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ABSTRACT
Accurate query performance prediction (QPP) is central to effec-
tive resource management, query optimization and user experience
management. Analytical cost models, which are commonly used
by optimizers to compare candidate plan costs, are poor predictors
of execution latency. As a more promising approach to QPP, this
paper studies the practicality and utility of sophisticated learning-
based models, which have recently been applied to a variety of pre-
dictive tasks with great success.

We propose and evaluate predictive modeling techniques that learn
query execution behavior at different granularities, ranging from
coarse-grained plan-level models to fine-grained operator-level mod-
els. We demonstrate that these two extremes offer a tradeoff be-
tween high accuracy and generality, respectively, and introduce a
hybrid approach that combines their respective strengths by selec-
tively composing them in the process of QPP. We discuss how we
can use a training workload to (i) pre-build and materialize such
models offline, so that they are readily available for future pre-
dictions, and (ii) build new models online as new predictions are
needed. All prediction models are built using only static features
(available prior to query execution) and the performance values ob-
tained from the offline execution of the training workload.

We fully implemented all these techniques and extensions on top
of PostgreSQL and evaluated them experimentally by quantifying
their effectiveness over analytical workloads, represented by well-
established TPC-H data and queries. The results provide quantita-
tive evidence that learning-based modeling for QPP is both feasible
and effective for both static and dynamic workload scenarios.

1. INTRODUCTION
Modern database systems can greatly benefit from query perfor-
mance prediction (QPP), i.e., predicting the execution latency of a
query plan on a given hardware and system configuration. For ex-
ample, resource managers can utilize QPP to perform workload al-
location such that interactive behavior is achieved or specific QoS
targets are met. Optimizers can choose among alternative plans
based-on expected execution latency instead of total work incurred.

Accurate QPP is important but also challenging: database systems
are becoming increasingly complex, with several database and op-
erating system components interacting in sophisticated and often
unexpected ways. The heterogeneity of the underlying hardware
platforms adds to this complexity by making it more difficult to
quantify the CPU and I/O costs. Analytical cost models predom-
inantly used by the current generation of query optimizers cannot
capture these interactions and complexity; in fact, they are not de-

signed to do so. While they do a good job of comparing the costs of
alternative query plans, they are poor predictors of plan execution
latency. Recent work [1] showed this result for TPC-DS [17], and
this paper does same for TPC-H [6] data and queries.

In this paper, we utilize learning-based modeling and prediction
techniques to tackle QPP for analytical workloads. Data-driven,
learning-based modeling is fast emerging as an essential ingredient
of both user-facing applications, such as predictive analytics, and
system-facing applications, such as autonomic computing and self-
management. Prior work reported evidence that such techniques
can also be used effectively for QPP, at least in constrained set-
tings [1]. Our study substantially improves and generalizes these
results in a number of new directions, arguing that learning-based
techniques tailored to database query execution are generally appli-
cable to and can be highly effective for QPP.

One of our key contributions is to show that queries can be modeled
at different granularities, each offering different tradeoffs involving
predictive accuracy and generality. If a representative workload is
available for training purposes, we can make highly accurate pre-
dictions using coarse-grained, plan-level models [1]. Such models,
however, do not generalize well, performing poorly for unseen or
changing workloads. For these cases, fine-grained, operator-level
modeling performs much better due to its ability to capture the be-
havior of arbitrary plans, although they do not perform as well as
plan-level models for fixed workloads. We then propose a hybrid
approach that selectively composes plan- and operator-level models
to achieve high accuracy without sacrificing generality.

All these modeling techniques require a training query workload to
be executed, so that appropriate feature and performance values are
extracted and logged. Models can then be built (i.e., trained) over
these logs in offline mode, online mode, or in conjunction. The
main advantage of pre-building and materialization is that the mod-
els are immediately ready for use in predictions whenever needed.
The challenge, however, is to decide which models to pre-build,
since it is clearly not feasible to build all possible models in ad-
vance. To guide this decision, we propose heuristics that rely on
estimates for additional accuracy yields and use frequencies. The
online approach, on the other hand, allows for custom (and po-
tentially more accurate) model to be built for a specific prediction
task, but delays the prediction until an appropriate model is built.
Note that online building proceeds over the already available fea-
ture data, and does not require new sample query runs. Finally,
online and offline modeling can be seamlessly combined, with the
decision of which online models to create influenced by the pre-
built models. We note that these techniques require only static fea-



tures (i.e., compile-time features which are available prior to query
execution) for performance prediction.

Finally, we describe how all these techniques can be used in com-
bination to provide progressively improved predictions. When a
new QPP is needed, we can immediately use the pre-built models
to come up with an initial prediction, which we can then continue
to improve over time by building better models online optionally
with run-time features.

While we study the utility of learning-based models for query ex-
ecution latency as the performance metric of interest, the proposed
techniques are general, and thus can be used in the prediction of
other metrics such as throughput. We should also note that this pa-
per does not consider QPP in the presence of concurrent execution,
which is an important and challenging problem to address, but is
outside the scope of this paper.

