f refers to. For
example, the expression x.to_string() dispatches the trait
method to_string based on the type of x. Paralegal monomor-
phizes function calls using context-sensitive statically-
available type information. For example, if x has type i32,
then Paralegal recursively analyzes the implementation of
<i32 as ToString>::to_string. Here, Paralegal leverages Rust
as the target language for analysis. By design, Rust strongly
encourages the use of static over dynamic dispatch—most
popular Rust libraries do not use dynamic dispatch at all [74].
Therefore, Paralegal can frequently monormophize function
calls, which increases precision around libraries.

Modular approximation. For third-party libraries without
source code available, Paralegal cannot know the implementa-
tion of f . In these cases, prior systems have either asked users
to manually model the behavior of f (e.g., CodeQL maintains
a large model of the C++ standard library), or made unsound
assumptions about the behavior of f (e.g., Pidgin [46] as-
sumes such functions have no side effects).

Paralegal instead uses the Rust type system to approximate
the behavior of f soundly and precisely. At its core , the ap-
proximation conservatively assumes that all arguments to a

function will influence all outputs of the function. However,
Paralegal builds on the technique used in the Flowistry infor-
mation flow analyzer for Rust [28], which provides two key
pieces of information that refine this approximation:
1. Mutability: In Rust, a program is not allowed to mutate

data accessible from an immutable reference. Paralegal
can therefore assume that function calls do not mutate
values behind immutable references, which limits the set
of plausible outputs and therefore the data flows introduced
by the approximation. For example, Rust’s HashMap<K, V>

has a method (slightly simplified) for removing a value:
fn remove(&mut self, key: &K)

Paralegal can assume that HashMap::remove only mutates
self and not key.

2. Aliases: In most languages it must be assumed that, in addi-
tion to the described data flows, a function may introduce
arbitrary aliasing relationships on pointers it has access
to. In practice, such an assumption causes too many false
positives to make for a useable analysis. In Rust however,
all references (the most common pointer-like type) are
annotated with a lifetime that indicates a precise, limited
set of possibly aliased objects. For example, HashMap<K, V>

has a method for getting a value by key:
fn get<'a, 'b>(&'a self, key: &'b K) -> Option<&'a V>

This method returns a reference to a value of type &V. Be-
cause the reference has lifetime 'a and not 'b, Paralegal
can assume that &V points to self and not key.

This modular approximation of a function’s behavior is highly
accurate compared to precise analysis with access to the func-
tion’s source code [28]. Therefore, this technique helps Para-
legal retain precision while reducing developer burden.

Similarly, resolving function calls with dynamic dispatch is
challenging. Paralegal leverages the same modular approxima-
tion to approximate the effects of a function behind dynamic
dispatch; with additional engineering, Paralegal could analyze
all possible function bodies to improve soundness [4].

Function cloning. Paralegal achieves context-sensitivity
via function cloning [78], where each call-site duplicates the
sub-graph of the called function. This technique is maximally
precise, but it risks exponential growth in the size of the call
graph. We found in practice that PDGs for realistic Rust appli-
cations are nonetheless small enough such that Paralegal runs
reasonably fast, even for codebases with 198k LOC (§7.4).
Two key factors enable this scalability. First, Paralegal uses
markers to reduce PDG size, which we will describe in §4.2.
Second, Paralegal uses a context-insensitive alias analysis
based on Rust’s lifetimes, which allow Paralegal to reuse the
PDG for a function across all call sites to that function.

4.1.3 Limitations

Paralegal’s PDG construction is similar to most static analy-
ses in that it may include false dependencies by abstracting
away relevant details of the code. For example, Paralegal will
assume a branch could always reach both targets. This causes



a false dependency in cases like z = if e { x } else { y }

where e is an expression that always evaluates to false. The
impact of such inaccuracies on soundness or completeness
depends on the policy being checked. For example, including
a false dependency can cause a false-positive for policies like
“secure sources cannot flow to insecure sinks,” while it may
cause a false-negative for policies like “user data must flow to
a deletion function.”

Paralegal errs on the side of including false dependencies
rather than omitting true dependencies. Specifically, Para-
legal’s guarantee is that in Rust code without unsafe blocks,
all true dependencies will be reflected in the PDG.

In general, developers should treat Paralegal output similar
to that of a linter or bug finder. That is, a developer should
not assume, “if Paralegal says my app is okay, then it is 100%
secure or bug-free.” Rather, the developer should assume,
“if Paralegal says my app contains a policy violation, then I
should investigate it.” Some sources of inaccuracy are inci-
dental and can be addressed with further engineering (see §5).
Others are fundamental and discussed next.

Unsafe code. Rust uses unsafe blocks to permit operations
that cannot be verified safe by the compiler, including FFI
(e.g., calling C libraries) and use of raw pointers (as opposed
to compiler-checked references). Paralegal may omit true de-
pendencies induced by unsafe code, such as aliases induced by
pointer arithmetic, because Paralegal reasons about aliasing
via Rust’s lifetimes.

Paralegal mitigates this limitation by using its type-based
approximation. A common pattern in Rust FFI is to carefully
encapsulate unsafe code within an API presenting a safe inter-
face. Paralegal can analyze such an API just at the interface
level without observing the unsafe internals.

Interior mutability. Rust provides “interior mutability”
primitives like RefCell<T> which permit mutating data behind
an immutable reference—that is, one can turn an &RefCell<T>

into an &mut T. This special case violates the assumption of
the type-based approximation that a function cannot mutate
immutable references. Therefore, Paralegal may omit true
dependencies when approximating calls to functions using
interior mutability. This limitation also extends to shared-
memory constructs, such as locks and mutexes.

This limitation is mitigated by two factors. First, inte-
rior mutability is rare in idiomatic Rust. For example, the
largest application in our evaluation (HyperSwitch, about
198k LOC) contains no interior mutability in its application
logic. Second, interior mutability impacts Paralegal’s type-
based approximation, not the dependency analysis. For ex-
ample, a directly observed mutation *cell.borrow_mut() = 1 is
registered correctly as mutating cell, but if it takes place in
fn foo(cell: &RefCell<T>) and foo get approximated, it is not.

External effects. Paralegal may omit true dependencies
induced by effects on external systems like a file system, OS,
or database. For example, if f is a File called foo.txt, then
Paralegal understands that f.write(bytes) affects f because

write requires a mutable reference to f. But Paralegal does not
understand that f2 = File::open("foo.txt") is effectively an
alias on f, and that f2.read() should depend on f.write(bytes).

4.2 Markers

To articulate privacy policies in terms of a PDG, privacy engi-
neers need to refer to nodes of interest. Most prior systems
keep policy-related information entirely outside the codebase,
and consequently require policies to embed direct references
to functions or types. Such direct references make policies
more complex and brittle, as §7.2.2 will show.

Paralegal instead uses markers to abstract categories of re-
lated nodes in the PDG. A marker is an abstract label, such as
“sensitive data” or “public sink.” Application developers attach
markers to code elements, either via source-level annotations
(e.g., #[marker(user_data)]) or an external configuration file.
Developers can mark functions, function arguments, return
values, and type definitions. The basic concept of a marker
is relatively straightforward, but the subtleties lie in two ar-
eas: how Paralegal propagates markers to the PDG, and how
Paralegal uses markers to optimize PDG generation.

Marker propagation. After generating the PDG, Para-
legal assigns markers to the concrete nodes in the PDG that
represent the abstract marked code elements. A parameter p of
f , marked with m is a straightforward case. Paralegal assigns
m to all PDG nodes that represent the actual parameter p at
call sites of f . Paralegal handles markers on return values of
functions analogously.

