
Tuplex: Data Science in Python at Native Code Speed

Leonhard Spiegelberg Rahul Yesantharao
†

Malte Schwarzkopf Tim Kraska
†

Brown University
†
MIT CSAIL

Abstract
Today’s data science pipelines often rely on user-defined functions

(UDFs) written in Python. But interpreted Python code is slow, and

Python UDFs cannot be compiled to machine code easily.

We present Tuplex, a new data analytics framework that just-

in-time compiles developers’ natural Python UDFs into efficient,

end-to-end optimized native code. Tuplex introduces a novel dual-
mode execution model that compiles an optimized fast path for the

common case, and falls back on slower exception code paths for data

that fail to match the fast path’s assumptions. Dual-mode execution

is crucial to making end-to-end optimizing compilation tractable:

by focusing on the common case, Tuplex keeps the code simple

enough to apply aggressive optimizations. Thanks to dual-mode ex-

ecution, Tuplex pipelines always complete even if exceptions occur,

and Tuplex’s post-facto exception handling simplifies debugging.

We evaluate Tuplex with data science pipelines over real-world

datasets. Compared to Spark and Dask, Tuplex improves end-to-end

pipeline runtime by 5–91× and comes within 1.1–1.7× of a hand-

optimizedC++baseline. Tuplex outperformsother Python compilers

by 6× and competes with prior, more limited query compilers. Op-

timizations enabled by dual-mode processing improve runtime by

up to 3×, and Tuplex performs well in a distributed setting.

ACMReference Format:
Leonhard Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, Tim Kraska.

2021. Tuplex: Data Science in Python at Native Code Speed. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD ’21),
June 20–25, 2021, Virtual Event, China.ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3448016.3457244

1 Introduction
Data scientists today predominantly write code in Python, as the

language is easy to learn and convenient to use. But the features that

make Python convenient for programming—dynamic typing, auto-

matic memory management, and a huge module ecosystem—come

at the cost of low performance compared to hand-optimized code

and an often frustrating debugging experience.

Python code executes in a bytecode interpreter, which interprets

instructions, tracks object types, manages memory, and handles ex-

ceptions. This infrastructure imposes a heavy overhead, particularly

if Python user-defined functions (UDFs) are inlined in a larger parallel
computation, such as a Spark [71] job. For example, a PySpark job

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457244

over flight data [63] might convert a flight’s length from kilometers

to miles via a UDF after joining with a carrier table:

carriers = spark.read.load('carriers.csv')
fun = udf(lambda m: m * 1.609, DoubleType())
spark.read.load('flights.csv')

.join(carriers, 'code', 'inner')

.withColumn('distance', fun('distance'))

.write.csv('output.csv')

This code will load data and execute the join using Spark’s compiled

Scala operators, but must execute the Python UDF passed to the

withColumn operator in a Python interpreter. This requires passing

data between the Python interpreter and the JVM [41], and prevents

generating end-to-end optimized code across the UDFs. For exam-

ple, an optimized pipeline might apply the UDF to distancewhile

loading data from flights.csv, which avoids an extra iteration. But

the lack of end-to-end code generation prevents this optimization.

Could we instead generate native code (e.g., C++ code or LLVM
IR) from the Python UDF and optimize it end-to-end with the rest

of the pipeline? Unfortunately, this is not feasible today. Generating,

compiling, and optimizing code ahead-of-time that handles all possi-

ble code paths through a Python program is not tractable because of

the complexity of Python’s dynamic typing. Dynamic typing (“duck

typing”) requires that code always be prepared to handle any type:
while the above UDF expects a numeric value for m, it may actually

receive an integer, a float, a string, a null value, or even a list. The

interpreter has to handle these possibilities through extra checks

and exception handlers, but the sheer number of cases to deal with

makes it difficult to compile optimized code even for this simple UDF.

Tuplex is a new analytics framework that generates optimized

end-to-end native code for pipelines with Python UDFs. Its key in-

sight is that targeting the common case simplifies code generation.

Developers write Tuplex pipelines using a LINQ-style API similar to

PySpark’s and use Python UDFs without type annotations. Tuplex

compiles these pipelines into efficient native code with a new dual
mode execution model. Dual-mode execution separates the common

case, for which code generation offers the greatest benefit, from

exceptional cases, which complicate code generation and inhibit op-

timization but have minimal performance impact. Separating these

cases and leveraging the regular structure of LINQ-style pipelines

makes Python UDF compilation tractable, as Tuplex faces a simpler

and more constrained problem than a general Python compiler.

Making dual-mode processing work required us to overcome

several challenges. First, Tuplex must establish what the common

case is. Tuplex’s key idea is to sample the input, derive the common

case from this sample, and infer types and expected cases across the

pipeline. Second, the behavior of Tuplex’s generated native code

must match a semantically-correct Python execution in the inter-

preter. To guarantee this, Tuplex separates the input data into two

row classes: those for which the native code’s behavior is identical to

Python’s, and those for which it isn’t and which must be processed

https://doi.org/10.1145/3448016.3457244
https://doi.org/10.1145/3448016.3457244

in the interpreter. Third, Tuplex’s generated code must offer a fast

bail-out mechanism if exceptions occur within UDFs (e.g., a division
by zero), and resolve these in line with Python semantics. Tuplex

achieves this by adding lightweight checks to generated code, and

leverages the fact that UDFs are stateless to re-process the offending

rows for resolution. Fourth, Tuplex must generate code with high

optimization potential but also achieve fast JIT compilation, which

it does using tuned LLVM compilation.

Dual mode processing enables compilation, but has another big

advantage: it can help developers write more robust pipelines that

never fail at runtime due to dirty data or unhandled exceptions. Tu-

plex detects exception cases, resolves them via slow-path execution

if possible, and presents a summary of the unresolved cases to the

user. This helps prototype data wrangling pipelines, but also helps

make production pipelines more robust to data glitches.

The focus of this paper is primarily on multi-threaded processing

on a single server, but Tuplex is a distributed system, and we show

results for a preliminary backend based on AWS lambda functions.

In summary, we make the following principal contributions:

(1) We combine ideas from query compilation with speculative

compilation techniques in the dual-mode processing model

for data analytics: an optimized common-case code path pro-

cesses the bulk of the data, and a slower fallback path handles

rare, non-conforming data without inhibiting optimization.

(2) We observe that data analytics pipelines with Python UDFs—

unlike general Python programs—have sufficient structure

to make compilation without type annotations feasible.

(3) We build and evaluate Tuplex, the first data analytics system

to embed a Python UDF compiler with a query compiler.

We evaluated our Tuplex prototype over real-world datasets, in-

cluding Zillow real estate adverts, a decade of U.S. flight data [63],

and web server logs from a large university. Tuplex outperforms

single-threaded Python and Pandas by 5.8–18.7×, and parallel Spark

and Dask by 5.1–91× (§6.1). Tuplex outperforms general-purpose

Python compilers by 6–24×, and its generated code comes within

2× of the performance ofWeld [50] and Hyper [25] for pure query

execution time, while achieving 2–7× faster end-to-end runtime in a

realistic data analytics setting (§6.3). Tuplex’s dual-mode processing

facilitates end-to-end optimizations that improve runtime by up to

3× over simple UDF compilation (§6.4). Finally, Tuplex performs

well on a single server and distributedly across a cluster of AWS

Lambda functions (§6.5); and anecdotal evidence suggests that it

simplifies the development and debugging of data science pipelines

(§7). Tuplex is open-source at https://tuplex.cs.brown.edu.

2 Background and RelatedWork

Many prior attempts to speed up data science via compilation or to

compile Python to native code exist, but they fall short of the ideal

of compiling end-to-end optimized native code from UDFs written

in natural Python. We discuss key approaches and systems in the

following; Table 1 summarizes the key points.

Pythoncompilers. Buildingcompilers for arbitraryPythonpro-

grams, which lack the static types required for optimizing compila-

tion, is challenging. PyPy [55] reimplements the Python interpreter

in a compilable subset of Python, which it JIT-compiles via LLVM

(i.e., it creates a self-compiling interpreter). GraalPython [48] uses

theTruffle [23] language interpreter to implement a similar approach

while generating JVM bytecode for JIT compilation. Numba [30]

JIT-compiles Python bytecode for annotated functions on which

it can perform type inference; it supports a subset of Python and

targets array-structured data from numeric libraries like NumPy [2].

All of these compilers either myopically focus on optimizing

hotspots without attention to high-level program structure, or are

limited to a small subset of the Python language (e.g., numeric code

only, no strings or exceptions). Pyston [39] sought to create a full

Python compiler using LLVM, but faced memory management and

complexity challenges [38], and offers only a 20% performance gain

over the interpreter in practice [40].

Python transpilers. Other approaches seek to cross-compile

Python into other languages for which optimizing compilers exist.

Cython [4] unrolls the CPython interpreter and a Python module

intoC code,which interfaceswith standard Python code. Nuitka [16]

cross-compiles Python to C++ and also unrolls the interpreter when

cross-compilation is not possible. The unrolled code represents a spe-

cific execution of the interpreter, which the compiler may optimize,

but still runs the interpreter code, which compromises performance

and inhibits end-to-end optimization.

Data-parallel IRs. Special-purpose native code in libraries like
NumPy can speed up some UDFs [22], but such pre-compiled code

precludes end-to-end optimization. Data-parallel intermediate rep-

resentations (IRs) such asWeld [50] andMLIR [31] seek to address

this problem.Weld, for example, allows cross-library optimization

and generates code that targets a common runtime and data repre-

sentation, but requires libraries to be rewritten inWeld IR. Rather

than requiring library rewrites,Mozart [51] optimizes cross-function

data movement for lightly-annotated library code. All of these lack a

general Python UDF frontend, assume static types, and lack support

for exceptions and data type mismatches.

Querycompilers. Query compilers turnSQL intonative code [1,

27, 58, 60, 72], and some integrate with frameworks like Spark [12].

The primary concern of these compilers is to iterate efficiently over

preorganized data [26, 59], and all lack UDF support, or merely pro-

vide interfaces to call precompiled UDFs written e.g. in C/C++.

Simple UDF compilers. UDF compilation differs from tradi-

tional query compilation, as SQL queries are declarative expressions.

With UDFs, which contain imperative control flow, standard tech-

niques like vectorization cannot apply.Whileworkonpeeking inside

imperative UDFs for optimization exists [18], these strategies fail

on Python code. Tupleware [6] provides a UDF-aware compiler that

can apply some optimizations to black-box UDFs, but its Python

integration relies on static type inference via PYLLVM [17], and it

lacks support for common features like optional (None-valued) inputs,

strings, and exceptions in UDFs. Tuplex supports all of these.

Exception handling. Inputs to data analytics pipelines often

include “dirty” data that fails to conform to the input schema. This

data complicates optimizing compilation because it requires checks

to detect anomalies and exception handling logic. Load reject files [8,

37, 54] help remove ill-formed inputs, but they solve only part of

the problem, as UDFs might themselves encounter exceptions when

processing well-typed inputs (e.g., a division by zero, or None values).
Graal speculatively optimizes for exceptions [11] via polymorphic

https://tuplex.cs.brown.edu

SystemClass Examples Limitations
Tracing JIT Compilers PyPy [55], Pyston [39] Require tracing to detect hotspots, cannot reason about high-level program structure,

generated code must cover full Python semantics (slow).

Special Purpose JIT Compilers Numba [30], XLA [32],

Glow [56]

Only compile well-formed, statically typed code, enter interpreter otherwise; use

their own semantics, which often deviate from Python’s.