We fully implemented these techniques and report experimental re-
sults that quantify their cost and effectiveness for a variety of usage
scenarios on top of PostgreSQL/TPC-H. The results reveal that our
novel learning-based modeling techniques can serve as an effec-
tive QPP solution for analytical workloads, substantially improving
upon the existing solutions.

The rest of the paper is organized as follows: we start with back-
ground information on data-driven model-based prediction in Sec-
tion 2. In Section 3, we first describe our general approach to using
statistical learning techniques for QPP. Plan and operator -level per-
formance prediction methods are described in Section 3.1 and Sec-
tion 3.2, respectively. Next, in Section 3.4 we introduce the hybrid
prediction method. Online modeling techniques which build pre-
diction models at query execution time are discussed in Section 4.
We present experimental results using the TPC-H query workload
in Section 5. We then end the paper with related work and conclu-
sion remarks in Sections 6 and 7.

2. BACKGROUND: MODEL-BASED
PREDICTION

We use the term model to refer to any predictive function such as
Multiple Regression, Bayesian Nets, and Support Vector Machines.
Training a model involves using historical data sets to determine the
best model instance that explains the available data. For example,
fitting a function to a time series may yield a specific polynomial
instance that can be used to predict future values.

Model training (or building) requires selecting (i) the feature at-
tributes, a subset of all attributes in the data set, and (ii) a predic-
tion model, e.g., Linear Regression and Support Vector Machines
(SVMs), to be used for modeling. In general, we cannot know
which model type and feature set will produce the most accurate
model for a given data set without building and testing multiple
models. In some cases, a domain expert can manually specify the
feature attributes. In other cases, this step is trivial as the prediction
attribute(s) directly determine the feature attribute(s), e.g., in auto-
regressive models. Alternatively, feature attributes can be learned
automatically; however, given a set of n attributes, trying the power
set is prohibitively expensive if n is not small or training is expen-
sive [4, 3, 2] thereby requiring heuristic solutions.

Most approaches rank the candidate attributes (often based on their
correlation to the prediction attribute using metrics such as infor-
mation gain or correlation coefficients) and use this ranking to guide

a heuristic search [4] to identify most predictive attributes tested
over a disjoint test data set. In this paper, we will use a similarFor-
ward Feature Selectionalgorithm based on linear correlation coef-
ficients [4]. This algorithm essentially performs a best-first search
in the model space. It starts with building models using small num-
ber of features and iteratively builds more complex and accurate
models by using more features. The features are considered with
respect to their correlation with the target/prediction attribute. The
training data set may be sampled to speed up the process.

While we use a feature selection algorithm for building accurate
models using relevant features, we do not consider building multi-
ple models of different types for solving the model selection prob-
lem. Instead in each one of our experiments we use a single type of
prediction model, either Linear Regression or SVMs, that performs
well.

Hypothesis testing and confidence interval estimations are two com-
mon techniques for determining predictive accuracy [2]. As men-
tioned, it is not possible to estimate a priori what model would be
most predictive for a given data set without training/testing it. One
form of hypothesis testing that is commonly used is K-Fold Cross
Validation (K-CV). K-CV divides the observed data up intok non-
overlapping partitions. One of the partitions is used as validation
data while the otherk − 1 partitions are used to train the model
and to predict the data in the validation interval. In this study, we
will use cross-validation techniques to estimate the accuracy of our
prediction models.

3. MODELING QUERY EXECUTIONS
In this study, we describe QPP methods based on statistical learning
models. As is usual in most learning approaches, all of our mod-
eling techniques consist of two main phases: training and testing.
The high-level operations involved in these phases are explained in
Figure 2.

In the training phase, prediction models are derived from a train-
ing data set that contains previously executed queries (i.e., train-
ing workload) and the observed performance values. In this phase,
queries are represented as a set of features (i.e., predictive vari-
ables) with corresponding performance values (i.e., target variables)
and the goal is to create an accurate and concise operational sum-
mary of the mapping between the feature values and the observed
performance data points. The prediction models are then used to
predict the performance of unforeseen queries in the test phase. In
more complex QPP methods, the training and testing phases can be
performed continuously for improved accuracy and adaptivity.

Figure 1: Statistical Modeling Approach to Query Performance Pre-
diction.



Our approach to QPP relies on models that use only static, compile-
time features, which allow us to produce predictions before the ex-
ecution of queries. There are several static information sources,
such as the query text and execution plans, from which query fea-
tures can be extracted prior to execution. In this study, we use
features that can be obtained from the information provided by the
query optimizer. Many DBMS provide optimizer calls that expose
query-plan information and statistical estimates such as the opti-
mized query-plan structure and operator selectivities (for example,
EXPLAIN in PostgreSQL).

This paper shows that it is possible to create models at varying
granularities for query performance prediction. As in [1], one coarse
modeling method is to create a single, plan-level prediction model
that utilizes query plan features for modeling the execution times
of queries. We discuss this approach in Section 3.1. A finer grained
approach would be to model each operator type separately and use
them collectively through selective composition to model entire
query plans. We describe this method in Section 3.2 and compare
the relative advantages and drawbacks of the two approaches in
Section 3.3. Next, in Section 3.4, we introduce a “hybrid” model-
ing approach that combines the fine and coarse grained modeling
methods to form a highly accurate and general QPP approach.