The type case is more complex. The simplest situation is
as follows: say a marker m is attached to a type τ, and say a
node n = p@cs has p : τ. Then Paralegal propagates m to n.

However, this algorithm may not always capture a privacy
engineer’s intent. For example, say a Password type is marked
sensitive, and a User struct contains a field of type Password.
Then say the code has a variable u : User and calls f(&mut u)

on some black-box function f . The modular approximation
will create one node for u at this call site, but not a node for
every field in u.1 The simple propagation strategy therefore
neglects to attach m to nu. However, the privacy engineer
likely expects that because Password could have been mutated
by f , the node nu should be treated as if it were of type
Password. To capture this expectation, Paralegal’s actual algo-
rithm propagates the marker. Say a node has p : τ′. If marked
type τ appears anywhere within τ′ (e.g., the User struct, or
τ′ = Vec<τ>), Paralegal propagates m to p.

Adaptive Approximation. In Paralegal, policies can only
talk about application entities that are marked. Paralegal may
therefore soundly assume that only code interacting with
marked entities influences policy enforcement outcomes. Para-
legal leverages this assumption when analyzing an instruction
that calls a function f by checking if there are markers reach-

1Such an approach would work, but increases the size of the PDG and
leads to no additional precision, since function signatures are not precise
enough for a field-sensitive approximation.



able from the body of f , and if not, approximates f ’s effects
via type signature instead of generating its subgraph. Para-
legal determines reachable markers by visiting all code reach-
able from f with a cheap call graph traversal. Paralegal fully
monomorphizes f and all other functions during the traver-
sal to prevent ambiguity as to what code is called for trait
methods. Paralegal caches and reuses the results of marker-
reachability traversals for each function. This optimization
substantially improves PDG generation speed (§7.5).

4.3 Policies

Paralegal policies are assertions about either necessary or
impermissible paths in the marked PDG. For example, a high-
level privacy policy such as “a user must be able to delete all
of their user data” can be encoded as the assertion “for all
types marked userdata, there must exist a path from a node
with that type to a node marked as a deletion function.”

To express such assertions, Paralegal provides a policy lan-
guage with a controlled natural language syntax that mimics
the structure of legal documents. Paralegal compiles poli-
cies into Rust programs that use a low-level API to query
the marked PDG. The primitives of the DSL are markers,
variables, and PDG relations. Primitive relations include:
• a "value" marked sensitive

binds PDG nodes marked sensitive to the name "value".
• "value" goes to "sink"

Checks if a data flow path from "value" to "sink" exists in
the PDG.

• "value" affects whether "operation" happens

Checks if "operation" has a control flow dependency on
"value".

• "value" goes to "sink" only via "disclosure"

Holds if every data flow path from "value" to "sink" contains
at least one node in the set "disclosure". This primitive
allows policies to describe instances of declassification.

Privacy engineers than compose these primitives in first-order
logical formulas. For example, a formula like this:

∀x ∈ X . ∃y ∈ Y. P(y) =⇒ (P(x)∨S(x,y))
is expressed in the policy language as the program on the left,
which Paralegal compiles into the Rust code on the right:
1. For each "x" in X:

A. There is a "y" in Y where:
a. If P("y") then:

i. P("x")
or
ii. S("x", "y")

X.iter().all(|x|
Y.iter().any(|y|

!P(y) || P(x)
|| S(x, y)))

The policy language requires policy writers to delineate
the scope of each line in their policy with clauses (e.g., 1,
A.). This structure of nested clauses, inspired by legal writing,
seeks to achieve readable and unambiguous properties. The
policy language is decidable because all primitive relations
are decidable (the PDG is finite, so reachability is decidable),
all quantifiers are decidable (they range over finite subsets of
nodes), and recursive policies are inexpressible. §A.3 has the
full grammar for the policy language.

Paralegal allows policy writers to author policies as graph
queries using the low-level Rust API. This primarily helps pol-
icy writers customize error messages, for example by emitting
traces and paths through the PDG.

4.4 Error Messages

Paralegal’s error reporting helps developers diagnose a failing
policy. Error messages print the violated rules and the source
code location that instantiated a given quantified variable (as
in Figure 4). Paralegal reports them with a diagnostics frame-
work inspired by the Rust compilers’s error messages, relating
graph nodes to snippets of the source code. Policies written
with the low-level API can use this diagnostics framework
directly to create customized error messages.

5 Implementation
Our Paralegal prototype consists of 15.1k lines of Rust and is
implemented as a Rust compiler plugin.

Multi-crate support. Paralegal extends analysis across
multiple crates by persisting the Rust MIR, the “outlives”
relationships of lifetimes, output of the Rust type checker,
and any Paralegal marker annotations. In one of our largest
case studies (the social media application Lemmy [55]) this
metadata for all crates combined is 411MB. (For context:
rustc produces 258MB of metadata for the same application.)
During PDG construction, Paralegal lazily loads the MIR
for reachable functions and generates their PDG if markers
are reachable. Paralegal’s PDGs can span all crates for which
cargo initiates compilation in the process of building the target
application. Developers can limit this set for performance.
This approach preserves source location information and error
messages may reference locations in any loaded crate. A PDG
cannot extend to external shared or precompiled libraries; in
such cases, Paralegal uses the modular approximation.

Await. Paralegal deliberately discards all control flow in-
troduced by the state machine created by await. This control
flow is needed for Rust’s async runtime, but it causes confus-
ing false positives because privacy engineers do not expect
these dependencies due to their transparent nature. The conse-
quence of removing them is more predictable policy behavior
at the cost of being unable to check for certain malicious
async patterns, such as futures that hang indefinitely.

Marker limitations. Paralegal’s marker annotations cur-
rently only support functions, function arguments, function
return values, and type definitions. While these represent the
common boundaries for semantic meaning of source code
elements, policies would be more ergonomic if Paralegal al-
lowed markers to be attached to fields of a type or global
constants. Expanding the set of markable elements is feasible
with additional engineering.

6 Case Studies
We now discuss our experience applying Paralegal to eight
real-world Rust applications. We tried to pick popular, pro-



Application Type LoC Policies Unique
Markers

Marked
Locations

Entry
pts.

Atomic [8] (v0.34.2) Graph DB 9.6k Access Control 4 4 1
Contile [27] (v1.11.0) Advertising 4.9k Purpose Limitation 3 5 1
Freedit [41] (v0.6.0-rc.3) Social 6.6k Data Retention/Expiration 5 5 4
Hyperswitch [44] (v0.2.0) Payments 198.9k Credential Security, Limited Collection 6 7 3
mCaptcha [59] (v0.1.0) Authentication 10.6k Data Deletion, Limited Collection 5 5 2
Lemmy [55] (v0.16.6) Social 31.4k Access Control 8 145 72
Plume [66] (v0.7.2) Blogging 21.4k Data Deletion 7 7 1
WebSubmit [68] (v1.0) Homework 1.6k Data Deletion, Access Control 11 18 3

Figure 6: Case study applications with code size, policies, and Paralegal marker statistics. “Marked Locations” indicates the
number of source code entities (arguments, returns, etc.) we marked; “Entry pts.” is the number of analysis entry points.

duction-level Rust applications that cover a range of domains
and coding styles (Figure 6). The source code for these appli-
cations exercises language features and data-structures typi-
cally found in realistic software, including loops, traits, type
parameterization, closures, higher-order functions, error han-
dling, vectors, hash maps, strings, and async. We marked be-
tween four and 145 program locations, roughly proportionally
to the amount of application code covered by policies.