Python Transpilers Cython [4], Nuitka [16] Unrolled interpreter code is slow and uses expensive Python object representation.

Data-parallel IRs Weld [50], MLIR [31] No compilation from Python; static typing and lack exception support.

SQL Query Compilers Flare [12], Hyper [45] No Python UDF support.

Simple UDF Compiler Tupleware [6] Only supports UDFs for which types can be inferred statically, only numerical types,

no exception support, no polymorphic types (e.g., NULL values).

Table 1: Classes of existing systems that compile data analytics pipelines or Python code. All have shortcomings that either
prevent full support for Python UDFs, or prevent end-to-end optimization or full native-code performance.

inline caches—an idea also used in the V8 JavaScript engine—but

the required checks and guards impose around a 30% overhead [10].

Finally, various dedicated systems track the impact of errors onmod-

els [28] or provide techniques to compute queries over dirty data [66,

68], but they do not integrate well with compiled code.

Speculative processing. Programming language research on

speculative compilation pioneered native code performance for

dynam-ically-typed languages. Early approaches, like SELF [5], com-

piled multiple, type-specialized copies of each control flow unit (e.g.,
procedure) of a program. This requires variable-level speculation

on types, and results in a large amount of generated code. State-of-

the-art tracing JITs apply a dynamic variant of this speculation and

focus on small-scale “hot” parts of the code only (e.g., loops).
A simpler approach than trying to compile general Python is to

have Python merely act as a frontend that calls into a more efficient

backend. Janus [19, 20] applies this idea to TensorFlow, and Snek [9]

takes it one step further by providing a general mechanism to trans-

late imperative Python statements of any framework into calls to a

framework’s backend.While these frameworks allow for imperative

programming, the execution can only be efficient for Python code

that maps to the operators offered by the backend. To account for

Python’s dynamic types, such systems may have to speculate on

which backend operators to call. In addition, the backend’s APIs

may impose in-memory materialization points for temporary data,

which reduce performance as they add data copies.

In big data applications, efficient data movement is just as impor-

tant as generating good code: better datamovement can be sufficient

to outperform existing JIT compilers [51]. Gerenuk [44] and Sky-

way [46] therefore focus on improving data movement by special-

izing serialization code better within the HotSpot JVM.

Tuplex. In Tuplex, UDFs are first-class citizens and are compiled

just-in-timewhen a query executes. Tuplex solves amore specialized
compilation problem than general Python compilers, as it focuses on

UDFs with mostly well-typed, predictable inputs. Tuplex compiles a

fast path for the common-case types (determined from the data) and

expected control flow, and defers rows not suitable for this fast path

to slower processing (e.g., in the interpreter). This simplifies the task

sufficiently to make optimizing compilation tractable.

Tuplex supports natural Python code rather than specific libraries

(unlikeWeld or Numba), and optimizes the full end-to-end pipeline,

including UDFs, as a single program. Tuplex generates at most three

different code paths to bound the cost of specialization (unlike SELF);

and it speculates on a per-rowbasis, compared to a per-variable basis

in SELF and whole-program speculation in Janus. Tuplex uses the

fact that UDFs are embedded in a LINQ-style program to provide

high-level context for data movement patterns and to make compila-

tion tractable. Finally, Tuplexmakes exceptions explicit, and handles

them without compromising the performance of compiled code:

it collects exception-triggering rows and batches their processing,

rather than calling the interpreter from the fast path.

3 Tuplex Overview
Tuplex is a data analytics framework with a similar user experience

to e.g., PySpark, Dask, or DryadLINQ [70]. A data scientist writes a

processing pipeline using a sequence of high-level, LINQ-style oper-

ators such as map, filter, or join, and passes UDFs as parameters to

these operators (e.g., a function over a row to map). E.g., the PySpark
pipeline shown in §1 corresponds to the Tuplex code:

c = tuplex.Context()
carriers = c.csv('carriers.csv')
c.csv('flights.csv')
.join(carriers, 'code', 'code')
.mapColumn('distance', lambda m: m * 1.609)
.tocsv('output.csv')

Like other systems, Tuplex partitions the input data (here, the CSV

files) and processes the partitions in a data-parallel way across mul-

tiple executors. Unlike other frameworks, however, Tuplex compiles

the pipeline into end-to-end optimized native code before execu-

tion starts. To make this possible, Tuplex relies on a dual-mode
processingmodel structured around two distinct execution modes:

(1) an optimized, normal-case execution; and
(2) an exception-case execution.

To establishwhat constitutes the normal case, Tuplex samples the in-

put data and, based on the sample, determines the expected types and

control flow of the normal-case execution. Tuplex then uses these

assumptions to generate and optimize code to classify a row into

normal or exception cases, and specialized code for the normal-case

execution. It lowers both to optimized machine code via LLVM.

Tuplex then executes the pipeline. The generated classifier code

performs a single, cheap initial check on each row to determine if

it can proceed with normal-case execution. Any rows that fail this

check are placed in an exception pool for later processing, while the

majority of rows proceed to optimized normal-case execution. If any

exceptions occur during normal-case execution, Tuplex moves the

offending row to the exception pool and continueswith the next row.

Result Rows Failed Rows

Normal-Case

Code

(compiled)

success

Resolve Logic

success

fail

Exception Row Pool

exception

Row Classifier (compiled)

Tuplex Compiler

codegen. & compile
codegen.

&

compile

yes
nonormal case?

Input Data

sample

Pipeline

Figure 1: Tuplex uses an input sample to compile specialized
code for normal-case execution (blue, left), which processes
most rows, while the exception-case (red, right) handles the
remaining rows. Compiled parts are shaded in yellow.

Finally, after normal-case processing completes, Tuplex attempts to

resolve the exception-case rows. Tuplex automatically resolves some

exceptions using general, but slower code or using the Python in-

terpreter, while for other exceptions it uses (optional) user-provided

resolvers. If resolution succeeds, Tuplex merges the result row with

the normal-case results; if resolution fails, it adds the row to a pool

of failed rows to report to the user.

In our example UDF, a malformed flight row that has a non-

numeric string in the distance columnwill be rejected andmoved to

the exception pool by the classifier. By contrast, a rowwith distance

set to None, enters normal-case execution if the sample contained a

mix of non-None and None values. However, the normal-case execu-

tion encounters an exception when processing the row and moves

it to the exception pool. To tell Tuplex how to resolve this particular

exception, the pipeline developer can provide a resolver:

...
.join(carriers, 'code', 'code')
.mapColumn('distance', lambda m: m * 1.609)
.resolve(TypeError, lambda m: 0.0)
...

Tuplex then merges the resolved rows into the results. If no resolver

is provided, Tuplex reports the failed rows separately.

4 Design
Tuplex’s design is derived from two key insights. First, Tuplex can

afford slow processing for exception-case rows with negligible im-

pact on overall performance if such rows are rare, which is the case

if the sample is representative. Second, specializing the normal-case

execution to common-case assumptions simplifies the generated

logic by deferring complexity to the exception case, which makes

JIT compilation tractable and allows for aggressive optimization.

4.1 Abstraction and Assumptions

Tuplex’s UDFs contain natural Python code, and Tuplexmust ensure

that their execution behaves exactly as it would have in a Python

interpreter. Wemake only two exceptions to this abstraction. First,

Tuplex never crashes due to unhandled top-level exceptions, but

instead emulates an implicit catch-all exception handler that records

unresolved (“failed”) rows. Second, Tuplex assumes that UDFs are

pure and stateless, meaning that their repeated execution (on the

normal and exception paths) has no observable side-effects.

The top-level goal of matching Python semantics influences Tu-

plex’s designand implementation in several importantways, guiding

its code generation, execution strategy, and optimizations.

4.2 Establishing the Normal Case

The most important guidance for Tuplex to decide what code to gen-

erate fornormal-caseexecutioncomes fromtheobservedstructureof

a sample of the input data. Tuplex takes a sample of configurable size

every time a pipeline executes, and records statistics about structure

and data types in the sample, as follows.

Row Structure. Input data may be dirty and contain different

column counts and column orders. Tuplex counts the columns in

each sample row, builds a histogram and picks the prevalent column

structure as the normal case.

TypeDeduction. For each sample row, Tuplex deducts each col-

umn type based on a histogram of types in the sample. If the input

consists of typed Python objects, compiling the histogram is simple.

If the input is text (e.g., CSV files), Tuplex applies heuristics. For

example, numeric strings that contain periods are floats, integers

that are always zero or one and the strings “true” and “false” are

booleans, strings containing JSONare dictionaries, and empty values

or explicit “NULL” strings are None values. If Tuplex cannot deduce

a type, it assumes a string. Tuplex then uses the most common type

in the histogram as the normal-case type for each column (except

for null values, described below).

This data-driven type deduction contrasts with classic, static type
inference, which seeks to infer types from program code. Tuplex

uses data-driven typing because Python UDFs often lack sufficient

information for static type inferencewithout ambiguity, and because

the actual type in the input data may be different from the devel-

oper’s assumptions. In our earlier example (§3), for instance, the

common-case type of mmay be int rather than float.

For UDFs with control flow that Tuplex cannot annotate with

sample-provided input types, Tuplex uses the AST of the UDF to

trace the input sample through the UDF and annotates individual

nodes with type information. Then, Tuplex determines the common

cases within the UDF and prunes rarely visited branches. For exam-

ple, Python’s power operator (**) can yield integer or float results,

and Tuplex picks the common case from the sample trace execution.

Option types (None). Optional column values (i.e, “nullable”) are

common in real-world data, but induce potentially expensive logic

in the normal case. Null-valued data corresponds to Python’s None

type, and a UDFmust be prepared for any input variable (or nested
data, e.g., in a list-typed row) to potentially be None. To avoid having
to check for None in cases where null values are rare, Tuplex uses the

sample to guide specialization of the normal case. If the frequency

of null values exceeds a threshold δ , Tuplex assumes that None is the

normal case; and if the frequency of null values is below 1−δ , Tuplex
assumes that null values are an exceptional case. For frequencies in

(1−δ ,δ), Tuplex uses a polymorphic optional type and generates

code for the necessary checks.

4.3 Code Generation

Having established the normal case types and row structure using

the sample, Tuplex generates code for compilation. At a high level,

this involves parsing the Python UDF code in the pipeline, typing

the abstract syntax tree (AST) with the normal-case types, and gen-

erating LLVM IR for each UDF. The type annotation step is crucial

to making UDF compilation tractable, as it reduces the complexity

of the generated code: instead of being prepared to process any type,

the generated code can assume a single static type assignment.

In addition, Tuplex relies on properties of the data analytics set-

ting and the LINQ-style pipeline API to simplify code generation

compared to general, arbitrary Python programs:

(1) UDFs are “closed” at the time the high-level API operator (e.g.,
map or filter) is invoked, i.e., they have no side-effects on

the interpreter (e.g., changing global variables or redefining
opcodes).

(2) The lifetime of any object constructed or used when a UDF

processes a row expires at the end of the UDF, i.e., there is no
state across rows (except as maintained by the framework).

(3) The pipeline structures control flow: while UDFs may con-

tain arbitrary control flow, they always return to the calling

operator and cannot recurse.

Tuplex’s generated code contains a row classifier, which processes
all rows, and two code paths: the optimized normal-case code path,
and a general-case code path with fewer assumptions and optimiza-

tions. The general-case path is part of exception-case execution, and

Tuplex uses it to efficiently resolve some exception rows.