3.1 Plan-level Modeling
In the plan-level modeling approach, the performance of a query
is predicted using a single prediction model. We use the features
presented in Table 1 for building plan-level models. This set of
features contains query optimizer estimates such as operator cardi-
nalities and plan execution costs together with the occurrence count
of each operator type in the query plan.

Feature Name Description

p_tot_cost Estimated plan total cost
p_st_cost Estimated plan start cost
p_rows Estimated number of output tuples
p_width Estimated average width of an out-

put tuple (in bytes)
op_count Number of query operators in the

plan
row_count Estimated total number of tuples in-

put and output to/from each opera-
tor

byte_count Estimated total size (in bytes) of all
tuples input and output

<operator_name>_cnt The number of <operator_name>
operators in the query

<operator_name>_rows The total number of tuples output
from <operator_name> operators

Table 1: Features for plan-level models. p_st_cost refers to the
cost of query execution until the first output tuple. <opera-
tor_name> refers to the query operators such asLimit, Materi-
alize and Sort.

As mentioned in Section 2, we need to address two challenges
when using model-based learning techniques. The first problem,
feature selection, deals with the issue of choosing the most predic-
tive features from the available set of features. In our experiments,
we frequently observed that models using the full set of features
given in Table 1 performed less accurately than with smaller num-
ber of features. We use a best-first search based, forward feature

selection algorithm [4], described in Section 2 to perform feature
selection. This algorithm starts by building models using a small
number of features, and iteratively creates more complex and ac-
curate models by adding features in order of correlation with the
target variable (i.e., query execution time).

The second problem ismodel selection, the process of picking the
right prediction model for the given task and data set. As dis-
cussed in Section 2, it is not possible in general to identify the
most accurate prediction model without training and testing mul-
tiple models. We use a regression variant of Support Vector Ma-
chines (SVMs) [5] for plan-level modeling, which provided high
accuracy in our experiments. However, we note that all of the ap-
proaches we present here are model-agnostic and can readily work
with different model types.

Once a plan-level prediction model is built and stored (i.e., mate-
rialized), it can then be used to estimate the performance of new
incoming queries based on the query-plan feature values that can
be obtained from the query optimizer without executing the query.

3.2 Operator-level Modeling
We now introduce a finer-grained operator-level modeling approach.
Unlike the plan-level approach, which uses a single prediction model,
the operator-level technique relies on a collection of models that are
selectively composed for end-to-end query performance prediction.
In the operator-level modeling approach, two separate prediction
models are built for each query operator type:

• A start-time prediction modelis used for estimating the time
spent during the execution of an operator (and in the sub-
query plan rooted at this operator) until it produces its first
output tuple. This model captures the (non-)blocking behav-
ior of individual operators and their interaction with pipelined
query execution.

• A run-time prediction modelis used for modeling the total
execution time of query operators (and the sub-plans rooted
at these operators). Therefore, the run-time estimate of the
root operator of a given query plan is the estimated execution
time for the corresponding query.

To illustrate the semantics and the use of the start-time model, we
consider theMaterializeoperator, which materializes its input tu-
ples either to disk or memory. Assume that in a query tree, the Ma-
terialize operator is the inner child operator of aNested Loopjoin.
Although the materialization operation is performed only once, the
join operator may scan the materialized relation multiple times. In
this case, the start-time of the Materialize operator would corre-
spond to the actual materialization operation, whereas the run-time
would represent the total execution time for the materialization and
scan operations. In this manner, the parent Nested Loop operator
can use the start-time and run-time estimates to form an accurate
model of its own execution time. This technique also allows us to
transparently and automatically capture the cumulative effects of
blocking operations and other operational semantics on the execu-
tion time.

We used a single, fixed collection of features to create models for
each query operator. The complete list of features is given in Ta-
ble 2. This list includes a generic set of features that are applicable
to almost all query operators. They can also be easily acquired from



most, if not all, existing DBMSs. As in the case of plan-level mod-
eling approach, we use the forward feature selection algorithm, to
build accurate prediction models with the relevant set of features.

Feature Name Description

np Estimated I/O (in number of pages)
nt Estimated number of output tuples
nt1 Estimated number of input tuples

(from left child operator)
nt2 Estimated number of input tuples

(from left right operator)
sel Estimated operator selectivity
st1 Start-time of left child operator
rt1 Run-time of left child operator
st2 Start-time of right child operator
rt2 Run-time of right child operator

Table 2: Features for the operator-level models. Start time
refers to the time spent in query execution until the first out-
put tuple.

The individual operator models are collectively used to estimate the
execution latency of a given query by selectively composing them
in a hierarchical manner akin to how optimizers derive query costs
from the costs of individual operators. That is, by appropriately
connecting the inputs and outputs of prediction models following
the structure of query plans, it is possible to produce predictors for
arbitrary queries.