Policies cover privacy properties from classic access con-
trol and security to data deletion and expiration, as well as
purpose limitation (rules about what purposes data can be
used for). We formalize 11 policies (1–2 per application),
each with several clauses and nesting up to three quantifiers
per clause (median: 3). The source code for all case studies,
as analyzed in this paper, is available in our artifact [3].

6.1 Policies

We initially developed policies by examining source code,
then directly writing policies about the expected flows in
the PDG. But these policies used more markers and were
more closely tied to source code than necessary. Hence, we
switched to defining the policy first, using application func-
tionality and documentation (as a privacy engineer would),
then applying those policies to source code.

We found this approach made it easier to define policies,
and that these new policies were clearer, more concise, and
more portable to other applications. Privacy-related proper-
ties of applications are often obvious from the UI, function-
ality (e.g., account deletion), or documentation. By contrast,
navigating a large, unfamiliar codebase to search for privacy-
relevant sections is much harder. This experience inspired us
to design the policy DSL. In two of eight cases we studied
(see §6.3) our DSL policies, written without knowledge of
source code, matched application semantics without revision.

We found that Paralegal is expressive enough to repre-
sent all the policies we wanted to check. Two applications
(mCaptcha and Plume) use identical data deletion policies, ex-
cept for their application-specific marker names. For policies
that are fundamentally dynamic, we were able to define static
approximations. For instance, Freedit, a social media platform,

stores a user’s viewing history, but deletes the data after three
days. Since the current time is only available at runtime, Para-
legal cannot directly verify that Freedit obeys the three day
expiration limit. However, it can approximate this policy by
checking that viewing_history flows to an expiration_check and
that expiration_check has control flow influence on a deletes.

6.2 Markers

We found it easiest to apply markers to applications with mod-
ularized code that has clearly defined semantics. Applications
with specialized delete or authorization check functions were
simpler to apply markers to than applications that inline such
logic inside large functions. We also found that many of our
markers (e.g., user_data) could be applied to types alone. Id-
iomatic Rust programs often define fine-grained, custom types
that are clearly named for the type of data they represent.

We mainly made two types of source code change. The
first is because our prototype cannot apply markers to con-
stants or to fields of a type, so we defined no-op functions
mark_{marker_name}(&data), whose sole purpose is to apply the
appropriate marker to data. Second, if applications inlined
privacy-critical functionality inside a larger function, there
was no way of applying a marker to just the relevant lines.
While this is not fundamental—a more complex policy could
handle it—we extracted the logic into a helper function and
marked that function. Via this process, Paralegal encouraged
us to cleanly demarcate privacy-relevant code.

§A.2 describes four other minor changes we made.

6.3 Selected Experiences

Two cases in our experience of developing policies stand out.
Atomic is a graph database that lets users create, edit, and

share graph-structured data [5, 8]. Each time a user modifies
a database resource, Atomic stores a signed commit record.
Before creating a commit, the application must verify that
the user has permission to modify that resource. Crucially,
this authorization must happen before updating the database
resource [7]. Our Paralegal policy asserts that a resource that
will be modified first flows to an authorization check, which
has control flow influence on the modification.

When we first ran this policy on the application, it failed,



Application Bug Description Reference Paralegal Policy
Plume [66] Comments and Media not deleted when a user

is deleted.
commit 19f1842,
issue 806

If a user flows into a delete function, all types
marked as user data flow into a delete function.

Atomic [8] Users can grant themselves write access to data
without prior access.

commit 46a503a Write permissions must be checked before a re-
source is updated.

Lemmy [55]

Banned or deleted users can log into a server. commit b78826c (1) A user deletion check and a ban check must
influence every database access, except those
reading the active user.
(2) Community deletion check and user ban check
must influence every database write to a
community.

Deleted users can perform actions in a server. commit 2966203
Users can write to a deleted community. commit 2402515,

issue 2372
Banned users can act in communities. issue 2372

Figure 7: Paralegal found seven bugs, including two previously unknown ones, in three applications: Plume [66], Atomic [8],
and Lemmy [55]. The rightmost column summarizes, in prose, the Paralegal policy we used to find each bug.

even after the developers fixed the bug. Upon investigation,
we realized that we had missed an edge case: if a resource
is new, the application first modifies the resource to set de-
fault permissions, then executes the permission check. We
missed this logic initially because it was unclear in the applica-
tion’s documentation. In this situation, we had two options: (i)
change the policy to exempt modifications that don’t depend
on user-provided data; or (ii) extract this benign modification
into a helper function with an exception marker, and exempt
this marker in the policy. The first choice burdens the pol-
icy with matching a specific code pattern; the second (which
we chose) exempts only a specific code instance and clearly
delineates the exception in the code itself.

mCaptcha is a proof-of-work (PoW) CAPTCHA service
focused on privacy [59]. Website owners register sites with
mCaptcha and embed mCaptcha API calls into their sites.
mCaptcha’s PoW algorithm features a tunable “difficulty”,
designed to balance security and latency.

In addition to adding a data deletion policy, which we
reused from Plume (Figure 2a), we observed that mCaptcha
collects optional consent to “gather performance statistics
[...] and make them available to other mCaptcha installations”
for difficulty tuning [45]. We wrote a policy to enforce that
mCaptcha checks whether a user has opted in before storing
their data, but the code failed this policy.

On discussing the issue with the mCaptcha developers, it
turned out that we had misinterpreted their privacy goals—
statistics are always collected, even if website owners don’t
opt into sharing them. The developers, however, indicated
that they would be open to reconsidering this choice [58]. In
addition, the discussion helped the mCaptcha developers find
a (related) data integrity bug: they deleted all statistics when a
user revoked their opt-in consent, rather than just the consent.
This illustrates how the discipline enforced by Paralegal helps
developers reflect on their code and find issues.

7 Evaluation
Our evaluation of Paralegal seeks to answer five questions:
1. Does Paralegal find bugs that result in privacy violations

in real applications? (§7.1)
2. How does Paralegal compare to IFC and CodeQL in terms

of expressiveness, practicality, and ergonomics? (§7.2)
3. Does Paralegal’s decoupling of code and policies improve

ergonomics for evolving applications? (§7.3)
4. Is Paralegal fast enough for interactive use, and how does

its runtime scale with the amount of code analyzed? (§7.4)
5. How does Paralegal’s adaptive approximation optimization

contribute to its effectiveness and speed? (§7.5)
Setup. All experiments run on a server with an Intel Xeon
E3-1230v5 CPU (3.4 GHz) and 64 GiB RAM, on Ubuntu
20.04 using Rust nightly-2023-08-25.

7.1 Finding Privacy Bugs with Paralegal

We applied Paralegal to eight applications (Figure 6) to inves-
tigate its ability to discover bugs. A good result for Paralegal
would show that it finds previously reported bugs as well as
new bugs, without generating many false positives.

Figure 7 summarizes the bugs Paralegal found: Paralegal
found two previously unknown privacy bugs that were con-
firmed by the developers, as well as five previously known
privacy bugs that the developers had already fixed.

Atomic and Plume. Paralegal found three known bugs in
Plume and Atomic [6, 64, 65]. In Atomic, the policy passes
Paralegal after the fix [6]. In Plume, however, the policy still
fails after the developers’ fix [64], since even though the
application now deletes comments correctly, it still fails to
delete users’ uploaded media (a separate, known bug [65]).

Lemmy. We ran Paralegal on 72 HTTP endpoints in
Lemmy. Paralegal found two bugs previously fixed by the
Lemmy developers and two new additional bugs.