RowClassifier. Tuplexmust classify all input rows according to

whether they fit the normal case. Tuplex generates code for this clas-

sification: it checks if each column in a rowmatches the normal-case

structure and types, and directly continues processing the row on

the normal-case path if so. If the row does not match, the generated

classifier code copies it out to the exception row pool for later pro-

cessing. This design ensures that normal-case processing is focused

on the core UDF logic, rather including exception resolution code

that adds complexity and disrupts control flow.

Code Paths. All of Tuplex’s generated code must obey the top-

level invariant that execution must match Python semantics. Tuplex

traverses the Python AST for each UDF and generates matching

LLVM IR for the language constructs it encounters. Where types

are required, Tuplex instantiates them using the types derived from

the sample, but applies different strategies in the normal-case and

general-case code. In the normal-case code, Tuplex assumes the

common-case types from the sample always hold and emits no logic

to check types (except for the option types used with inconclusive

null value statistics, which require checks). The normal-case path

still includes code to detect cases that trigger exceptions in Python:

e.g., it checks for a zero divisor before any division.
By contrast, the general-case path always assumes the most gen-

eral type possible for each column. For example, it includes option

type checks for all columns, as exception rows may contain nulls

in any column. In addition, the general-case path embeds code for

any user-provided resolvers whose implementation is a compilable

UDF. But it cannot handle all exceptions, and must defer rows from

the exception pool that it cannot process. The general-case path

Normal Case Exception Case

Normal

Path

...
br i3 %3, %except
except:
ret i64 129

success

Exception Row Pool

e
x
c
e
p
t
i
o
n

parse with general case types

success fail

General Path

...
br i3 %3, %except
except:
ret i64 129success

Fallback Path

Python
Interpreter

success
fail

e
x
c
e
p
t
i
o
n

Merge Rows

Figure 2: Tuplex’s exception case consists of a compiled
general path and a fallback path that invokes the Python
interpreter. Exceptions (red)move rows between code paths.

therefore includes logic that detects these cases, converts the data

to Python object format, and invokes the Python interpreter inline.

Tuplex compiles the pipeline of high-level operators (e.g., map,
filter) into stages, similar to Neumann [45], but generates up to

three (fast, slow, and interpreter) code paths. Tuplex generates LLVM

IR code for each stage’s high-level operators, which call the LLVM

IR code previously emitted for each UDF. At the end of each stage,

Tuplex merges the rows produced by all code paths.

MemoryManagement. Because UDFs are stateless functions,
only their output lives beyond the end of the UDF. Tuplex therefore

uses a simple slab allocator to provisionmemory from a thread-local,

pre-allocated region for new variables within the UDF, and frees the

entire region after the UDF returns and Tuplex has copied the result.

Exception handling. To simulate a Python interpreter execu-

tion, the code Tuplex generates and executes for a rowmust have no

observable effects that deviate from complete execution in a Python

interpreter. While individual code paths do not always meet this in-

variant, their combination does. Tuplex achieves this via exceptions,
which it may generate in three places: when classifying rows, on the

normal-case path, and on the general-case code path. Figure 2 shows

how exceptions propagate rows between the different code paths.

Rows that fail the rowclassifier and those that generate exceptions

on the normal-case code path accumulate in the exception row pool.

When Tuplex processes the exception row pool, it directs each row

either to the general-case code path (if the row is suitable for it) or

calls out to the Python interpreter. Any rows that cause exceptions

on the general-case path also result in a call into the interpreter.

An interpreter invocation constitutes Tuplex’s third code path, the

fallback code path. It starts the UDF over, running the entire UDF
code over a Python object version of the row. Finally, if the pipeline

developer provided any resolvers, compilable resolvers execute on

the general-case code path, and all resolvers execute on the fallback

path. If the fallback path still fails, Tuplex marks the row as failed.

Consequently, Tuplex may process a row a maximum of three

times: once on the normal-case path, once on the general-case path,

and once on the fallback path. In practice, only a small fraction of

rows are processed more than once.

4.4 Execution

Tuplex executes pipelines similar to a typical data analytics frame-

work, although customized to handle end-to-end UDF compilation.

Tuplex has a logical planner, which applies logical optimizations

(e.g., operator reordering and filter pushdown); a physical planner,
which splits the pipeline execution into distinct stages; and a UDF

compiler, which handles the actual code generation. However, the

typing requirements of Tuplex’s dual-mode processing model per-

meate all these components. For example, the logical planner also

types the UDFs according to the normal-case types deduced from

the sample in order to allow for type-aware logical optimizations.

Stages. A stage is a sequence of operators, including UDFs, that
is bounded on either side by an operator that consumes materialized

data frommemory or requires generating it. Examples of such op-

erators include inputs, joins, aggregations, and outputs. Stages are

also the unit of code generation: Tuplex generates and executes a

normal-case and an exception-case code path for each stage. Thema-

terialized output of a stage may initially consist only of normal-case

result rows, though some operators require immediate production

and materialization of resolved exception-case rows too (see §4.5).

Tuplex delineates stages similarly to HyPer [45]. Tuplex makes

stages as long as possible to facilitate compiler optimizations, and

so that rows are processed through many UDFs while in CPU cache.

Ideally, most input rows proceed through a single, highly-optimized

stage that ends with the pipeline’s materialized output.

4.5 Joins

Tuplex uses a hash join, which materializes records on one side of

the join (the “build” side) and streams rows on the other side to look

up into the hash table. Tuplex chooses the smaller side as the build

side and terminates a stage at the materialized join input.

This standard design, however, requires adaptation for dual-mode

processing. A classic data-parallel join works because the data on

both sides of the join is partitioned by the same key. For joinA▷◁B
between relations A and B, it suffices to join each Ai ▷◁ Bi . But in
dual-mode execution, each partition ofA is itself split into normal-

case rowsNC(Ai) and exception-case rows EC(Ai), and likewise for
B. For correct results, Tuplex must compute each pairwise join:

NC(Ai)▷◁NC(Bi) ∪ NC(Ai)▷◁EC(Bi) ∪

EC(Ai)▷◁NC(Bi) ∪ EC(Ai)▷◁EC(Bi)

To compute the joins between normal-case and exception-case rows,

Tuplex would have to execute all three code paths for both join in-
puts and materialize the input rows in memory. This conflicts with

the goal of long stages that keep caches hot on the normal path

and avoid unnecessary materialization. Instead, Tuplex executes all

code paths for the build side of the join and resolves its exception

rows before executing any code path of the other side. If the build

side is B and the result of resolving exception rows of Bi is R(Bi)=
NC(Bi) ∪ resolve(EC(Bi)), Tuplex then executesNC(Ai)▷◁R(Bi) as
part of a longer stage and without materializing NC(Ai).

4.6 Aggregates

Dual-mode processing works for aggregations as long as the aggre-

gation function is associative. Tuplex separately aggregates normal-

case rows and, subsequently, exception-case rows via the general

and fallback code paths; in a final merge step, it combines the partial

aggregates into a final result. This merging of partial aggregates

happens at the end of the stage after resolving exception rows.

Aggregations are compatiblewithTuplex’s assumption thatUDFs

are stateless, as the framework tracks the accumulated state across

rows. To make this work, the aggregation operator needs to take a

UDFwith a row argument and an accumulator argument, and return

an updated accumulator. For example, .aggregate’s UDF signature

is lambda acc, r: acc + r['col'], where acc is an accumulator (e.g.,
an integer, a list or a more complicated object like a nested tuple

or dictionary). Tuplex’s runtime is responsible for managing the

memory of acc, and the UDF remains stateless.

4.7 Optimizations

Tuplex applies several optimizations to the normal-case path.

Logical optimizations. Pushing selective operators (e.g., filters,
projections) to the start of the pipeline is a classic database optimiza-

tion. Yet, systems that treat Python UDFs as black box operators

cannot apply this optimization across UDFs. Tuplex’s logical planner

analyzes UDFs’ Python ASTs to determine which input objects are

preserved, dropped, andmodified by each UDF. Based on this knowl-

edge, Tuplex then reorders operators to preserve columns only as

long as needed. Another, more complex optimization pushes UDFs

that modify a column past any operators and UDFs that do not read

it. This helps e.g., push UDFs that rewrite non-key columns below

joins, which is a good choice if the join is selective. Crucially, this

optimization is possible because Tuplex analyzes the Python UDFs.

UDF-specificoptimizations. Tuplexapplies standardcompiler

optimizations like constant folding to Python UDFs. In addition, Tu-

plex applies optimizations specific to UDFs as part of a LINQ-style

pipeline. For example, Tuplex rewrites dictionaries with string keys

known at compile time into tuples (avoiding string operations); Tu-

plex flattens nested tuples to avoid pointer indirection; and Tuplex

optimizes for the common case in nullable values, i.e., column types

can get specialized to NULL, Option[T] or T.

Codegenerationoptimizations. On the normal-case path, Tu-

plex removes any code related to types that it classified as excep-

tions. Consider, for example, lambda m: m * 1.609 if m else 0.0: with

an input sample of mostly non-null floats, Tuplex removes code for

integer-to-float conversion, null checks, and the else branch from

thenormal-casepath. This reduces thegenerated code from17LLVM

IR instructions (5 basic blocks) to 9 IR instructions (1 basic block). If

the common-case input is null, Tuplex simplifies the normal-case

path to 3 IR instructions that return zero.

Compiler optimizations. Once Tuplex has generated LLVM IR

for the normal-case path, it applies several LLVMoptimizer passes to

the code. In particular, we use the Clang 9.0 pass pipeline equivalent

to -O3which are applied for all UDFs and operators inside a stage.

However, since Tuplex’s generated code must match Python se-

mantics, not all compiler optimizations are valid. For example, some

optimizations to speed up floating point math (equivalent to the

-ffast-math C compiler flag) change the handling of NaN values in

ways that fail to match Python. Tuplex avoids these optimizations.

5 Implementation
We implemented a prototype of Tuplex in about 65k lines of C++.

Our prototype uses LLVM 9’s ORC-JIT to compile the generated

LLVM IR code at runtime. It is implemented as a C-extension (shared

library) which users import as a Python module or from a Jupyter

Dataset Size Rows Columns Files
Zillow 10.0 GB 48.7M 10 1

Flights

5.9 GB 14.0M 110 24

30.4 GB 69.0M 110 120

Logs 75.6 GB 715.0M 1 3797

311 1.2 GB 197.6M 1 1

TPC-H (SF=10) 1.5 GB 59.9M 4 1

Table 2: Dataset overview (smaller join tables excluded).

Notebook. Tuplex provides a shell in CPython interactive mode and

a web UI with a history server, which developers can use to inspect

their pipelines’ execution and any failed rows generated.

Multithreaded Execution. On a single server, our prototype

runs executors in a thread pool. Executors process input data parti-

tions in individual tasks,which run identical code. Each threadhas its

own bitmap-managed block manager for memory allocation. When

invoking the fallback path, Tuplex acquires the global interpreter

lock (GIL) of the parent Python process.

Distributed Execution. Tuplex’s techniques apply both on a

single server and in a distributed setting, where many servers pro-

cess parts of the input data in parallel. For datasets that require this

scale-out data parallelism, our prototype supports executing indi-

vidual processing tasks in serverless AWS Lambda functions over

data stored in S3. Tuplex divides each stage into many data-parallel

tasks and runs each task in a Lambda function, which reads its input

from S3 and writes its output back to S3. The driver machine gener-

ates LLVM IR, initiates, and supervises the Lambdas. Each Lambda

receives the LLVM IR code of its task from the driver, lowers the IR

to machine code, and executes the machine code over its input data.