In Figure 2, we illustrate this process for a simple query plan con-
sisting of three operators. The performance prediction operation
works in a bottom-up manner: each query operator uses its predic-
tion models and feature values to produce its start-time and run-
time estimates. The estimates produced by an operator are then fed
to the parent operator, which uses them for its own performance
prediction.

Figure 2: Operator-level query performance prediction: operator
models use operator-level features together with the predictions of child
operators for performance prediction.

3.3 Plan- versus Operator-level Modeling
The premise of the plan-level approach is that queries with similar
feature vectors will have similar query plans and plan statistics, and
therefore are likely to exhibit similar behavior and performance.
Such an approach is specifically targeted to scenarios in which the

queries in the training and test phases have similar execution plans
(e.g., generated from the same query templates or from the same
user program).

Furthermore, this approach is based on the correlation of the query
execution plans and statistics with the query execution times. This
correlation is used directly in mapping query-plan based features
to execution performance. The high-level modeling approach used
in this case therefore offers the ability to capture the cumulative
effects of a set of lower level underlying factors, such as opera-
tor interactions during query processing, on the execution time for
each distinct query plan (in the training data) with a low complexity
model.

The plan-level approach, however, is prone to failure in some com-
mon real-world scenarios. A significant problem exists in the case
of dynamic query workloads where queries with unforeseen exe-
cution plans are frequently observed. Even worse, there can be
problems even with static workloads. As the feature values only
represent a limited view of a query plan and its execution, it is
possible that different queries can be mapped to very similar fea-
ture values and therefore be inaccurately modeled. While it is un-
likely for completely different queries to be mapped to identical
features, similar queries can sometimes have different execution
performance. For instance, increasing the number of time consum-
ing aggregate operations in a query will not significantly change its
feature vector, but may highly increase its execution time. Adding
more features (e.g., number of aggregates and constraints) to the
model would alleviate such issues, however, each added feature
would also increase the size of the required training data.

By using multiple prediction models collectively in an hierarchi-
cal manner, the operator-level prediction method is able to pro-
duce performance predictions for arbitrary queries. Therefore, it
is a more general approach compared to the plan-level method and
has the potential to be more effective for dynamic query workloads
where unforeseen query plan structures are common.

On the downside, the operator-level prediction method may suffer
from drawbacks similar to those that affect analytical cost estima-
tion methods (as both methods rely on low-level operator-based
models). A key problem is that the prediction errors in the lower
levels of a query plan are propagated to the upper levels and may
significantly degrade the end prediction accuracy.

Another potential problem is that the concurrent use of multiple
resources such as CPU and disk may not be correctly reflected in
the operator-level (or the analytical) models. For instance, a query
could be simply performing an aggregate computation on the rows
of a table that it sequentially scans from the disk. If the per-tuple
processing takes less time than reading a tuple from the disk, then
the query execution time is approximately the same as the sequen-
tial scan time. However, if the processing of a tuple takes longer
than reading it from the disk, then the execution time will be closer
to the processing time. As such, the interactions of the query exe-
cution system and the underlying hardware/software platforms can
get quite complex. In such cases, simple operator-level modeling
approaches may fall short of accurately representing this sophisti-
cated behavior. Therefore, in static query workloads where training
and testing queries have similar plan structures we expect the high-
level information available in the plan-level approach to result in
more accurate predictions.



3.4 Hybrid Modeling
In hybrid query performance prediction, we combine the operator-
and plan- level modeling techniques to obtain an accurate and gen-
erally applicable QPP solution. As discussed, this is a general so-
lution that works for both static and dynamic workloads. Thus, as
long as the predictive accuracy is acceptable, operator-level mod-
eling is effective. For queries with low operator-level prediction
accuracy, on the other hand, we learn models for specific query sub-
plans using plan-level modeling and compose both types of models
to predict the performance of the entire plan. We argue, and later
also experimentally demonstrate, that this hybrid solution indeed
combines the relative benefits of the operator-level and plan-level
approaches by not only retaining the generality of the former but
also yielding predictive accuracy values comparable or much bet-
ter than those of the latter.

Hybrid QPP Example: To illustrate the hybrid method, we con-
sider the performance prediction of an example TPC-H query (gen-
erated from TPC-H template-13), whose execution plan is given
in Figure 3. This plan is obtained from a10GB TPC-H database
installed on PostgreSQL. As we describe in detail in the Experi-
ments section, we build operator-level models on a training data set
consisting of example TPC-H query executions. When we use the
operator-level models for performance prediction in this example
query, we obtain a prediction error (i.e.,|true value - estimate| /
true value) of 114%. Upon analysis of the individual prediction
errors for each operator in the query plan, we realized that the sub-
plan rooted at theMaterializeoperator (highlighted sub-plan in the
figure) is the root cause of the prediction errors in the upper level
query operators. The operator-level model based prediction error
for the materialization sub-plan is97%.

Figure 3: Hybrid QPP example: plan-level prediction is used for
the highlighted sub-plan together with operator-level prediction for the
rest of the operators to produce the end query performance prediction.