Known Bugs. A user may not access a Lemmy instance if
their account has been banned or deleted. However, Lemmy’s
helper for authorizing already logged-in users omitted a check
for whether their account is deleted [50]. Consequently, Para-
legal flagged the instance authorization policy in all endpoints.
After the fix [30], 71 endpoints passed the policy, but Para-
legal still reported a failure in the login endpoint. Since the the
login endpoint doesn’t use the authorization helper for logged-

https://github.com/Plume-org/Plume/commit/19f18421bcd9cb9d1654de24f9a04747691036b7
https://github.com/Plume-org/Plume/issues/806
https://github.com/atomicdata-dev/atomic-server/commit/46a503adbfc52678c97e52f6e8cfaf541aa6492d
https://github.com/LemmyNet/lemmy/commit/b78826c2c80567192b4e2ce5f8714a094299be04
https://github.com/LemmyNet/lemmy/commit/2966203653c16013281af5bc1e6260e73fff4571
https://github.com/LemmyNet/lemmy/commit/2402515fccee0c6ee79ed8e1fecf6b0449efa2c4
https://github.com/LemmyNet/lemmy/issues/2372
https://github.com/LemmyNet/lemmy/issues/2372


Application Policy IFC CodeQL Paral.
Atomic Authorization ✓ r ✗ †∗T¶ ✓

Plume Data Deletion ✗ ✓ ✓

Hyperswitch Credential Security ✓ — ✓ r

Hyperswitch Limited Collection ✓ r — ✓

Websubmit Data Deletion ✗ ✗ ‡A ✓

Websubmit Access Control ✗ ✗ ∗ ✓

mCaptcha Data Deletion ✗ ✓ T¶ ✓

mCaptcha Limited Collection ✓ r ✓ T¶ ✓

Freedit Data Retention ✗ ✗ ‡ ✓

Lemmy Access Control ✓ r (✓) †¶ ✓

Contile Purpose Limitation ✓ — ✓

Figure 8: Paralegal expresses and enforces properties that
baseline approaches (classic IFC and CodeQL) struggle with.
✓ indicates success, (✓) success on some versions, ✗ failure;
rdenotes required code changes beyond annotations, and we
indicate CodeQL results affected by †control flow analysis,
‡hidden source code, ∗taint propagation to/from structures,
Aalias analysis, Tunconstrained templates, and ¶async code.

“—” means the application was too large to translate to C++.

in users, it still did not check for account deletion [53]. The
login endpoint was also missing a check if the user had been
banned. After a second fix by the Lemmy developers [31], all
72 endpoints passed the policy.

New Bugs. Lemmy prohibits users to write in deleted com-
munities: if a community was removed for problematic con-
tent, for example, users must not be able to make new posts.
The Lemmy developers already found missing community
deletion checks in five endpoints [32, 51], but Paralegal found
16 further endpoints lacking these checks.

In addition, a banned user should not be able to write to a
community. Paralegal reported that some Lemmy controllers
are missing these community ban checks. This allows by-
passing access control: for example, a banned community
moderator can immediately unban themselves. The Lemmy
developers confirmed both bugs [52, 54].

7.2 Comparison with Related Work

Next, we evaluate how Paralegal’s expressiveness and er-
gonomics compare to prior approaches, using the eleven poli-
cies from our case studies. We consider two baselines: (i) clas-
sic IFC based on a lattice of security labels; and (ii) CodeQL,
a recent code analysis engine deployed at GitHub [15]. We
tried to express the policies of our case study applications for
both baselines. In IFC, this boils down to imposing a label hi-
erarchy and determining declassification points. For CodeQL,
we implemented appropriate queries.

7.2.1 Comparison with IFC

In classic IFC, labels applied to data form a lattice, and the
system ensures that data with low-security labels is free of
influence from values with high-security labels (the “non-

interference” property). Some security and privacy concerns
fit into this model, but its expressivity is limited compared to
generic tools (CodeQL and Paralegal). As such, we expect
IFC to be able to express some, but not all policies.

Figure 8 shows that IFC can enforce six of the eleven poli-
cies. Two properties, in Contile and Hyperswitch, directly fit
IFC’s notion of restricting flows of high-security values into
low-security sinks. Policies in Lemmy, Atomic, Hyperswitch
and mCaptcha require access control or consent checks prior
to operations on data, which IFC can approximate via se-
lective declassification. However, this strategy requires code
changes beyond the usual addition of annotations (r); in this
case, turning the check into a data flow operation, as IFC
cannot declassify (i.e., remove a label) via control flow. Web-
Submit’s Access Control policy is a complex, data-dependent
property that requires a list to contain only “blessed” receiver
email addresses. Since IFC never prohibits upgrading a se-
curity label (e.g., from the low security “external” to high
security “blessed”), IFC alone is insufficient to enforce this
policy. Disciplined use of data types, combined with IFC, can
enforce this property, but would require a substantial code
rewrite. (Freedit’s Data Retention policy contains a similar
pattern.) Finally, Data Deletion and Retention policies rely
on a “must reach” pattern that requires a value to reach a
sink (i.e., deletion). IFC can enforce safety but not liveness
properties, i.e., it can only check the absence of prohibited
flows, but not mandate the existence of data flows. Thus, IFC
fails to express and enforce these policies.

7.2.2 Comparison with CodeQL

CodeQL extracts a program’s AST and derived information
into a database, and developers write queries against it in
a Datalog-like language. Since CodeQL lacks support for
Rust, we translated the relevant parts of each application into
C++, the most similar language to Rust with CodeQL support.
Two applications (Hyperswitch and Contile) have policies
that touch large amounts of code (1.3–1.5k LoC, plus library
functions), so we omit them. For Lemmy, we translate one
representative endpoint, but omit 71 structurally similar ones.
Our ports seek to faithfully reproduce the control and data
flow of the Rust code, but replace Rust’s Result with C++ ex-
ceptions. We implement the queries using CodeQL’s libraries
for data flow [18] and control flow analysis [19].

CodeQL’s query language can express all eight relevant
policies, but its analysis engine fails to enforce some of them;
when this happened, we debugged the issue sufficiently to pin
it down to one or more limitations in CodeQL or its libraries,
and stopped investigating further (i.e., our analysis may have
missed further problems masked by the initial failure).

Policy Effectiveness. Figure 8 shows the outcome of each
CodeQL policy. Plume’s Data Deletion policy works; as do
mCaptcha’s policies (with caveats, see below) and Lemmy’s
Access Control policy in some versions of the code. Other
properties fail due to combinations of limitations in CodeQL,



identified by symbols:
(†) Control flow analysis in CodeQL is not inter-procedural.

This causes a false positive with Lemmy’s access con-
trol policy, which uses a helper function for access con-
trol checks. CodeQL’s control flow analysis also (inten-
tionally [21]) ignores certain complex control flow pat-
terns [22], which causes a false positive in Atomic.

(‡) CodeQL assumes no data flows exist through library calls
whose source code is unavailable. This affects Websub-
mit’s Data Deletion policy, which hinges on detecting
data flow into a value-type constructor provided by a
database library; similarly in Freedit’s Data Retention,
CodeQL misses data flow through a database method.
While CodeQL allows developers to write manual models
for library functions, this is onerous and error-prone.

(∗) Taint propagation to fields within a structure and from
fields to the structure itself requires manual modeling [20].
This complicates policies over markers on a structure that
expect to detect flows of that structure’s fields into a sink;
or policies over markers on elements of a container that
expect to detect flows of the container itself. The CodeQL
developers manually model taint propagation for collec-
tion elements for some standard library data structures but
do not (yet) model std::unordered_map, which Atomic and
Websubmit’s Access Control use.