Exceptionhandling. Tuplex implementsexceptioncontrolflow

on the normal-case and general-case paths via special return codes.

We found that this is 30% faster than the “zero-cost” Itanium ABI

exception handling [34], and allows more optimization than

setjmp/longjmp (SJLJ) intrinsics [35].

Limitations. Our prototype supports compiling optimized code

for many, but not all Python language features. The prototype cur-

rently supports compiling integer, float, string, and tuple operations,

aswell as essential dictionary and list operations.UDFs canbepassed

either as lambda functions or regular functions and may contain

optional type annotations. The prototype supports variables, simple

list comprehensions, control flow, random number generation, and

regular expressions. It does not yet supportwhile loops, generator ex-

pression, try-except, sets, async expressions, classes, objects, nested

functions and external modules. For unsupported language features,

Tuplex falls back on running the UDF in the Python interpreter. We

believe that support for all missing core Python features could be

added to our prototype with additional engineering effort.

Our prototype also does not focus on external modules, which

could be compiled but often already come with their own native-

code backends. Linking Tuplex’s generated LLVM IRwith the LLVM

IR code produced by library-oriented compilers such asWeld [50],

Numba [30] or Bohrium [29] should be feasible in future work.

6 Evaluation
We evaluate Tuplex with three representative pipelines and with

microbenchmarks of specific design features. Our experiments seek

to answer the following questions:

(1) What performance does Tuplex achieve for end-to-end data

science pipelines, compared to both single-threaded baselines

and widely-used parallel data processing frameworks? (§6.1)

(2) What is the cost of Tuplex’s code paths, and of exception

handling? (§6.2)

(3) How does Tuplex’s performance compare to off-the-shelf

Python compilers, such as PyPy, Cython, and Nuitka; and

to state-of-the-art query compilers, such as Weld [50] and

Hyper [25]? (§6.3)

(4) What factors affect Tuplex’s performance, and what is the

impact of optimizations enabled by Tuplex’s dual-mode pro-

cessing model? (§6.4)

(5) HowdoesTuplexperformwhenoperatingdistributedlyacross

many servers? (§6.5)

Setup. In most experiments, Tuplex and other systems run on an

r5d.8xlargeAmazon EC2 instance (16-core Xeon Platinum 8259CL,

2.50 GHz; hyperthreads disabled) with 256 GB RAM, and 2 NVMe

SSDs. The input data is CSV-formatted UTF-8 text. We compare Tu-

plex against Dask (2021.03) and Spark (PySpark, v2.4.7) on Ubuntu

20.04. All systems use 16-way parallelism. All numbers are averages

of at least five runs with warmed-up OS caches.

Our focus is Tuplex’s performance on a multi-core server, a com-

monmedium-scale analytics setup [12]. But the systemswe compare

against support scale-out across servers, sowealso compareTuplex’s

prototype AWS Lambda backend to Spark (§6.5).

6.1 End-to-End Performance

Wemeasure Tuplex’s end-to-end performance using three data sci-

ence pipelines, and with the datasets shown in Table 2.

Zillow. Zillow is a real estate directory website whose listings

are uploaded by individual brokers. We scraped 38,570 Boston area

listings [57], scaled the data to 10 GB, and cleaned it for performance

experiments to avoid failures in Spark and Dask. The two queries

extract information like the number of bedrooms, bathrooms, and

the price from textual data and filter for all houses (Z1) or condos cur-

rently for sale (Z2). Eachversion involves elevenPythonUDFs,which

perform value conversions, multiple substring extractions, and sev-

eral simple lookups, as well as filtering out implausible records. The

UDF’s operators can execute as a single, large pipelined stage.

Flights. Wemodeled this workload after a Trifacta tutorial [15]

and extended it by joining with additional airport and airline data

fromother sources (743KB [52] and 82KB [62]). The pipeline has one

inner and two left joins, as well as UDFs to reconstruct values from

multiple columns which can’t be easily expressed in a SQL query.

We ran this pipeline on ten years (2009-2019) of CSV data [63].

Weblogs. Based on a Spark use case [7], this pipeline extracts

information from twelve years of Apache web server logs obtained

from a U.S. university. It converts the Apache log format into a rela-

tional representation, and retains records for potentially malicious

requests. We extended the original query by an inner join with a list

of bad IPs [43] and anonymize any personally-identifiable URLs by

replacing usernames (e.g., “~alice”) with random strings.

311andTPC-H. Weuse the Pandas cookbook [13] data cleaning

query for 311 service requests, which yields a set of uniqueZIP codes,

to compare toWeld [50]. Finally, we also runmicrobenchmarks with

Pandas dict
tuple

Tuplex
Scala C++

(Z1a) single-threaded

0

200

400

600

ru
nt

im
e

in
s

51
7.

1

23
3.

1

24
6.

1

32
.9

61
.7

19
.5

Python
Pandas
Tuplex

Scala (man-opt.)
C++ (man-opt.)

Dask SQL dict
tuple

Tuplex
Scala

(Z1b) 16x parallelism

0

20

40

60

49
.7

42
.050
.6

20
.3 2.
7

19
.2

PySpark
PySpark

Dask
Tuplex

SparkSQL(Scala)

Pandas dict
tuple

Tuplex
Scala C++

(Z2a) single-threaded

0

250

500

ru
nt

im
e

in
s

64
9.

5

31
0.

6

51
2.

6

42
.5

84
.1

32
.7

Dask SQL dict
tuple

Tuplex
Scala

(Z2b) 16x parallelism

0

25

50

61
.2

51
.8

57
.3

38
.3

3.
5

20
.4

Figure 3: Tuplex outperforms single-threaded and parallel
alternatives by 5.8×–18.7×when running theZillowpipeline
over 10G of input data, and comes close to hand-tuned C++.

TPC-H Q6 and Q19 to measure Tuplex’s performance compared to

Hyper [25], a state-of-the-art SQL query compiler.

6.1.1 Zillow: String-heavy UDFs. In this experiment, we com-

pare Tuplex to other frameworks using the Zillow pipeline. This

pipeline contains eleven UDFs, which use Python idioms for sub-

string search (e.g., "bd" in s, or s.find("bd")), string splitting, nor-

malization (s.lower()), and type conversions (int, float).

We consider two row representations: (i) as Python tuples, and (ii)
as Python dictionaries (hashmaps). The dictionary representation

simplifies code by using column names, but typically comes with

a performance overhead. Tuplex allows either representation and

compiles both representations into identical native code.

Single-threaded execution. We compare standard CPython

(v3.6.9), Pandas (v1.1.5), and hand-optimized C++ (via gcc v10.2) and

Scala (v2.12.10) baselines to Tuplex configuredwith a single executor.

Tuplex’s end-to-end optimized code might offer an advantage over

CPython and Pandas, which call into individual native-code func-

tions (e.g., libc string functions) but cannot optimize end-to-end.

Tuplex should ideally come close to the hand-optimized C++.

Figure 3 shows our results. As expected, the CPython implemen-

tation with rows represented as dictionaries is substantially slower

(about 2×) than the tuple-based implementation. Pandas, perhaps

surprisingly, is about 5.5% slower than tuple-based CPython in Z1,

and 65% slower than tuple-based CPython in Z2. While Pandas ben-

efits from a faster CSV parser, an efficient data representation (numpy

arrays), and specialized native-code operators for numeric compu-

tation, its performance suffers because UDFs require converting

between numpy and Python data representations. Z2 filters fewer

rows early than Z1, which exacerbates this UDF-related cost. Fi-

nally, Tuplex completes processing in 33–43 seconds, a speedup of

5.8×–18.7× over the CPython and Pandas implementations. This

is 1.9× faster than a single-threaded baseline written in pure Scala,

and 1.3–1.7× slower than the hand-optimized C++ implementation.

However, this overstates Tuplex’s overhead: in Tuplex, the compute

part of Z1 (i.e., excluding I/O) takes 11.2s, 29% slower than the C++

implementation (8.7s); Z2 sees a 0.5% slowdown (19.8s vs. 19.7s).

Dask PySparkSQL Tuplex
(a) 5.9 GB input

0
50

100
150

ru
nt

im
e

in
s

13
9 61

8

Dask PySparkSQL Tuplex

Dask PySparkSQL Tuplex
(b) 30.4 GB input

0
50

100
150
200

66
4

24
3

27

Figure 4: Tuplex achieves speedups of 7.6–24.6× over
PySparkSQL and Dask on the flights pipeline.

Data-parallel execution. Next, we benchmark Tuplex against

widely-used frameworks for parallel processing of large inputs: PyS-

park (v2.4.7) and Dask (2021.03). We configure each system for 16-

way parallelism: PySpark uses 16 JVM threads and 16 Python pro-

cesses for UDFs; Dask uses 16 worker processes; and Tuplex uses 16

executor threads. We benchmark PySpark both with RDDs [71] and

with themore efficient SparkSQL operators [3]. Neither PySpark nor

Dask compile UDFs to native code or optimize across UDFs, which

indicates that Tuplex should outperform them.

Figure 3 confirms that this is the case: Tuplex outperforms the

fastest PySpark setup by 15.5× andDask by 7.5× inZ1. ForZ2, Tuplex

is 14.5× faster, as the compiled UDFs process more rows. Compared

to the single-threaded execution, Tuplex achieves a speedup of 12.2×

when using 16 threads (for Z1).We also ran the pipeline in SparkSQL

with ScalaUDFs rather thanPythonUDFs,which keeps computation

within the JVMand avoids overheads of calling into Python. Tuplex’s

end-to-end optimized code is still 5.8–7.1× faster.

These results confirm that Tuplex’s code generation and end-to-

end optimization offer performance gains for UDF-heavy pipelines.

In §6.3.1, we compare Tuplex to other Python compilers, and §6.4

drills down into the factors contributing to Tuplex’s performance.

6.1.2 Flights: Joins and Null Values. We repeat the compari-

son between Tuplex, Spark, and Dask for the flights pipeline. This

pipeline contains three joins, and the dataset has “sparse” columns,

i.e., columns that mostly contain null values, while others have oc-

casional null values complemented by extra columns (e.g., diverted
flights landing at a different airport). Tuplex infers the normal-case

null value status for each column from its sample, and defers the

more complicated logic needed to resolve exception rows to the

general-case code path. 2.6% of input rows violate the normal-case

and get handled by the general-case code path in Tuplex. Spark and

Dask handle null values inline in UDF execution, and we use PyS-

parkSQL, which compiles the query plan (though not the UDFs) into

JVM bytecode. Figure 4 shows the results for two years’ worth of

data (5.9 GB) and ten years (30.4 GB).

PySparkSQL outperforms Dask by 2.3–2.7× because of its com-

piled query plan and more efficient join operator. Tuplex, despite its

unoptimized join operator, still achieves a 7.6–9× speedup over PyS-

parkSQL (17.4–24.6× over Dask) because it compiles andmerges the

UDFs, and processes the bulk of the data through a single, end-to-end

optimized stage (we break this down in §6.4.2).

6.1.3 LogProcessing:RegexandRandomness. Weuse thewe-

blogs pipeline to investigate how Tuplex’s compiled code compares

to special-purpose operators designed to accelerate common UDF

functionality in existing frameworks. The pipeline splits an input

log line into columns, and then rewrites one of those columns with

a random string if it matches a username pattern:

strip split per-column
regex

single
regex

0
250
500
750

1000

ru
nt

im
e

in
s

14
0

5454 72

10
65

11
05

49
13

49
27

70
8

76
5

PySpark PySparkSQL Dask Tuplex

Figure 5: Tuplex outperforms Spark and Dask by 5.1–91× on
the weblogs pipeline; all Tuplex variants perform similarly.
PySparkSQL only supports per-column regexes.

def randomize_udf(x):
r = [random_choice(LETTERS) for t in range(10)]
return re_sub('^/~[^/]+', '/~' + ''.join(r), x)

We consider three settings for the log line splitting operation:

(1) natural Python using string operations (strip/split);

(2) per-column regular expressions; and

(3) a single regular expression.