In the hybrid approach, we build a separate plan-level model for
this sub-plan. The model is trained using the occurrences of the
highlighted sub-plan in the training data. The hybrid method uses
the plan-level model to directly predict the execution performance
of the materialization sub-plan, while the rest of the prediction op-
erations is unchanged, i.e., performed with the operator-level mod-
els. The prediction errors obtained with the hybrid approach are
shown with the red values in the figure. The new overall prediction
error for this example query drops down to14%.

Given a training data set consisting of example query executions,
the goal of the hybrid method is to accurately model the perfor-
mance of all queries in the data set using operator-level models
together with a minimal number of plan-level models. In this way,
we maximize the applicability of the operator-level models in query
performance prediction and maintain high prediction accuracy with
the integration of plan-level models.

The hybrid performance prediction method is described in Algo-
rithm 1. The algorithm starts by building prediction models for
each query operator based on the provided training data. The ac-
curacy of operator-level prediction is then estimated by application
on the training data (e.g., either through cross-validation or hold-
out test data). Next, the algorithm tries to increase the performance
prediction accuracy by building plan-level models.

Each plan-level model is used for directly modeling the perfor-
mance of a separate query plan (or sub-plan). In a query plan
with N operators, there is a maximum ofN − 1 sub-plans (e.g.,
in a chain of operators) for plan-level modeling. Then a training
data set withM queries can haveO(MN) candidate sub-plans for
modeling.

In theory, we could build and test plan-level models for each dis-
tinct sub-plan (with at least a minimum number of occurrences in
the training data set) and try to find a minimal subset of these mod-
els for which the prediction accuracy is sufficiently high. However,
this would require a large amount of time since (i) we need to build
and test models for all candidate sub-plans, and (ii) the prediction
accuracy of each subset of models (in increasing sizes) needs to be
separately estimated with testing.

Instead, we propose heuristics that iteratively build a collection of
plan-level models to maximize the expected predictive accuracy.
In each iteration, a new plan-level model is built, tested and added
to the model set, if it improves the overall prediction accuracy (by
more than a threshold value,ǫ). The models are chosen, built and
tested according toplan ordering strategies. We consider the fol-
lowing strategies for the hybrid approach:

• Size-based: order the plans in increasingnumber of op-
erators

The size-based strategy considers generating models for smaller
plans before larger ones. This strategy is based on the fact
that smaller plans occur more frequently (since by defini-
tion all sub-plans of a large plan are at least as frequent) in
any data set, and therefore models for smaller plans are more
likely to appear in future queries. In case of a tie involving
two plans with the same size, the more frequently occurring
plan is given priority.

• Frequency-based: order the plans in decreasingoccur-
rence frequencyacross the queries



The frequency-based strategy is similar to the size-based strat-
egy except that it directly uses the occurrence frequency of
a plan from the training data for ranking. In case the occur-
rence frequency is the same for two plans, smaller plans are
considered first. An important difference from the size-based
strategy is that when a large plan has a high occurrence fre-
quency, the frequency-based strategy will consider modeling
its sub-plans sequentially before switching to other plans.

• Error-based: order the plans in decreasing value ofoc-
currence frequency× average prediction error

The error-based strategy considers plans with respect to their
total prediction error across all queries in the training data.
The assumption is that more accurate modeling of such high
error plans will more rapidly reduce the overall prediction
error.

In all the above strategies, the plans for which (i) the average pre-
diction accuracy with the existing models is already above a thresh-
old, or (ii) the occurrence frequency is too low are not considered
in model generation.

Algorithm 1 Hybrid Model Building Algorithm
Input: data= example query executions
Input: strategy= plan selection strategy
Input: target_accuracy= target prediction accuracy
Output: models= prediction models
Output: accuracy= estimated prediction accuracy

1. models = build_operator_models(data)
2. [predictions, accuracy] = apply_models(data, models)
3. candidate_plans = get_plan_list(strategy, data, predictions)
4. while accuracy≤ target_accuracydo
5. plan = get_next(strategy, candidate_plans)
6. plan_model = build_plan_model(data, plan)
7. [predictions, new_accuracy] = apply_models(data, models

∪ plan_model)
8. if new_accuracy− ǫ ≤ accuracythen
9. candidate_plans.remove(plan)

10. else
11. models = models∪ plan_model
12. candidate_plans.update(predictions, plan_model)
13. accuracy = new_accuracy

In order to create the list of candidate plans (i.e.,candidate_plans)
for modeling, we traverse the plans of all queries in the training
data in a depth-first manner in functionget_plan_list. Dur-
ing the traversal, this function builds a hash-based index using keys
based on plan tree structures. In this way, all occurrences of a plan
structure are hashed to the same value and metrics required by the
heuristic strategies such as the occurrence frequency and average
prediction error can be easily computed.

When a new plan-level model is added to the set of chosen models
(i.e.,models), the candidate plan list is updated with the new pre-
diction errors and occurrence frequencies for all plans. The occur-
rence frequency of a planp will change with the addition of a model
when the plan for the added model containsp as a sub-plan (since
such occurrences ofp are consumed by the newly added model).

We can efficiently identify the set of plans for which the prediction
errors or the occurrence frequencies might change with the addition
of a model as follows: For each plan-level model, we need to keep

track of the set of queries to which they can be applied, and in turn,
for each query we need to keep track of the set of applicable plan-
level models. When a new model is added, the only plans that need
to be updated are the plans that can be applied to one or more of
the queries that the newly added plan is also applicable.