(A) CodeQL currently lacks an alias analysis for C++, due to
performance issues [24]. As a workaround, the developers
manually model methods, e.g., for std::vector::push_back,
but CodeQL lacks a default model for initializer lists,
which show up in Websubmit’s code checked by the Data
Deletion property, and require reasoning about aliasing.

(T) Our C++ ports replace trait-constrained Rust types with
C++ templates. CodeQL cannot analyze code with unin-
stantiated template parameters [23], even when con-
strained by concepts. By contrast, Paralegal can analyze
uninstantiated, parameterized code by exploiting trait con-
straints with the modular approximation.

(¶) C++ has no language-level async support, but provides an
async library function. When we use it in place of Rust’s
async, CodeQL misses data and control flow dependen-
cies through this function [25], causing false positives and
false negatives in Atomic, mCaptcha, and Lemmy. As a
workaround, we use synchronous C++ code.

The last two limitations in part result from impedance mis-
matches between C++ and Rust, so we report them in Figure 8,
but still consider the affected policies to succeed.

By contrast, Paralegal has an inter-procedural control flow
analysis, models the effects of unknown library code via mod-
ular approximation, collapses taints in and out of structures
without developer effort, and relies on Flowistry’s modular
alias analysis for Rust. It also handles uninstantiated type
variables constrained on traits by approximating the effect of
trait methods, and handles async Rust. As a result, Paralegal
successfully expresses and enforces all these policies.

Policy Structure. Paralegal is designed to distribute work
between markers, program analysis, and policy. CodeQL does
not have markers (or a marked PDG), and it provides only
low-level program analysis primitives. Therefore, we inves-
tigated how much of a CodeQL query corresponds to work
done by Paralegal outside of the policy. We answered this
question by qualitatively labeling each chunk of a CodeQL
query (precisely, a CodeQL predicate) as either “policy” or
“not policy” code. For instance, this CodeQL predicate in the
Plume policy to find deletion functions is labeled as “not
policy” because it serves the same function as a Paralegal
marker:

predicate is_delete(DataFlow::Node n) {
n.asParameter().getFunction().getName()
.regexpMatch(".*deleteAny.*") and
n.asParameter().getIndex() = 0

}

To check the reliability of this qualitative judgment, two au-
thors of this paper independently labeled 30 predicates and,
after resolving one conflict, achieved 96% agreement.

Across all CodeQL policies, we labeled only 36% of predi-
cates as policy code. From our observations, the remaining
64% of code fall roughly into three categories: (i) predicates
identifying code elements (i.e., markers), (ii) predicates defin-
ing the semantics of external code (i.e., models), or (iii) pred-
icates defining primitives for code analysis. This result shows
that Paralegal’s design effectively separates concerns that are
otherwise mixed together in existing systems.

7.3 Developer Ergonomics

We now evaluate the maintenance effort Paralegal imposes on
developers as a codebase evolves. A developer may need to
update her Paralegal configuration as follows:
1. she may need to move a marker, e.g., because argument

order changes or a function is renamed;
2. she may need to add markers to new code elements;
3. she may need to adjust marker names because of changes

to the semantic meaning of a code element; or
4. the privacy engineer may need to change the policy be-

cause it made assumptions about application semantics
that no longer hold or because the policy goal changed.

Mechanical marker movement is easy, but changes to what
markers mean impose higher cognitive developer burden, and
policy changes require involving the privacy engineer.

To evaluate this, we run Paralegal on all commits of Atomic,
starting with the introduction of the (buggy) permission
model, using the same policy and markers as in §7.1. A good
result for Paralegal would show that changes to markers are
rare and the policy code is robust—i.e., that the policy is ab-
stracted away from code details, and that the markers are at a
granularity that avoids frequent changes.

The experiment covers 1,024 commits between June 9,
2021—when Atomic introduced the feature that our policy
targets—and March 26, 2024. 87 commits failed to compile



and we skip them. The code Paralegal analyzes for the policy
is a subsection of the entire application, but changes over the
course of the experiment. We confirmed with the develop-
ers that the intent of the policy remains the same throughout.
Since all markers assignments are within Atomic’s workspace
crates, only changes to code in the workspace can require ad-
justments to markers. On average, Paralegal’s analysis touches
907 lines of within-workspace code (min: 411, max: 1,196).
Within the 936 functional commits, 66 commits modify one
or more analyzed lines, with 60 lines changed on average.
Over the entire codebase, Paralegal’s analysis touches 22k
lines of code affected by 84 commits, with a mean of 1,165
lines changed per commit.

Paralegal detects the permission bug in each commit be-
fore the developers’ fix (46a503a, 186/936 commits in; June
27, 2021) and passes on every commit thereafter. We found
two commits that impacted markers: (i) a renaming of the
marked function (aba49fe); and (ii) replacing a previously-
marked function with one that takes additional configuration
arguments (e0cf2d1). The former commit required no devel-
oper intervention2 and the second commit caused Paralegal’s
policy checks to fail. Hence, Paralegal would have alerted the
developer even if she neglected to move/adjust the markers
previously. The policy itself required no modifications to ac-
commodate code changes—unlike what might be expected
if the policy targeted syntactic elements. This indicates that
Paralegal’s policy/code decoupling is robust.

7.4 Performance and Scalability

We now investigate Paralegal’s performance and scalability
on the eight case-study applications (Figure 6). We explore
three setups that are representative of how we imagine Para-
legal will be used in practice: (i) running locally on a project’s
workspace (“Workspace Only”); (ii) running interactively on
a specific subset of code (e.g., in an IDE plugin); and (iii)
running across a project’s code and its entire dependency
tree (“All Dependencies”, e.g., in CI). These setups represent
different trade-offs in terms of performance and soundness:
the first two prioritize low latency, while the third minimizes
false negatives as it check properties over all reachable code.

Paralegal is a rustc compiler plugin that operators on Rust’s
MIR. As a consequence, creating PDGs for a target crate re-
quires first compiling all dependencies to make metadata and
MIR for each function available. The applications with the
largest dependency corpus (Lemmy and Hyperswitch) each
take about two minutes to compile. This time is independent
of Paralegal configuration and incurred only once, unless de-
pendencies change. Most of this time is in rustc and applies
to any compiler plugin: at most 4% of time is related to Para-
legal-specific tasks, such as persisting the MIR to disk. In the
following experiments, we omit this one-off cost and focus on

2A renamed marked function retains its marker if developers attach the
marker via inline annotation. With markers attached via external configura-
tion, the policy would fail and alert the developer.
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Figure 9: In the “Workspace Only” setup, which runs Para-
legal’s analysis only over crates in the current workspace,
Paralegal’s end-to-end runtime is under 2.2 seconds for most
applications. The two exceptions are Lemmy, which has many
analysis entrypoints (72) and Hyperswitch, which is a large
crate (≈200k LoC). PDG construction dominates runtime.

the time Paralegal spends generating the PDGs and checking
policies over them.

We ran all performance experiments ten times. Variance is
generally low, with maximum outliers deviating 0.1 seconds
from the mean in the “Workspace Only” configuration and
1.2 seconds in the “All Dependencies” configuration.