Natural Python requires UDFs in all systems, but we also wrote

an equivalent query using SparkSQL’s native string functions (i.e.,
the query executes entirely within the JVM). PySparkSQL also has

a native operator for regular expressions (regexp_extract). It only

supports per-column regular expressions (second setting), but the

operator applies the regular expression in the JVM, rather than in

Python. Finally, all systems currently require UDFs when using a

single regular expression.Tuplex supports all three approaches.
We would expect Python UDFs (both strip/split and regex-

based) in Spark and Dask to be slowest. PySparkSQL’s native regex

operator and the split-like SQL query should outperform them. A

good result for Tuplex would show performance improvements in

all three setups, as Tuplex end-to-end compiles and optimizes each

setting for this pipeline. The input in our experiment is 75.6 GB of

logs (715M rows). For Dask, we excluded 31.7M rows (4.5%, 4 GB) of

the data because they triggered a known bug in the inner join [64].

Figure 5 reports the results organized by setting. The PySpark

pipelines with two UDFs are slowest at about 80 minutes, while

Dask UDFs are roughly 4× faster (18 min). Dask is more efficient

because it executes the entire pipeline in Python, avoiding costly

back-and-forth serialization between the JVM and Python workers.

However, when PySparkSQL keeps the log line splitting in the JVM—

either using string functions (PySparkSQL (split)) or via per-column

regexes—runtime reduces to about 12minutes. This happens because

SparkSQLcangenerate JVMbytecode formostof thepipeline (except

the randomization UDF) via its whole-stage code generation [69].

Tuplex, on the other hand, completes the pipeline in oneminute both

using natural Python and with a regular expression. Per-column

regular expressions slow Tuplex down by a factor of two, but it still

outperforms PySparkSQL by 5.1×; likewise, Tuplex’s split-based

pipeline is 10.6× faster than PySparkSQL’s equivalent native SQL

query. This difference comes, in part, because Tuplex compiles both

UDFs to native code, while PySpark can only use compiled code for

line-splitting.When we subtract the anonymization UDF runtime in

both systems, Tuplex is still about 8× faster than PySparkSQL. The

remaining speedup comes from Tuplex’s end-to-end optimization,

and fromusing PCRE2 regular expressions: in ourmicrobenchmarks,

PCRE2 is 8.85× faster than java.util.regex, which Spark uses.

Tuplex’s fastest pipelines (single regex, strip) outperform the

best PySpark and Dask setups by 13× and 19.7×. Tuplex supports

0 1 2 3 4

Tuplex resolvers (interpreted*)

Tuplex resolvers (compiled)

altered UDFs with manual resolution

ignore all exceptions

51 52 53

sampling
compilation
write output
other
normal case
exception resolution

time in s

Figure 6: Tuplex’s exception resolution adds little overhead
(0.3%) with compiled resolvers for Z2 on “dirty” data (25% of
rowsmalformed).Theinterpreter (*)bar isa lowerboundthat
assumes ideal 16× speedup over single-threaded interpreter.

logical optimizations unavailable to Dask and Spark that improve

performance further, which we discuss in §6.4.1.

6.2 ExceptionHandling

Tuplex speeds up processing of common-case rows by deferring

exception-case rows to slower code paths. Exception rows arise

either because of malformed (“dirty”) input data, or because they

don’t match the common case in Tuplex’s sample (e.g., due to type
mismatches). We nowmeasure the cost of exception row handling.

We run Z2 on the original, uncleaned Zillow dataset (scaled to 10

GB). 25% of the 56M input rows are exception rows with malformed

data. We compare three setups: (i) ignoring and discarding all excep-
tion rows; (ii) the developer manually resolving exceptions in UDFs;

(iii) using Tuplex’s resolvers (§3), both with compiled resolvers (on

the general path) and resolution in the interpreter (fallback path).

Our prototype runs a single-threaded Python interpreter for the fall-

back path, but this could be parallelized, sowe assume ahypothetical,

ideal 16× speedup to obtain a lower bound on fallback path runtime.

Ignoring exception rows should be the fastest, while a good result

for Tuplex would show manual and automatic resolution achieve

similar performance, and a low overhead for handling exception

rows. Figure 6 shows a breakdown of Tuplex’s execution time in

each case. Ignoring all exceptions is fastest, since it merely skips

the rows. Manual resolution adds an 8% overhead, but requires labo-

rious changes and makes the UDFs muchmore complex. Tuplex’s

compiled resolvers come within 0.3% of the hand-crafted resolution,

with the overhead owed to increased LLVM compilation time.When

we force all resolution onto the fallback path, however, it adds a 13×

overhead, as 25%of rows arenowprocessed in thePython interpreter.

This shows that Tuplex’s compiled general-case path is crucial for

good performance on exception-heavy workloads.

Processing a single row on the normal path takes 0.8µs. The com-

piled general path takes 0.28µs per rowonaverage, asmost exception

rows are discarded early. To measure the full cost, we replaced all

exception rowswith synthetic data that proceeds all theway through

the pipeline; in this case, the compiled general path takes 1.3µs (vs.
299µs/row in the interpreter).

6.3 Comparison To Other Systems

We now compare Tuplex to systems that generate and (JIT-)compile

efficient native code for Z1. Z2 yields similar results (omitted).

6.3.1 Python Compilers. We first compare Tuplex to general

Python compilers, which compile arbitrary Python programs.

dict
tuple

Pandas
Tuplex C++

(a) single-threaded

200

400

600

ru
nt

im
e

in
s

32
.9

19
.5

dict
tuple SQL

Dask
Tuplex

(b) 16x parallelism

20

40

60

2.
7

Python / PySpark PySparkSQL Pandas / Dask Tuplex C++ (hand-opt.)

Figure 7: The PyPy3 general-purpose JIT fails to accelerate
the Z1 query, and degrades performance by up to 3×. Dark
bars use PyPy, light bars use theCPython interpreter (Fig. 3).

System Runtime Compile time
CPython (interpreter) 233.1 s –

Python

compilers

Cython 195.3 s 6.5 s

Nuitka 192.5 s 9.4 s

Tuplex 32.3 s 0.2 s

Hand-optimized C++ 19.2 s 7.5 s

Table 3: Tuplex runs the Z1 query 6× faster than Cython and
Nuitka, and compiles 32–47× faster than alternatives.

PyPy. PyPy [55] is a tracing JIT compiler that can serve as a drop-

in replacement for the CPython interpreter. It detects hot code paths

(usually loops), JIT-compiles a specialized interpreter and caches the

hot paths’ native code. We configured Pandas, PySpark and Dask to

use PyPy (v7.3.3 in JIT mode) instead of CPython to measure how

well PyPy performs on UDFs, and run the Zillow pipeline in the

same setups as before. Even though PyPy is still bound to Python’s

object representation and has limited scope for end-to-end optimiza-

tion, the hope is that JIT-compiling the hot code paths will improve

performance.

Figure 7 shows that this is actually not the case. PyPy is slower

than interpreted Python in all settings, by between 3% and 3.18×;

only with PySparkSQL it comes close to interpreted Python. Pro-

filing with cProfile [14] suggests that PyPy has a variable impact

on UDF performance: of twelve UDFs, seven are faster (13%–11.6×)

with PyPy, and five are 26%–2.8× slower. The one UDF that benefits

substantially (11.6×) merely forms a tuple; for others, even super-

ficially similar string-processing UDFs exhibit varying performance.

We attribute this to PyPy JIT-compiling and caching only some code

paths, but not others. The 3× slowdown for Pandas andDask is due to

PyPy3’s poor performancewhen invoking C extensionmodules [61].

Tuplex is 14–24× faster.

Cython and Nuitka. Nuitka and Cython emit C/C++ files that

contain unrolled calls to C functions which power the CPython in-

terpreter. Compiling this file into a shared library object produces a

drop-in replacement for a Python module. We used Nuitka (v0.6.13)

andCython (v0.29.22) to transpile the Pythonmodule to C for Z1 and

compile it with gcc 10.2. This eliminates the cost of Python byte code

translation and allows the C compiler to optimize thewhole pipeline.

We run the resulting module over 10 GB of input data, and compare

single-threaded runtime to interpreted CPython and Tuplex.

Table 3 shows runtimes and compile times. Nuitka and Cython’s

compiled code runs 17% faster than interpreted Python, but is still

W
eld

Tup
lex

PyS
pa

rk

PyS
pa

rkS
QL

Dask

Tup
lex

(a) query-time only

0

5

10

tim
e

in
s

12
.4

6.
3

0.
913
.8

12
0.

9

18
7.

9

single-threaded multi-threaded (16x)

W
eld

Tup
lex

PyS
pa

rk

PyS
pa

rkS
QL

Dask

Tup
lex

(b) end-to-end

0

50

100

tim
e

in
s

21
.053
.8

3.
713
.814

2.
5

21
2.

4

single-threaded multi-threaded (16x)

Figure 8: For the 311 data cleaning pipeline, single-threaded
Tuplex comeswithin2×ofWeldandoutperformsall parallel
systems.TuplexoutperformsWeldby2× end-to-endbecause
Tuplex inlines the aggregation in its generated parser.

over 6× slower than Tuplex. Tuplex outperforms Nuitka and Cython

because it replaces C-API calls with native code, eliminates dispens-

able checks and uses a more efficient object representation than

Cython and Nuitka, which use CPython’s representation. Cython

andNuitka alsohave 32–47×higher compile times thanTuplex. They

take about a second to generate code, with the rest of the compile

time taken up by the C compiler (gcc 10.2). Tuplex generates LLVM

IR, which is faster to compile than higher-level C/C++, and also

compiles 37× faster than gcc compiles the C++ baseline.

6.3.2 Data-parallel IR: Weld [50]. Weld is a data-parallel IR

that admits optimizations like vectorization or loop fusion across

libraries [50]. Weld serves as a backend to ported existing libraries

such as Pandas [36],whileTuplex is a complete data analytics system,

but both execute compiled native code.We compare Tuplex’s perfor-

mance toWeld’s on the 311 data cleaningworkload [13] andTPC-H
Q6 and Q19. Q6 and Q19 perform simple filters and aggregations

and are a challenging workload for Tuplex, which shines at string-

heavy workloads with row-level UDFs and does not yet support

vectorized (SIMD) compilation of UDFs. We compare toWeld v0.4.0;

sinceWeld’s multithreaded runtime was removed in v0.3.0 [49], we

compare single-threaded performance. In addition, we preprocessed

the inputs to contain only the required columns and converted all

dates to integers. In the single-threadedcase all string-typedcolumns

in Q6 and Q19 were transformed to integers, because Weld lacks

automatic projection pushdown and has limited string processing

capabilities. Because Weld does not have a native CSV parser, we

preload the Q6/Q19 data into its columnar in-memory format with

a single-threaded C++ CSV parser [67]. For the 311 workload, we

useWeld’s benchmark code, which uses Pandas to load the data. We

measure pure compute time, which measures how good Tuplex’s

generated code is, and end-to-end runtime, which measures a real-

istic data analytics experience. A good result for Tuplex would show

competitive compute time and an improved end-to-end runtime.