Finally, in cases where the target accuracy is unachievable, a max-
imum number of iterations can be used to terminate the algorithm.
Other variations for the stopping condition, such as setting a maxi-
mum number of iterations without accuracy improvement, are also
possible but not evaluated in this study.

4. ONLINE MODEL BUILDING
In dynamic query workloads, where queries with unforeseen plan
structures are present, the plan-level performance prediction method
performs poorly due to lack of good training data. The operator-
level and the hybrid prediction methods are designed to be much
more applicable to unforeseen plan structures. In addition, the hy-
brid method will utilize its plan-level models as much as possible to
provide accuracy levels much higher than those achievable through
pure operator-level modeling.

The prediction accuracy of the hybrid approach in dynamic work-
load scenarios depends on the applicability of its plan-level mod-
els in future queries. As a case study, we analyze the generated
execution plans for the TPC-H query workload on a 10GB TPC-H
database running on PostgreSQL. In Figure 4(b), we show the most
common sub-plans within the execution plans of queries generated
from 14 TPC-H templates for which we could use operator-level
prediction techniques in our experiments (See Experiments Section
for more details.). Our key observations for this data set include:

(1) Smaller sub-plans are more common across the TPC-H query
plans (see Figure 4(a)).

(2) The plans for the queries of each TPC-H template (except
template-6) share common sub-plans with the plans of queries
of at least one other TPC-H template (see Figure 4(c)).

These observations suggest that for the TPC-H workload: (i) it is
possible to create plan-level models based on the execution plans
for the queries of a TPC-H template and utilize them in the perfor-
mance prediction of queries from other TPC-H templates, and (ii)
the size-based plan ordering strategy discussed in Section 3.4 will
likely achieve higher applicability compared to the other strategies
in the dynamic workload case.

However, the hybrid approach may fail to increase the prediction
accuracy for dynamic workloads in some cases. For example, the
prediction errors for some unforeseen query plans may not origi-
nate from the common sub-plans, and as a result, plan-level mod-
els from the training data cannot reduce the error. In other cases,
the common sub-plans could actually be the source of prediction
errors, but the plan-ordering strategies may not necessarily choose
to build plan-level models for them. For instance, some applicable
plan-level models may be discarded, because they did not improve
the prediction accuracy in training.

In the online modeling technique, we build new plan-level models
for performance prediction at run-time upon the receipt of a query.
We initially produce predictions with the set of existing models,
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Figure 4: Analysis of common sub-plans for the execution plans of queries generated from 14 TPC-H Templates.

and then update our results after new plan-level models are built
for the received query.

Online model building is performed similarly to offline model build-
ing described for the hybrid method. However, in the online case,
the set of candidate plans are generated based on the set of sub-
plans of the execution plan for the newly received query. The on-
line building of plan-level models guarantee that if the execution
plan for a test query has a common sub-plan (with high prediction
error) with the queries in the training data, then a plan-level model
will be built and used for its prediction (if a plan-level model with
better estimated accuracy than the operator-level prediction method
exists).

5. EXPERIMENTS
5.1 Setup
Our experimental study uses the TPC-H decision support bench-
mark [6] implemented on top of PostgreSQL. The details are pre-
sented below.

Database Management System. We use an instrumented version
of PostgreSQL 8.4.1. The instrumentation code monitored fea-
tures and performance metrics from query executions; i.e., for each
query, the execution plan, the optimizer estimates and the actual
values of features as well as the performance metrics were logged.

Data sets and workload. We created 10GB and 1GB TPC-H databases
according to the specification. The primary key indices as indicated
in the TPC-H specification were created for both databases. We
enforced a limit of one hour execution time to keep the overall ex-
perimentation duration under control. This resulted in 18 of the 22
TPC-H templates being used, as the remaining 4 templates always
took longer than 1 hour to execute in the 10GB case.

There are approximately 55 queries from each template in both
databases. With the 1GB database, all queries finish under an hour
and the data set contains 1000 queries. On the other hand, with
the 10GB database only 17 of the queries from template-9 finished
within an hour, so we have 17 template-9 queries in the 10GB
data set. Thus, the resulting 10GB data set we used contains 960
queries.

Hardware. The queries were executed on a single commodity server
with 4GB RAM running Ubuntu with kernel 2.6.28. The database

buffer pool size was set to 1GB (25% of the total RAM as the rule
of thumb). All queries were executed sequentially with cold start
(i.e., both filesystem and DB buffers were flushed before the start
of each query).

Predictive models. We used Support Vector Machines (available
from the libsvm library [5]) with the nu-SVR kernel for support-
vector based regression and linear regression models (available from
the Shark machine learning library [7]) for plan- and operator-level
modeling, respectively. Both models were integrated to the database
as user defined functions. Our algorithms were implemented as a
combination of C-based user-defined functions in PostgreSQL and
as external applications written in C++ and Python. A forward fea-
ture selection algorithm, described in Section 2, was used to build
accurate prediction models using a small number of features.