End-to-End Runtime for “Workspace Only”. Most
policy-relevant code is usually concentrated in a few crates,
such as the workspace a developer is actively working on. In
the “Workspace Only” configuration, we set Paralegal to only
include code from the current workspace in the PDG and use
the modular approximation for functions from other crates.
Focusing the analysis on the workspace potentially sacrifices
some precision, as it will miss markers assigned in crates out-
side the workspace, but reduces latency as PDGs are smaller
and faster to construct in this setting than when considering
all dependencies. Paralegal finds all bugs reported in §7.1,
even in this less-precise setup. There are no false positives
except in Contile, where adaptive approximation causes a loss
of field sensitivity for a helper function, leading to overtaint.
Paralegal offers a mitigation strategy for this case, where a de-
veloper can configure the analysis to include k+ more layers
of the call tree than adaptive approximation would include in
the PDG. In this and all further experiments, we run Contile
with k+ = 1, which eliminates the false positive at the cost of
0.3 seconds (9%) additional end-to-end runtime.

We separately measure the time spent in various stages
of the analysis: (i) rustc time outside of the compiler plugin,
(ii) PDG construction time, (iii) time spent (de)serializing
PDGs, (iv) time spent checking policies over the PDGs. A
good result would have Paralegal run in seconds.

Figure 9 shows the results. Most applications finish in under
2.2 seconds, with the exception of Hyperswitch at 12 seconds
and Lemmy at 22.5 seconds. This is likely sufficiently fast for

https://github.com/atomicdata-dev/atomic-server/commit/46a503a
https://github.com/atomicdata-dev/atomic-server/commit/aba49fe
https://github.com/atomicdata-dev/atomic-server/commit/e0cf2d1


0 200 400 600 800 1000 1200
LoC in PDG

0.10

1.00

R
un

tim
e

[s
ec

;l
og

10
]

4.87

0.03

Lemmy
Atomic
Contile

Freedit
Hyperswitch
mCaptcha

Plume
Websubmit

Figure 10: Paralegal takes a mean of 0.8 seconds per endpoint
and around five seconds in the worst case (Hyperswitch),
enabling interactive use. Note the log scale y-axis.

interactive CLI or IDE use by a developer.
However, the restriction to workspace crates trades sound-

ness for speed, as a missed marker in a dependency could re-
sult in properties spuriously passing (a false negative). While
none of our case studies encounter this situation, even simple
changes can introduce false-negatives when analyzing only
workspace code. For example, Contile’s metric data send-
ing logic uses a crate-local error handling function that we
marked; if the Contile developers were to switch to an equiv-
alent error handling function provided by a library, Paralegal
would miss the marker. Hence, Paralegal deployments might
choose to complement quick, local analysis in the “Workspace
Only” setup with a CI job that runs the analysis over the full
dependency set, as described below (“All Dependencies”).

Per-endpoint Runtime. In an interactive setting like an
IDE plugin, Paralegal only needs to run on the code that
changed at any given time (e.g., the endpoint the developer
is editing). We therefore measure the per-endpoint runtime
for the “Workspace Only” configuration, and report it as a
function of the number of lines of code analyzed. The runtime
for each endpoint excludes the overhead of running rustc on
the target crate, as an IDE setting would use an incremental
compiler such as rust-analyzer.

Figure 10 shows the results. Most endpoints take a few
seconds (mean: 0.8 seconds), and runtime generally grows
with the size of the analyzed code. Hyperswitch has the most
expensive endpoints, caused by the policy requiring Para-
legal to build a large, slow-to-construct PDG, but remains
under five seconds. These results suggest that Paralegal, with
incremental compilation, is fast enough for interactive use.

End-to-End Runtime for “All Dependencies”. We now
consider Paralegal’s runtime when analyzing all reachable
code, including all dependencies for which source code is
available. In our example applications, this results in Para-
legal analyzing between 88 and 878 crates (mean: 540). Para-
legal still uses the modular approximation for the Rust stan-
dard library (std, alloc, etc.), because the cargo package man-
ager uses a precompiled version by default. All runs use the
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Figure 11: In the “All Dependencies” setup, which runs Para-
legal’s analysis over the full codebase (including libraries),
Paralegal’s end-to-end runtime remains under 20 seconds for
all applications except Lemmy (94 seconds), where Paralegal
must construct a large PDG for each of the 72 entrypoints.

adaptive approximation optimization (§4.2) to reduce the
size of the PDG. A good result for Paralegal would show
CI-appropriate runtimes of at most several minutes.

Figure 11 shows the results. Most applications finish in
less than five seconds and PDG construction dominates run-
time in all applications except for mCaptcha. Hyperswitch
and mCaptcha have the largest target crates, so rustc time is
highest for them. Lemmy takes about 94 seconds, as its large
number of endpoints (72) results in Paralegal constructing
many PDGs (72 PDGs at ≈1.3 seconds each). Overall, the
runtime of Paralegal’s “All Dependencies” configuration is
acceptable for a CI setting.

7.5 Drilldown Experiment

Finally, we measure the impact of Paralegal’s adaptive ap-
proximation optimization (§4.2).

The optimization determines the smallest prefix of the call
tree3 to be included in the PDG, such that all markers are
reached. Paralegal approximates all function calls deeper in
the call tree by their type signature. We compare this ap-
proach to a setup where the prefix is instead determined via
a global depth limit, k. To achieve the same policy accuracy
as with adaptive approximation, we assume an (unrealistic)
oracle that, for each application, returns the minimal k such
that Paralegal reaches all markers. In our setup, the oracle is
the maximum depth observed in the adaptively-created PDG.
This approach compares Paralegal’s adaptive approximation
to the strongest possible baseline, since any larger k will result
in strictly longer runtime and no improvement in precision. A
good result for Paralegal would show that adaptive approxi-
mation substantially reduces end-to-end runtime.

In the “Workspace Only” configuration, the gains from
adaptive approximation are small, with a 10% mean speedup.

3Call graphs can have cycles, but Paralegal breaks cycles via its type-
signature-based approximation on recursive calls. This ensures a tree shape.
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end-to-end runtime by 35% on average and is necessary for
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to match the precision of adaptive approximation. † indicates
that the fixed-k version times out after 15 minutes.

Adaptive approximation makes a much larger difference for
the “All Dependencies” configuration. Figure 12 shows the
results for this setting. We label each bar with the oracle-
provided k value used in the baseline. Most importantly, the
adaptive approximation is necessary for PDG construction
to terminate in two cases: Lemmy and Plume time out after
15 minutes the fixed-k setting, indicated by a dagger (†) in
the figure. For Plume, the buggy version of the application
finishes PDG construction in tens of seconds, but the fixed
version times out, as it contains more code. In the other appli-
cations, the adaptive approximation reduces runtime by 35%
on average compared to the idealized fixed-k baseline, with
greater gains for applications with larger PDGs.

These results show that adaptive approximation, while al-
ways beneficial, is particularly critical when running Paralegal
over the full codebase of large applications and their depen-
dencies (e.g., in CI).

8 Related Work
§2 covered closely-related prior work in static analysis tools;
we now discuss other approaches that relate to Paralegal.

Information Flow Control (IFC) enforces security poli-
cies by attaching security labels to values and propagating
them through the program. Static IFC [47, 63, 67] is most
comparable to Paralegal, but on its own fails to express impor-
tant privacy properties (§7.2) and is difficult for developers
to adopt [34]. Dynamic IFC can increase precision [13], en-
force policies that depend on runtime knowledge, and handle
languages which are difficult to analyze statically [76, 80,
82]. However, the tracking incurs runtime overheads which
increase with the level of precision used and requires a run-
time buy-in. In addition, violation cases lead either to crashes
or confusing application behavior in deployment. Paralegal
uses static analysis avoid both of these problems.