Figure 8 shows thatTuplex’s compute time (including compilation

and sampling) for the 311 data cleaning workload is within 2× of

Weld’s, and that end-to-end (total runtime to load the data, compile

the query, and execute it), Tuplex runs the workload 2× faster than

Pandas+Weld.OnTPC-HQ6,Tuplex’s runtime iswithin2×ofWeld’s

for Q6, despite Tuplex’s lack of vectorization and its row-structured

data layout in memory (Figure 9a), and Tuplex again outperforms

Weld by 1.86× end-to-end (Figure 9b). Tuplex’s end-to-end perfor-

mance gains come from an optimization available when compiling

full pipelines: instead of loading the data first and then running the

Weld
Tuplex

PySpark

SparkSQL
Hyper

Tuplex

(a) query-time only

0

2

4

6

co
m

pu
te

tim
e

in
s

21
.6

0.
04

0.
11

0.
13 0.

90

single-threaded
integers

multi-threaded (16x)
strings

Q06
Q19

Weld
Tuplex

PySpark

SparkSQL
Hyper

Tuplex

(b) end-to-end

0

10

20

30

en
d-

to
-e

nd
tim

e
in

s 35
.0

1.
62 3.
26

single-threaded
integers

multi-threaded (16x)
strings

Figure 9: For TPC-HQ6/19, Tuplex’s generated code (without
vectorization or indexes) is competitive with Weld’s vector-
ized code andwithin 3–8× of Hyper’s index-based execution.
End-to-end,TuplexoutperformsWeldby2× (due to its gener-
ated parser) andHyper by 5–7× (by avoiding index creation).
aggregation, Tuplex generates a CSV parser and inlines the aggre-

gation code into it. Weld, by contrast, first loads the data via Pandas

to a columnar in-memory representation and then aggregates it via

fast SIMD instructions. The results for Q19 are similar: due to vec-

torization, Weld outperforms Tuplex (without logical optimizations,

10.9s) by 2×. However, Tuplex can apply logical optimizations and

push down filters as Tuplex’s optimizer is aware of both UDFs and

the overall query structure. This awareness leads to a 3× speedup

overWeld, even though Tuplex lacks vectorization.

6.3.3 SQL query compiler: Hyper [25]. Tuplex is designed for
analytics over large, non-indexed data sets. In classic SQL databases,

query compilation iswell-established.WhileTuplex seeks to support

a broader use case (Python UDFs) than SQL queries, we compare to

theHyper query compiler [25, 45] to establish a baseline for Tuplex’s

performance on classic SQL queries. We use Tableau’s latest Hyper-

API [33] (0.0.12366) to run TPC-H Q6 with 16 threads. Hyper relies

on indexes for performance [42]: we expect Q6 to run an order of

magnitude faster when indexes are used, as they allow to skip most

of the data compared to a pure scan-based version. This comes at

the upfront cost of creating the indexes, however.

Tuplex’s scan-based query execution is indeed 3–8× slower than

Hyper’s index-based execution (Figure 9a). Tuplex’s Python code

is also more expensive to compile (120ms) than directly parsing a

simple, well-structured SQL query like Q6, as Tuplex must perform

additional steps like type inference and tracing. Finally, Figure 9b

shows that Tuplex outperforms Hyper by 5–7× on end-to-end run-

time, since Tuplex avoids upfront index creation and interleaves the

aggregation with data loading through its generated parser.

6.3.4 Discussion. Tuplex by design cannot use some optimiza-

tions available toWeld or Hyper, because Tuplex adheres strictly to

Python semantics and must forego optimizations that would violate

these semantics (e.g., via -ffast-math). Furhter, Tuplex generates
code that still contains instructions to check for exceptions, while

Weld and Hyper only work on perfectly clean data.

6.4 Tuplex Performance Breakdown

The largest contributor to Tuplex’s speedup over Spark and Dask is

compiling Python UDFs to native code, but specific design choices

improve Tuplex’s performance by up to 3×.

We measure the impact of specific design choices and optimiza-

tions with the flights pipeline, using 4-way concurrency and with

unopt.
+ logical

+ stage fus.

+ null opt.
+ LLVM

unopt.
+ LLVM

+ logical

+ stage fus.

+ null opt.

10

20

30

40

50

co
m

pu
te

tim
e

in
s

54
.4

27
.2

21
.1

17
.0

8.
5 54
.4

21
.0

17
.1 9.

9

8.
5

Tuplex only
with LLVM Opt.

Figure 10: Factor analysis for the flights pipeline: Tuplex op-
timization and LLVM optimizers together realize speedups.

Tuplex configured to avoid swapping. Figure 10 summarizes the im-

pact of each factor onflights (5.9 GB input data) with and without

LLVM optimizers enabled, plotting times only for the compute part

of the pipeline (i.e., excluding I/O). There are two high-level take-
aways: first, logical optimizations and stage fusion are important;

and second, our optimizations give additional purchase to the LLVM

optimizers. Wemention results for other pipelines where relevant;

these are end-to-end numbers including I/O.

6.4.1 LogicalOptimizations. TuplexcompilesPythonUDFswith

full knowledge of their ASTs. This allows Tuplex to apply standard

optimizations like filter and projection pushdowns and operator

reorderings throughUDFs—in contrast to Spark or Dask, which treat
UDFs as black-boxes. We illustrate the impact such logical optimiza-

tions have with the weblogs and flight pipelines; the Zillow pipeline

has few logical optimization opportunities.

In theflights pipeline, projection pushdown helps drop many of

the 110 input columns early. Tuplex achieves a 2× speedup thanks to

this logical optimization when we disable LLVM optimizers, but the

benefit grows to 3×with LLVM optimizers enabled. This is caused

by LLVM eliminating code that processes data eventually dropped

and its ability to reorder basic blocks for inlined functions.

The weblogs pipeline contains a join with a list of malicious

IPs and a mapColumn operator that anonymizes some records. Ap-

plying mapColumn to output rows of the (selective, i.e., filtering) join
requires anonymizing fewer rows. But Spark or Dask cannot move

a UDF-applying mapColumn through a join, while Tuplex can, thanks

to its understanding of columns read and modified in the UDF. With

this optimization, Tuplex takes 27 seconds (2× faster than the unre-

ordered result we reported in Figure 5). If we manually reorder the

operators in PySparkSQL, it also runs 2.5× faster (305 seconds), but

remains 11.3× slower than Tuplex.

6.4.2 Stage Fusion. Systems that treat UDFs as black-box oper-

ators are unable to end-to-end optimize across them. In Spark and

Dask, a UDF operator is an optimization barrier, while Tuplex makes

stages—the unit of optimized compilation—as large as possible. To

measure the impact of this design, we manually insert optimization

barriers in theflights pipeline, forcingTuplex touse additional stages.

We consider Tuplex with optimization barriers that mimic Spark’s

optimization constraints; and Tuplex with stage fusion (i.e., only
the build side of a join is a barrier, cf. §4.5). For each, we disable and

enable LLVM optimizers to measure any cross-UDF optimization en-

abled.Without LLVM optimizers, Tuplex takes 27.2 seconds without

stage fusion and 21.1 seconds with stage fusion (22% improvement);

with LLVM optimizers, runtimes drop to 17.1 and 9.9 seconds (42%

improvement). Stage fusion thus enables optimization potential that

improves runtime by an extra 20%.

Setup Spark (64 executors) Tuplex (64 Lambdas)
100 GB 209.03 sec (σ =10.53) 31.5 sec (σ =8.25)

1 TB 1791.51 sec (σ =4.38) 351.1 sec (σ =22.10)

Table 4: In a distributed scale-out experiment, Tuplex’s
Lambda backend outperforms a Spark cluster by 5.1–6.6×.

6.4.3 OptionalTypesofftheNormalPath. Dualmodeprocess-

ing allows Tuplex to optimize the normal-case path by deferring

complexity to the exception-case path. We measure the impact of

shifting rare null values to the general-case code path (§4.7). In

flights, this optimization reduces the pipeline’s compute time by

14–19%, albeit at the cost of increasing compile time by 2 seconds,

which reduces end-to-end benefit. (Larger datasets would realize

more of the benefit, as compile time is a constant.)

6.5 Distributed, Scale-Out Execution

While our focus has been on the single-machine performance of our

Tuplex prototype, some systems we compare to (PySpark and Dask)

support distributed execution. To verify that Tuplex’s performance

gains are notmerely a consequence of avoiding overheads associated

with distributed operation, we compare these systems with Tuplex’s

experimental distributed execution over AWS Lambda functions.

We compare our prototype’s Lambda backend with a maximum

concurrency of 64 simultaneously running requests to a Spark clus-

ter with 64 executors. We use Lambdas with 1.5 GB of memory. The

Spark cluster runs on 32 m5.large instances that each run two ex-

ecutors with 1 core and 2 GB of memory per executor. This gives

Spark an advantage, as it has more memory and the cluster runs

continuously, while Tuplex provisions a Lambda container for each

task. In addition, while Tuplex’s Lambda backendwrites to S3, Spark

merely collects results on its driver node, as writing to S3 requires

extra infrastructure [21, 65]. We run the Zillow pipeline over scaled

datasets of 100 GB and 1 TB, with data stored in 256 MB chunks in

AWS S3. To verify that the compute speed of m5.large VMs is com-

parable to 1.5 GB Lambda functions, we ran a microbenchmark over

one 256MB chunk. It takes 3.99 seconds on an m5.large VM, while

our code within a Lambda function takes 4.00 seconds on average,

with some variance (min: 3.68 sec, max 9.99 sec).

Table 4 shows the results. For Spark, we show numbers for the

tuple-based pipeline; the dictionary and SparkSQL versions are 10–

20% slower. Tuplex completes the pipeline in 31.5 and 351 seconds

for 100 GB and 1 TB, 5.1× and 6.6× faster, respectively, than the

fastest Spark setup. This difference comes from Tuplex’s compute

speed, which outweighs the overheads associated with Lambdas

(HTTP request, queueing, container provisioning, etc.). In terms of

direct monetary cost, Tuplex is competitive at 4¢ for 100 GB (Spark:

3.7¢) and 55¢ for 1 TB (Spark: 32¢), while also avoiding the setup and

provisioning time costs, idle costs, and EBS storage costs that Spark

incurs on top of the EC2 VM costs. This suggests that Tuplex can be

competitive both on a single server and in scale-out settings.

7 Discussion and Experience
Tuplex’s primary objective is high performance for pipelines that

include Python UDFs. But the dual-mode execution model may also

help Tuplex users avoid some long-standing challenges of pipeline

development and debugging [24, 53]. Key to this is Tuplex’s guaran-

tee thatpipelinesnever fail becauseofmalformed input rows: instead,

Tuplex does its best to complete the pipeline on valid, normal-case

rows and reports statistics about failed rows to the user. It is difficult

to quantify the impact of failure-free pipelines on developer produc-

tivity. However, in our anecdotal experience implementing pipelines

we found Tuplex preferable for several reasons:

(1) Although our evaluation data sets are fairly “clean”, they con-

tain a small number of anomalous rows, which often caused

hard-to-debug failures in Spark and Dask.

(2) Representing rows as tuples instead of dictionaries improves

PySpark performance, but the numerical indexing took painstak-

ingwork to get right. Tuplex avoids the speed-usability tradeoffs

and has the same performance for tuples and dictionaries.

(3) Making null values work with Dask/Pandas required using spe-

cial datatypes (e.g., np.int64), rather native Python types, as

Pandas fails on None values.