Metrics and validation. We use the mean relative error as our error
metric:

1

N

N
X

i=1

|actuali − estimatei|

actuali

This error is useful when we would like to minimize the relative
prediction error in all queriesregardlessof their execution time.
Non-relative error metrics such as square error would be better for
minimizing the absolute difference (or its square) in actual and pre-
dicted execution times. Other types of metrics includeR2 or pre-
dictive risk [1]. These metrics measure the performance of the esti-
mates with respect to a point estimate (i.e., the mean). As such, in
many cases, they can have deceptively low error values even though
the actual estimates have high error, as these metrics depend on the
scale and statistical characteristics of the entire data set.

Our results, except for the dynamic workload cases are based on
5-fold cross validation. That is, the data is divided into 5 equal
parts, and 4 parts are used to build models for prediction on the
remaining part. This process is repeated 5 times, i.e., all parts are
used in testing. The reported prediction accuracy is the average
of the individual accuracy values from the testing of each cross-
validation part. We usedstratified samplingfor dividing the data
into 5 parts to ensure that each part contains roughly equal number



of queries from each template.

5.2 Prediction with Optimizer Cost Models
We start with results showing predictions on top of analytical cost
models used by conventional optimizers are non-starters for QPP.
Specifically, we built a linear regression model to predict the query
execution times based on the query optimizer cost estimates. Over-
all, the maximum relative error is 1744%, the minimum relative
error is 30% and the mean relative error is 120%1.

To provide more intuition into the reasons, we show the optimizer
costs versus the query execution times for a subset of the queries
(a stratified sample) on the 10GB TPC-H data set in Figure 5. Ob-
serve that the lower left and lower right data points correspond to
queries with roughly the same execution times, even though their
cost estimates have a magnitude of difference.

In this setup, most queries are I/O intensive. We expect this to be
the ideal case for predicting with analytical cost models. The rea-
son is that optimizer cost models generally rely on the assumption
that I/O is the most time consuming operation. Therefore, for CPU
intensive workloads, we would expect to see even lower accuracy
values.

As a concrete example, consider TPC-H template-1, which includes
an aggregate over numeric types. We observed that evaluating
such aggregates can easily become the bottleneck, because arith-
metic operations are performed in software rather than hardware.
As such, introducing additional aggregates to a query will signifi-
cantly alter the execution time even though the volume of I/O (and
hence the predictions with the cost model) will remain approxi-
mately constant.
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Figure 5: Optimizer Cost vs Query Execution Time

5.3 Predicting for Static Workloads
Results for the plan-level and operator-level prediction methods
are given in Figure 6 both for the 10GB and 1GB TPC-H scenar-
ios. These results were obtained using estimate-based features for
1In this case, the predictive risk [1] is about .93, which is close to
1. This result suggests that it performs much better compared to a
point estimate, although the actual relative errors per query as we
reported are high.

building models in training and for prediction in testing. The use of
actual (observed) values for features is discussed in Section 5.3.3.

5.3.1 Plan-level Modeling
The plan-level prediction results contain values for all the 18 TPC-
H templates. Overall, the average relative prediction errors are
6.75% and 17.43% for the 10GB and 1GB databases, respectively
(Figure 6(a)-(c)), implying that plan-level modeling can be very ef-
fective for static workloads. The difference between the results for
the two databases can be explained by the respective ratios of the
standard deviation to the average execution time of queries, which
is about 2.63 times greater in the 1GB database case. This charac-
teristics makes the 1GB case fundamentally more difficult to pre-
dict.

In both cases, queries from template-9 stand out as the worst pre-
dicted set of queries. We note that template-9 queries take much
longer than the queries of the other templates. As the number of
instances of template 9, and therefore of longer running queries,
is relatively few in both data sets, the prediction models do not fit
well. To alleviate this problem, we built a separate prediction model
for template-9 for the 10GB case, which reduced its error down to
7%.

5.3.2 Operator-level Modeling
We now show operator-level prediction results on 14 of the 18 TPC-
H templates2.

For the 10GB case, in 11 of the 14 templates the operator-level
prediction method performed better than 20% error (Figure 6(d)).
For these 11 templates the average error is 7.30%. The error, how-
ever, goes up to 53.92% when we consider all the 14 templates, a
significant degradation.

For the 1GB scenario, we show the results of operator-level predic-
tion for the 14 TPC-H templates in Figure 6(f). In this case, for 8 of
the templates the average error is below 25% and the mean error is
16.45%. However, the mean error for all the 14 TPC-H templates
is 59.57% (slightly larger than the 10GB case).

We see that operator-level prediction produces modest errors for
many cases, but also does perform poorly for some. We analyzed
the set of templates that belongs to the latter case, and noticed that
they commonly exhibit one or more of the following properties:

• (Estimation errors) the optimizer statistic estimates are sig-
nificantly inaccurate.

• (I/O-compute overlap) there is significant computation and
I/O overlap in the query. The end-effect of such concur-
rent behavior on execution time is difficult to capture due
to pipelining.