Bug-finding tools intelligently explore the state space of a
program or API to find bugs. Bug finders are easy to adopt and
handle a variety of code styles but are usually specialized to
a domain such as concurrency [70], distributed systems [75],
or file systems [12, 48, 62], and while some offer customiza-
tion, such as the file-system bug finder eXplode [81], their
properties are ultimately hard-coded. Paralegal requires some
annotation effort, but allows checking flexible policies while
retaining the compatibility with arbitrary code styles.

Code linters identify issues by looking for syntactic pat-
terns such as AST fragments [61] or function names [56].
This approach is simple and practical, but limited in expres-
siveness and precision. Paralegal uses a more semantic model
of the code (a dependency graph) to permit more expressive
policies and more robust enforcement.

Policy enforcement tools check policies over data, usu-
ally based on runtime mechanisms. The often target domain-
specific problems, such as preventing buggy queries [60, 83]
or serverless functions [43] from leaking data. Sesame [29]
enforces more general policies by leveraging Rust’s types
and limited static analysis, but requires runtime mechanisms.
Paralegal is general and entirely based on static analysis.

9 Conclusion
Paralegal is a practical static analysis tool for checking high-
level privacy properties against Rust applications. Paralegal
extracts a marked Program Dependence Graph (PDG) from
Rust programs annotated with markers, and checks privacy
properties written in a high-level DSL against it.

Our evaluation shows that Paralegal finds privacy bugs in
real Rust programs, requires modest developer effort as code
evolves, and runs in tens of seconds, making it suitable for
interactive and CI use. Paralegal is open-source software and
available at: https://github.com/brownsys/paralegal.
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A Appendix

A.1 Case Studies In Depth

(1) Atomic is a graph database server that lets users create,
edit, and share graph-structured data [5, 8]. It uses the Actix
web framework [1].

Each time that a user modifies a database resource, Atomic
stores a signed commit record. Before creating a commit, the
application must verify that the user has permissions to mod-
ify that resource. Earlier “parent” commits for the resource
specify permissions for later commits. For instance, a commit
that creates a new resource must also specify which users
are allowed to edit that resource. For each commit, the appli-
cation must check the permissions on the commit’s parent.
Crucially, this authorization must happen before updating the
in-memory copy of the database resource [7]. If the autho-
rization check happened after applying the commit, the user
could first change their parent commit to one that gives them
the requisite permissions, thereby guaranteeing that they pass
the permission check.

To encode this policy in Paralegal, we define a commit

marker for the Commit type. We then create a modify_resource

marker for all operations that modify in-memory references
to resources. We add a sink marker to the write operation
that flushes the modified resource back to the database. Fi-
nally, we add an auth_check marker for checking the user’s
permissions. The Paralegal policy enforces that if a resource

flows to a modify_resource then to a sink, the resource flows to
an auth_check, and there is a control flow influence from the
auth_check to the modify_resource.

(2) Contile is the backing server of the Mozilla Tile Service,
which serves as an intermediary between advertisers and the
landing page of the Firefox web browser to “ensure customer
privacy” in the advertising context [26]. Contile services small
ads, called tiles, to Firefox users.

The information available to the application is centered
around the Tags struct, which features the following comment
referencing the fields tags and extra of the struct:
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Not all tags are distributed out. ‘tags‘ are searchable
and may cause cardinality issues. ‘extra‘ are not
searchable, but may not be sent to [Metrics].

The Paralegal policy ensures that the data from the extra field
is withheld from advertiser search and that it is never sent
to the metrics server. We marked the extra field as sensitive
data. We then marked the sinks to which extra should not
flow: the first argument of both MetricsBuilder::try_send from
the cadence library and RequestBuilder::send from the reqwest

HTTP library.
(3) Freedit is a forum application that supports both Twit-

ter and Reddit-like interaction modes [41]. Freedit’s code
comments state that it only retains a user’s viewing history
for three days [40].

We write two Paralegal policies. The first requires that
when page view data is stored, a timestamp for its expiration
date is stored alongside it. The second requires that there
exists code that checks the database for expired page view
data and deletes it. We marked the identifier for the table that
stores pageview data for a user. We also marked the library
functions that insert and delete data from the data store, as
well as a library function for getting the current time.

(4) Hyperswitch is a payment router that provides a unified
interface for interacting with common payment processors.

Hyperswitch’s UI asks users to opt-in to saving their credit
card information for future transactions. We write a policy
that mandates the user’s selection determines (via control
flow) whether the credit card details are indeed stored. Hyper-
switch’s documentation also states that plain-text API keys
are only available at creation. We write a Paralegal policy
that states that an API key may only be released once to the
user creating it, and that it can only be access through its hash
afterwards.

We marked the type identifying credit card details and the
function returning the user’s storage decision. Additionally,
we marked the API key type, the permissible hash function,
and the response type for the key’s initial creation. We also
marked the return values of all endpoints to ensure that Para-
legal captures all data sent to users. We analyze the the con-
troller that creates API keys and two controllers that handle
credit card data.

(5) Lemmy is a federated Reddit-like platform [55]. Rather
than providing a single centralized website, anyone can create
an instance tailored to their interests and moderation prefer-
ences. Users create communities within those instances and
post content to them.

Our Lemmy policies focus on its access control rules: (i)
if a user is banned or deleted from an instance, they may not
read nor write data in that instance; and (ii) if a user is banned
from a community or the community is permanently removed,
users may not write data to that community.

We define four authorization check markers: one for an
instance ban check, one for an instance deletion check, and

two more for the respective community checks. We define
instance and community markers for database accesses pertain-
ing to data relevant to instances or communities respectively.
Authorization checks need to happen in 72 HTTP endpoints
in Lemmy that perform database reads and writes. Our pol-
icy stipulates that respective authorization checks need to
take place in each controller where instance or community
database accesses take place and that such checks must hap-
pen before the access and have a control flow influence. In
addition to the bugs we report, we also found two more con-
trollers that violate this policy. The controllers in question
create new sites or communities. In this special circumstance,
a limited number of database accesses are performed before
the checks to complete the initial setup of the new site or com-
munity. We manually verified that performing these accesses
is safe and then marked these locations as exceptions from
the policy.

(6) mCaptcha is a proof-of-work based CAPTCHA service
focused on privacy [59]. Website developers register their
sites with mCaptcha and invoke the mCaptcha service API
when end-users visit those sites. If a developer deletes their
mCaptcha account, mCaptcha must remove all data associated
with it. We realize this with a policy similar to §3’s example
and mark the Identity type from actix_identity as well as the
delete_user method.

mCaptcha’s PoW based algorithm features a tunable “diffi-
culty factor”, designed to balance security and accessibility
to legitimate users. To optimize this parameter, mCaptcha
can share statistics with other mCaptcha installations. Pub-
lishing this data requires explicit developer opt-in [45]. We
initially wrote a policy to enforce that performance data could
only be collected from websites that opted in. This verify-
before-collect policy failed, and after discussing the issue
mCaptcha developers, it turned out that we misinterpreted
their privacy goals: statistics are always collected, even if
developers don’t opt into sharing them. A corrected verify-
before-sharing policy passes Paralegal. However, the discus-
sion helped the mCaptcha developers find a (related) data
integrity bug: they deleted statistics when a user revoked their
opt-in consent, even though they didn’t intend to [58]. This
illustrates that Paralegal-induced discussions can be helpful
to developers.