(4) The semantics of special-purpose operators designed to help

developers avoid UDFs differ from Python code. For example,

SparkSQL’s regex_extract returns an empty string when there

is no match, rather than NULL as a Python user might expect

(Python’s re returns None in this case). The weblog dataset has

two anomalous rows, which cause SparkSQL to silently return

incorrect results, while Tuplex correctly reported them.

(5) We compared toWeld using the Pandas cookbook’s sub-sampled

311 dataset [13] (99k rows) scaled 2,000× in §6.3.2, but Tuplex

works out-of-the-box on the full NYC 311 dataset [47] (22.4M

rows), whileWeld, PySpark, PySparkSQL, and Dask all fail and

require changes to the UDF code for the realistic dataset.

We spent substantial time tracking down edge cases in framework

documentation for other systems, while Tuplex’s Python UDFs be-

haved as expected. We also found that Tuplex’s reporting of excep-

tions and failed rows helped us track down bugs in our pipelines.

Tuplex’s dual mode processing requires a representative sample.

Like with any sampling approach, an unrepresentative sample can

lead Tuplex to deduce an incorrect common case. If the sample itself

produces only exceptions, Tuplex warns the user either to revise the

pipeline or increase the sample size.

8 Conclusion
Tuplex is a new data analytics system that compiles Python UDFs

to optimized, native code. Tuplex’s key idea is dual-mode process-

ing, which makes optimizing UDF compilation tractable. Tuplex is

available as open-source software at https://tuplex.cs.brown.edu.

Acknowledgments
We are grateful to Shriram Krishnamurthi and the Brown Systems

and Database groups for feedback on drafts of this paper. We also

thankColbyAnderson,KhosrowArian,BenGivertz,AndyLy,Raghu

Nimmagadda,William Riley, Yunzhi Shao, and AndrewWei for their

contributions to Tuplex’s implementation.

This research was supported by NSF awards DGE-2039354 and

IIS-1453171, funding from Google, and a Brown University Richard

B. Salomon Award. This research was also sponsored by the United

States Air Force Research Laboratory and the United States Air

ForceArtificial IntelligenceAccelerator andwas accomplishedunder

Cooperative Agreement Number FA8750-19-2-1000. The views and

conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies,

https://tuplex.cs.brown.edu

either expressed or implied, of the United States Air Force or the U.S.

Government. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any

copyright notation herein.

References
[1] Yanif Ahmad and Christoph Koch. “DBToaster: A SQL Compiler for High-

Performance Delta Processing in Main-Memory Databases”. In: Proceedings of
the VLDB Endowment 2.2 (Aug. 2009), 1566–1569.

[2] Anaconda, Inc.Will NumbaWork For My Code? url: http://numba.pydata.org/

numba-doc/latest/user/5minguide.html#will-numba-work- for-my-code

(visited on 05/16/2020).

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph

K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi,

et al. “Spark SQL: Relational Data Processing in Spark”. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data. 2015,
pages 1383–1394.

[4] S.Behnel, R.Bradshaw,C.Citro, L.Dalcin,D.S. Seljebotn, andK. Smith. “Cython:

The Best of Both Worlds”. In: Computing in Science Engineering 13.2 (2011),

pages 31 –39.

[5] C. Chambers and D. Ungar. “Customization: Optimizing Compiler Technology

for SELF, a Dynamically-Typed Object-Oriented Programming Language”. In:

Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language
Design and Implementation. Portland, Oregon, USA, 1989, pages 146–160.

[6] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Bin-

nig, Ugur Cetintemel, and Stan Zdonik. “An Architecture for Compiling UDF-

centricWorkflows”. In:Proceedingsof theVLDBEndowment 8.12 (2015),pages1466–
1477.

[7] Databricks.W3L1: Apache Logs Lab Dataframes (Python). 2019. url: https://da
tabricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93e

aaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/

latest.html (visited on 03/24/2020).

[8] Databricks, Inc.Handlingbad recordsandfiles.url: https://docs.databricks.com/

spark/latest/spark-sql/handling-bad-records.html (visited on 05/26/2020).

[9] James MDecker, DanMoldovan, Andrew A Johnson, GuannanWei, Vritant

Bhardwaj, Gregory Essertel, and FeiWang. Snek: Overloading Python Semantics
via Virtualization.

[10] G. Dot, A. Martínez, and A. González. “Analysis and Optimization of Engines

for Dynamically Typed Languages”. In: 2015 27th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD). 2015,
pages 41–48.

[11] Gilles Duboscq, ThomasWürthinger, Lukas Stadler, ChristianWimmer, Doug

Simon, and Hanspeter Mössenböck. “An intermediate representation for spec-

ulative optimizations in a dynamic compiler”. In: Proceedings of the 7th ACM
workshop on Virtual Machines and Intermediate Languages. 2013, pages 1–10.

[12] Gregory Essertel, Ruby Tahboub, JamesDecker, Kevin Brown, Kunle Olukotun,

and Tiark Rompf. “Flare: Optimizing apache spark with native compilation

for scale-up architectures and medium-size data”. In: Proceedings of the 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI).
2018, pages 799–815.

[13] Julia Evans. Pandas Cookbook: Chapter 7 – Cleaning up messy data. url: https:
//github.com/jvns/pandas-cookbook/blob/master/cookbook/Chapter%207%

20-%20Cleaning%20up%20messy%20data.ipynb (visited on 03/24/2020).

[14] Python Software Foundation. The Python Profilers: cProfile. url: https://docs.
python.org/3/library/profile.html#module-cProfile (visited on 05/15/2020).

[15] Lars Grammel. Wrangling US Flight Data - Part 1. 2015. url: https://www.

trifacta.com/blog/wrangling-us-flight-data-part-1/ (visited on 09/14/2019).

[16] Kay Hayen.Nuitka. 2018. url: http://nuitka.net/ (visited on 05/12/2019).
[17] Anna Herlihy. PYLLVM: A compiler from a subset of Python to LLVM-IR. May

2016. url: https://pycon.org.il/2016/static/sessions/anna-herlihy.pdf (visited

on 05/12/2020).

[18] FabianHueske,MathiasPeters,Matthias JSax,AstridRheinländer,RicoBergmann,

Aljoscha Krettek, and Kostas Tzoumas. “Opening the black boxes in data flow

optimization”. In: Proceedings of the VLDB Endowment 5.11 (2012), pages 1256–
1267.

[19] Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong Jeong, Dong-Jin Shin,

and Byung-Gon Chun. “JANUS: Fast and Flexible Deep Learning via Symbolic

Graph Execution of Imperative Programs”. In: Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation. 2019, pages 453–
468.

[20] Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong Jeong, Dong-Jin Shin,

Taebum Kim, and Byung-Gon Chun. “Speculative Symbolic Graph Execution

of Imperative Deep Learning Programs”. In: SIGOPS Oper. Syst. Rev. 53.1 (July
2019), pages 26–33.

[21] Cy Jervis. Introducing S3Guard: S3 Consistency for Apache Hadoop. 2017. url:

https://blog.cloudera.com/introducing-s3guard-s3-consistency-for-apache-

hadoop/ (visited on 05/26/2020).

[22] Li Jin. Introducing Pandas UDF for PySpark - The Databricks Blog. https : / /
databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.

html. 2017.

[23] Johannes Kepler University (JKU). The Truffle Language Implementation Frame-
work.url: http://www.ssw.uni-linz.ac.at/Research/Projects/JVM/Truffle.html

(visited on 04/17/2019).

[24] Sital Kedia, ShuojieWang, and Avery Ching.Apache Spark @Scale: A 60 TB+
production use case. 2016. url: https://code.fb.com/core-data/apache-spark-

scale-a-60-tb-production-use-case/ (visited on 11/25/2018).

[25] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAPmain

memory database system based on virtual memory snapshots”. In: Proceedings
of the 27th IEEE International Conference on Data Engineering (ICDE). 2011,
pages 195–206.

[26] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,

and Peter Boncz. “Everything you always wanted to know about compiled

and vectorized queries but were afraid to ask”. In: Proceedings of the VLDB
Endowment 11.13 (2018), pages 2209–2222.

[27] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. “Building

Efficient Query Engines in aHigh-Level Language”. In: Proceedings of the VLDB
Endowment 7.10 (June 2014), 853–864.

[28] Sanjay Krishnan, Michael J. Franklin, Kenneth Goldberg, and Eugene Wu.

BoostClean: Automated Error Detection and Repair for Machine Learning. Nov.
2017. arXiv: 1711.01299 [cs.DB].

[29] Mads R.B. Kristensen, Simon A.F. Lund, Troels Blum, and James Avery. “Fusion

of Parallel Array Operations”. In: Proceedings of the 2016 International Confer-
ence on Parallel Architectures and Compilation. Haifa, Israel, 2016, pages 71–
85.

[30] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-based

Python JITCompiler”. In:Proceedings of the 2ndWorkshop on the LLVMCompiler
Infrastructure in HPC. Austin, Texas, 2015, 7:1–7:6.

[31] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-

sandr Zinenko.MLIR: ACompiler Infrastructure for the End ofMoore’s Law. 2020.
arXiv: 2002.11054 [cs.PL].

[32] Chris Leary and Todd Wang. XLA: TensorFlow, compiled. 2017. url: https :
//youtu.be/kAOanJczHA0 (visited on 07/15/2020).

[33] Tableau Software LLC. Tableau Hyper API. url: https://help.tableau.com/

current/api/hyper_api/en-us/index.html (visited on 08/12/2020).

[34] LLVM Project. Itanium ABI Zero-cost Exception Handling. Aug. 2019. url: https:
//releases.llvm.org/8.0.1/docs/ExceptionHandling.html#itanium-abi-zero-

cost-exception-handling (visited on 05/01/2020).

[35] LLVM Project. Setjmp/Longjmp Exception Handling. Aug. 2019. url: https :
//releases.llvm.org/8.0.1/docs/ExceptionHandling.html#setjmp- longjmp-

exception-handling (visited on 05/01/2020).

[36] Wes McKinney et al. “pandas: a foundational Python library for data analysis

and statistics”. In: Python for High Performance and Scientific Computing 14.9
(2011).

[37] Micro Focus International, PLC. Vertica 9.2.x: Capturing Load Rejections and
Exceptions. url: https : / /www.vertica .com/docs/9 .2 .x/HTML/Content/

Authoring/AdministratorsGuide/BulkLoadCOPY/CapturingLoadExceptions

AndRejections.htm (visited on 05/26/2020).

[38] Kevin Modzelewski. Pyston 0.6.1 released, and future plans. 2017. url: https:
//blog.pyston.org/2017/01/31/pyston-0-6-1- released-and- future-plans/

(visited on 04/17/2019).

[39] Kevin Modzelewski. Introducing Pyston: an upcoming, JIT-based Python imple-
mentation. 2018. url: https://blogs.dropbox.com/tech/2014/04/introducing-

pyston - an - upcoming - jit - based - python - implementation/ (visited on

05/11/2020).

[40] KevinModzelewski. Pyston v2: 20% faster Python. 2020.url: https://blog.pyston.
org/2020/10/28/pyston-v2-20-faster-python/ (visited on 10/28/2020).

[41] YannMoisan. Spark performance tuning from the trenches. url: https://medium.

com/teads- engineering/spark- performance- tuning- from- the- trenches-

7cbde521cf60 (visited on 03/24/2020).

[42] Tobias Mühlbauer, Wolf Rödiger, Robert Seilbeck, Angelika Reiser, Alfons

Kemper, and Thomas Neumann. “Instant loading for main memory databases”.

In: Proceedings of the VLDB Endowment 6.14 (2013), pages 1702–1713.
[43] Myip.ms. Blacklist IP Addresses Live Database (Real-time). url: https://myip.

ms/browse/blacklist (visited on 03/24/2020).

[44] ChristianNavasca,ChengCai,KhanhNguyen,BrianDemsky,ShanLu,Miryung

Kim, and Guoqing Harry Xu. “Gerenuk: thin computation over big native data

using speculative program transformation”. In: Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP). 2019, pages 538–553.

[45] Thomas Neumann. “Efficiently compiling efficient query plans for modern

hardware”. In: Proceedings of the VLDB Endowment 4.9 (2011), pages 539–550.
[46] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Demsky, and

http://numba.pydata.org/numba-doc/latest/user/5minguide.html#will-numba-work-for-my-code
http://numba.pydata.org/numba-doc/latest/user/5minguide.html#will-numba-work-for-my-code
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html
https://docs.databricks.com/spark/latest/spark-sql/handling-bad-records.html
https://docs.databricks.com/spark/latest/spark-sql/handling-bad-records.html
https://github.com/jvns/pandas-cookbook/blob/master/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
https://github.com/jvns/pandas-cookbook/blob/master/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
https://github.com/jvns/pandas-cookbook/blob/master/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
https://docs.python.org/3/library/profile.html#module-cProfile
https://docs.python.org/3/library/profile.html#module-cProfile
https://www.trifacta.com/blog/wrangling-us-flight-data-part-1/
https://www.trifacta.com/blog/wrangling-us-flight-data-part-1/
http://nuitka.net/
https://pycon.org.il/2016/static/sessions/anna-herlihy.pdf
https://blog.cloudera.com/introducing-s3guard-s3-consistency-for-apache-hadoop/
https://blog.cloudera.com/introducing-s3guard-s3-consistency-for-apache-hadoop/
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
http://www.ssw.uni-linz.ac.at/Research/Projects/JVM/Truffle.html
https://code.fb.com/core-data/apache-spark-scale-a-60-tb-production-use-case/
https://code.fb.com/core-data/apache-spark-scale-a-60-tb-production-use-case/
http://arxiv.org/abs/1711.01299
http://arxiv.org/abs/2002.11054
https://youtu.be/kAOanJczHA0
https://youtu.be/kAOanJczHA0
https://help.tableau.com/current/api/hyper_api/en-us/index.html
https://help.tableau.com/current/api/hyper_api/en-us/index.html
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#itanium-abi-zero-cost-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#itanium-abi-zero-cost-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#itanium-abi-zero-cost-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#setjmp-longjmp-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#setjmp-longjmp-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#setjmp-longjmp-exception-handling
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/AdministratorsGuide/BulkLoadCOPY/CapturingLoadExceptionsAndRejections.htm
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/AdministratorsGuide/BulkLoadCOPY/CapturingLoadExceptionsAndRejections.htm
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/AdministratorsGuide/BulkLoadCOPY/CapturingLoadExceptionsAndRejections.htm
https://blog.pyston.org/2017/01/31/pyston-0-6-1-released-and-future-plans/
https://blog.pyston.org/2017/01/31/pyston-0-6-1-released-and-future-plans/
https://blogs.dropbox.com/tech/2014/04/introducing-pyston-an-upcoming-jit-based-python-implementation/
https://blogs.dropbox.com/tech/2014/04/introducing-pyston-an-upcoming-jit-based-python-implementation/
https://blog.pyston.org/2020/10/28/pyston-v2-20-faster-python/
https://blog.pyston.org/2020/10/28/pyston-v2-20-faster-python/
https://medium.com/teads-engineering/spark-performance-tuning-from-the-trenches-7cbde521cf60
https://medium.com/teads-engineering/spark-performance-tuning-from-the-trenches-7cbde521cf60
https://medium.com/teads-engineering/spark-performance-tuning-from-the-trenches-7cbde521cf60
https://myip.ms/browse/blacklist
https://myip.ms/browse/blacklist

Shan Lu. “Skyway: Connectingmanaged heaps in distributed big data systems”.

In:ACM SIGPLAN Notices 53.2 (2018), pages 56–69.
[47] NYC OpenData. 311 Service Requests from 2010 to Present. url: https://data.

cityofnewyork.us/Social- Services/311- Service-Requests- from-2010- to-

Present/erm2-nwe9 (visited on 05/12/2020).

[48] Oracle, Inc. GraalVM. url: https://www.graalvm.org/ (visited on 04/17/2019).

[49] Shoumik Palkar. PR #308: Remove Multithreaded Backend. url: https://github.
com/weld-project/weld/pull/383 (visited on 08/05/2020).

[50] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul

Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,

Saman Amarasinghe, Samuel Madden, and Matei Zaharia. “Evaluating End-to-

end Optimization for Data Analytics Applications inWeld”. In: Proceedings of
the VLDB Endowment 11.9 (May 2018), pages 1002–1015.

[51] Shoumik Palkar and Matei Zaharia. “Optimizing data-intensive computations

in existing libraries with split annotations”. In: Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP). 2019, pages 291–305.

[52] Arash Partow. The Global Airport Database. url: https://www.partow.net/

miscellaneous/airportdatabase/ (visited on 03/24/2020).

[53] Tejas Patil and Jing Zheng. Using Apache Spark for large-scale language model
training. 2017. url: https://code.fb.com/core-data/using-apache-spark-for-

large-scale-language-model-training/ (visited on 11/25/2018).

[54] PostgreSQL Global Development Group. Error logging in COPY. url: https:
//wiki.postgresql.org/wiki/Error_logging_in_COPY (visited on 05/26/2020).

[55] Armin Rigo, Maciej Fijalkowski, Carl Friedrich Bolz, Antonio Cuni, Benjamin

Peterson, Alex Gaynor, Hakan Ardoe, Holger Krekel, and Samuele Pedroni.

PyPy. url: http://pypy.org/ (visited on 08/04/2020).
[56] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,

Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-

stein, et al. Glow: Graph lowering compiler techniques for neural networks. 2018.
arXiv: 1805.00907 [cs.PL].

[57] ScrapeHero.How to Scrape Real Estate Listings from Zillow.com using Python
and LXML. Oct. 2017. url: https://www.scrapehero.com/how- to- scrape-

real- estate- listings- on- zillow- com-using-python- and- lxml/ (visited on

09/12/2018).

[58] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad

Dashti, and Christoph Koch. “How to Architect a Query Compiler”. In: Proceed-
ings of the 2016 International Conference onManagement of Data. San Francisco,
California, USA, 2016, pages 1907–1922.

[59] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. “Vectorization vs. Com-

pilation in Query Execution”. In: Proceedings of the 7th International Workshop
on Data Management on New Hardware. Athens, Greece: Association for Com-

puting Machinery, 2011, 33–40.

[60] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. “How to Architect a

Query Compiler, Revisited”. In: Proceedings of the 2018 International Conference
on Management of Data. Houston, TX, USA, 2018, 307–322.

[61] The PyPy Team. PyPy: Performance. url: https://www.pypy.org/performance.

html (visited on 11/15/2019).

[62] United States Department of Transportation Bureau of Transportation Statis-

tics. Carrier history lookup table. url: https://www.transtats.bts.gov/Downloa
d_Lookup.asp?Lookup=L_CARRIER_HISTORY (visited on 03/24/2020).

[63] United States Department of Transportation Bureau of Transportation Statis-

tics. Reporting Carrier On-Time Performance (1987-present). url: https://www.
transtats.bts.gov/Fields.asp?Table_ID=236 (visited on 03/24/2020).

[64] trstovall. [bug] dask.dataframe.DataFrame.merge fails for inner join. 2019. url:
https://github.com/dask/dask/issues/4643 (visited on 05/12/2020).

[65] Gil Vernik, Michael Factor, Elliot K. Kolodner, Effi Ofer, Pietro Michiardi,

and Francesco Pace. “Stocator: An Object Store Aware Connector for Apache

Spark”. In: Proceedings of the 2017 Symposium on Cloud Computing. Santa Clara,
California, 2017, page 653.

[66] JiannanWang, Sanjay Krishnan,Michael J Franklin, KenGoldberg, TimKraska,

and Tova Milo. “A sample-and-clean framework for fast and accurate query

processingondirty data”. In:Proceedings of the 2014ACMSIGMOD international
conference on Management of data. ACM. 2014, pages 469–480.

[67] DavidWilson. csvmonkey - Header-only vectorized, lazy-decoding, zero-copy
CSV file parser. url: https://github.com/dw/csvmonkey.

[68] EugeneWu, Samuel Madden, andMichael Stonebraker. “A demonstration of

DBWipes: clean as you query”. In: Proceedings of the VLDB Endowment 5.12
(2012), pages 1894–1897.

[69] Reynold Xin and Josh Rosen. Project Tungsten: Bringing Apache Spark Closer
to Bare Metal. 2015. url: https://databricks.com/blog/2015/04/28/project-

tungsten-bringing-spark-closer-to-bare-metal.html (visited on 08/07/2019).

[70] YuanYu,Michael Isard, Dennis Fetterly,Mihai Budiu, Úlfar Erlingsson, Pradeep

Kumar Gunda, and Jon Currey. “DryadLINQ: A System for General-Purpose

Distributed Data-Parallel Computing Using a High-Level Language”. In: Pro-
ceedings of the 8th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). San Diego, California, USA, Dec. 2008.

[71] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

MurphyMcCauley,Michael J Franklin, Scott Shenker, and Ion Stoica. “Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster com-

puting”. In: Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI). 2012.

[72] M. Zukowski, M. van deWiel, and P. Boncz. “Vectorwise: A Vectorized Analyt-

ical DBMS”. In: Proceedings of the 28th IEEE International Conference on Data
Engineering. 2012, pages 1349–1350.

https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://www.graalvm.org/
https://github.com/weld-project/weld/pull/383
https://github.com/weld-project/weld/pull/383
https://www.partow.net/miscellaneous/airportdatabase/
https://www.partow.net/miscellaneous/airportdatabase/
https://code.fb.com/core-data/using-apache-spark-for-large-scale-language-model-training/
https://code.fb.com/core-data/using-apache-spark-for-large-scale-language-model-training/
https://wiki.postgresql.org/wiki/Error_logging_in_COPY
https://wiki.postgresql.org/wiki/Error_logging_in_COPY
http://pypy.org/
http://arxiv.org/abs/1805.00907
https://www.scrapehero.com/how-to-scrape-real-estate-listings-on-zillow-com-using-python-and-lxml/
https://www.scrapehero.com/how-to-scrape-real-estate-listings-on-zillow-com-using-python-and-lxml/
https://www.pypy.org/performance.html
https://www.pypy.org/performance.html
https://www.transtats.bts.gov/Download_Lookup.asp?Lookup=L_CARRIER_HISTORY
https://www.transtats.bts.gov/Download_Lookup.asp?Lookup=L_CARRIER_HISTORY
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
https://github.com/dask/dask/issues/4643
https://github.com/dw/csvmonkey
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Tuplex Overview
	4 Design
	4.1 Abstraction and Assumptions
	4.2 Establishing the Normal Case
	4.3 Code Generation
	4.4 Execution
	4.5 Joins
	4.6 Aggregates
	4.7 Optimizations

	5 Implementation
	6 Evaluation
	6.1 End-to-End Performance
	6.2 Exception Handling
	6.3 Comparison To Other Systems
	6.4 Tuplex Performance Breakdown
	6.5 Distributed, Scale-Out Execution

	7 Discussion and Experience
	8 Conclusion
	Acknowledgments