(7) Plume. Plume is a federated blogging service [66],
and the basis of our example in §3. If a user deletes their
Plume account, the application must delete their personally
identifiable data. We formalize this policy with Paralegal by
marking the user and the types of user data: Comment, Blog, Post,
Media, and Notification. Additionally, we placed a marker on
the delete function in the diesel database ORM, for a total of
seven markers.

(8) WebSubmit [68] is a homework submission system
deployed at a U.S. university and written in 1.6k LoC of Rust
using Rocket.rs. We consider three policies: (i) data deletion,
which tests compliance with a GDPR-style “right to be forgot-



ten” by ensuring that an endpoint for deleting all of a user’s
data exists; (ii) scoped storage, which ensures that the user’s
identity is stored alongside their data; and (iii) authorized
disclosure, which encodes the access-control policy: students
may view their own answers, TAs and instructors may view all
students’ answers, and instructors may view course feedback.

We marked the data type containing student answers, dele-
tion functions, the return value of each controller (to cover
externalizing data), user identifiers provided by the frame-
work as well as functions that retrieve instructors and TA’s
from the config.

The analysis covers the endpoint that stores student submit-
ted answers and the deletion controller.

A.2 Source Code Changes

The following table lists, for each application, how many no-
op functions we had to introduce to attach markers and how
often they needed to be called.

Application # Marker Functions (calls)
Contile 2 (5)
Freedit 1 (4)
mCaptcha 1 (1)
Hyperswitch 1 (1)
WebSubmit 2 (2)

In addition, we had to make the following adjustments to
make analysis feasible or work around prototype limitations:
• Contile: We inlined one call to Result::map_err. This is a

small function critical to the policy, but because it is in
the (precompiled) standard library our multi-crate analysis
could not access its code.

• Hyperswitch: We changed the type PlaintextApiKey to use
an explicit prefix and key fields instead of a single string
and a marked accessor function for the sensitive key field.

• Lemmy: We created (generalized) model for actix::web::block
to ensure the closure it receives can be analyzed without
having to deal with the unsafe code of block.

• mCaptcha: We stubbed compile time generated code by
the "cachebust" utility as it failed to run on our machine
and is irrelevant to the policy.

• Freedit: We moved the user_cron_job function (11 LoC)
from the binary to the library. This works around a limi-
tation in the Somewhere: policy scope, which can currently
only see the entry points from one crate at a time and was
causing a false positive.

We also made the following changes to be able to express a
cleaner policy, as described in §6:
• Atomic: We factored a benign modification of the parent

of a commit into a helper function that we marked.
• Freedit: We factored a comparison used for checking ex-

pired data into a helper function that is explicitly marked.
• Lemmy: We added calls to a policy_exception function that

exempts a limited number of accesses from the policy check

as described in §A.1.

A.3 Policy DSL Grammar
⟨paralegal policy⟩ ::= Scope: ⟨scope⟩

[ Definitions: ⟨definitions⟩ ]
Policy: ⟨exprs⟩

⟨definitions⟩ ::= ⟨definition⟩ ⟨definitions⟩ | ⟨definition⟩

⟨definition⟩ ::= ⟨bullet⟩ ⟨variable⟩ is each ⟨variable_intro⟩
where: (⟨exprs⟩ | ⟨body⟩)

⟨scope⟩ ::= Everywhere: | Somewhere: | In ⟨controller⟩:

⟨exprs⟩ ::= ⟨clause⟩ ⟨operator⟩ ⟨exprs⟩
| ⟨clause⟩
| ⟨only via relations⟩

⟨bullet⟩ ::= ⟨number⟩. | ⟨number⟩) | ⟨letter⟩. | ⟨letter⟩)

⟨operator⟩ ::= and | or

⟨clause⟩ ::= ⟨clause intro⟩ ⟨clause body⟩

⟨clause intro⟩ ::= ⟨for each⟩ | ⟨there is⟩

⟨for each⟩ ::= ⟨bullet⟩ For each ⟨variable intro⟩:

⟨there is⟩ ::= ⟨bullet⟩ There is a ⟨variable intro⟩ where:

⟨variable intro⟩ ::= ⟨variable⟩ input
| ⟨variable⟩ item
| ⟨variable⟩ type marked ⟨marker⟩
| ⟨variable⟩ that produces ⟨variable⟩
| ⟨constrained variable⟩

⟨clause body⟩ ::= (⟨clause⟩ | ⟨body⟩) ⟨operator⟩ ⟨clause body⟩
| ⟨clause⟩
| ⟨body⟩

⟨body⟩ ::= ⟨bullet⟩ ⟨relation⟩ ⟨operator⟩ ⟨body⟩
| ⟨conditional⟩
| ⟨bullet⟩ ⟨relation⟩

⟨conditional⟩ ::= ⟨bullet⟩ If ⟨relation⟩ then: ⟨clause body⟩

⟨only via relations⟩ ::= ⟨only via relation⟩
| ⟨only via relation⟩ ⟨operator⟩ ⟨only via relations⟩

⟨constrained variable⟩ ::= ⟨variable⟩
| ⟨variable⟩ marked ⟨marker⟩

⟨only via relation⟩ ::= Each ⟨variable intro⟩
goes to a ⟨constrained variable⟩
only via a ⟨constrained varaiable⟩
marked ⟨marker⟩



⟨relation⟩ ::= ⟨variable⟩ does not influence ⟨variable⟩
| ⟨variable⟩ influences ⟨variable⟩
| ⟨variable⟩ goes to ⟨variable⟩
| ⟨variable⟩ does not go to ⟨variable⟩
| ⟨variable⟩ affects whether ⟨variable⟩ happens
| ⟨variable⟩ does not affect whether ⟨variable⟩ happens
| ⟨variable⟩ is marked ⟨marker⟩
| ⟨variable⟩ is not marked ⟨marker⟩

B Artifact Appendix
Abstract

Our artifact contains the code for the Paralegal analyzer, pol-
icy compiler, supporting libraries, the set of applications we
evaluate on, the benchmarker used to run evaluations, and the
plotting script to generate the figures in the paper.

Scope

The artifact allows reproducing the following results:
1. Comparison with CodeQL (column three in Figure 8).
2. Policy structure and coding claims (paragraph “Policy

Structure” in §7.2.2).
3. Bugs found by Paralegal (§7.1).
4. The ergonomics report from §7.3.
5. All claims made in performance evaluations in §7.4, such

as Figures 9 to 12.

Contents

The artifact contains:
1. Source code for the Paralegal code analyzer, policy com-

piler, and supporting libraries for annotations and the low-
level Rust API for policies.

2. The source code for all case study applications mentioned
in the paper, as well as their Paralegal policies.

3. C++ translations for the case study applications and the
CodeQL policies we tried on them.

4. Source code for the benchmarker used to run the evalua-
tions.

5. The plotting script used to generate the figures in the paper.
The Docker container version of the artifact additionally

contains the CodeQL version we used and all dependencies
needed for any software that runs or is analyzed during the
benchmarks.

Hosting

We provide two versions of the artifact: a Docker image
hosted on Zenodo [3] and a GitHub repository [2] (tag: final).

The container is intended as an everything-included solu-
tion that allows for validation without any (online) dependen-
cies.

The GitHub repository contains only the immediate source
code for the programs and use cases, as well as instructions
and lockfiles to replicate the environment used for the evalua-
tion.

Requirements

Please refer to the README distributed with the artifact for
detailed explanations of the requirements for both artifact
versions. The Docker container version requires an x86_64
machine with Docker.

B.1 Installation and Experiment Workflow

We provide detailed instructions for installation, running ex-
periments, and interpreting results in the README files for
both the Docker/Zenodo and GitHub versions of the artifact.
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