• (Operator interactions) The operators of the same query heav-
ily interact with each other (e.g., multiple scans on the same
table that use the same cached data).

2The execution plans for the queries of the remaining 4 templates
contain PostgreSQL-specific structures, namely INITPLAN and
SUBQUERY, which lead to non-standard (i.e., non tree-based) ex-
ecution plans with which our current operator-level models cannot
cope at present.
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(b) Plan-level Prediction (10GB)
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(e) Operator-level Prediction (10GB)
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Figure 6: Static workload experiments with plan-level and operator-level prediction methods in 1GB and 10GB TPC-H databases.
The error values in bar-plots are capped at 50. Error values beyond the limits of the plots are printed next to their corresponding
bars.

Next, we discuss the practical impact of statistics estimation errors
on model accuracy. We then turn to the latter two issues that rep-
resent the fundamental limitations of operator-level modeling; that
is, such models learn operator behavior “in isolation” without rep-
resenting the context within which they are occur.

5.3.3 Impact of Estimation Errors
We tried all the combinations of actual and estimate feature values
for training and testing for plan-level and operator-level prediction.
The results are given in Figure 7(a) for the 10GB scenario. For fur-
ther detail, we also show the prediction errors grouped by TPC-H
templates in Figure 7(b) for the actual/actual case and plan-level
prediction (over the 10GB scenario). These results are to be com-
pared with those in Figure 6(a).

Unsurprisingly, the best results are obtained in the actual/actual
case (i.e., training and testing with actual feature values), which is
not a viable option in practice due to the unavailability of the actual
feature values without running the queries. The next best results are
obtained with the estimate/estimate option (i.e., training and testing
with estimated feature values), the option that we used in the rest
of the paper. Finally, the results obtained with actual/estimate (i.e.,
training on actual values and testing on estimates) are much worse
than the other two, primarily due to optimizer estimation errors that
are not taken into account during training.

To provide a sense of the magnitude of the estimation errors made
by the optimizer, consider template-18, which is one of the tem-
plates that exhibit the biggest error in operator-level prediction with
actual/estimate model building. Instances of template-18 include

(a) Prediction with Actual
Values vs Estimates
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Figure 7: Impact of Estimation Errors on Prediction Accuracy
in Static Workload Experiments

the followinggroup by clause on tablelineitem:

group by l_orderkey having sum(l_quantity) > 314

There are 15 million distinctl_orderkey values inlineitem
(out of approximately 60 million tuples). The estimated number of
groups satisfyingsum(l_quantity) > 314 is 399521, whereas
the actual number is 84. The PostgreSQL query optimizer com-
putes this estimate using histograms (with 100 bins) for each col-
umn based on the attribute independence assumption. The results



are later fed into a Hash-Semi-Join, whose cost estimate is corre-
spondingly very much off the mark.

Comparing the actual/actual against the estimate/estimate results,
we observe that optimization estimate errors lead to, perhaps sur-
prisingly, only a modest degradation in prediction accuracy. This
result is due to the ability of the models to also integrate error cor-
rections during learning. Thus, while better estimations generally
mean better results, it is possible to produce highly accurate pre-
dictions even with rather mediocre estimations (as in the case of
PostgreSQL).

5.3.4 Hybrid Prediction Method
We now present comparative results of the three plan ordering strate-
gies (see Section 3.4) discussed for offline hybrid model selection.
The results, shown in Figure 8, were obtained with the 14 TPC-H
templates used in operator-level modeling and the 10 GB database.
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Figure 8: Hybrid Prediction Plan Ordering Strategies

As described earlier, we first create an ordered list of query sub-
plans based on the chosen plan ordering strategy, leaving out sub-
plans with average error lower than a given threshold (.1 in this ex-
periment) for the size-based and frequency-based strategies. Then,
at each iteration (x-axis), we create a model for the next plan in
the ordered list, add this model to the current model set and then
re-evaluate predictive error on the test workload (y-axis). The step
behavior is observed when a newly created model decreases the
error.

We observe that the size-based and error-based strategies quickly
reduce the error rate. The size-based strategy takes longer to reach
the minimum error level, as in some cases larger sub-plans should
be modeled for reducing the error and it takes time for this strategy
to reach those plans.

The frequency-based strategy initially takes longer to reduce the
error. The reason is that this strategy can easily get stuck in a rela-
tively large sub-plan that has a high occurrence rate, since it needs
to explore all the sub-plans involved in the larger sub-plan (start-
ing from the smallest sub-plan) until it decreases the error rate. As
discussed earlier, all such sub-plans are by definition at least as fre-
quent, hence need to be explored with this heuristic. Overall, the
error-based strategy provides a well balanced solution, quickly and

dramatically reducing the prediction errors only with a small num-
ber of additional models.

5.4 Predicting for Dynamic Workload
The results so far have shown that for known, static workloads,
plan-level modeling performs well. They have also revealed that
hybrid models offer similar, and sometimes even better accuracy
than plan-level models. Next, we present results demonstrating that
plan-level modeling has serious limitations for unknown or chang-
ing workloads, whereas hybrid modeling still continues to provide
high accuracy. We also report comparative results for online model
building (Section 4) that creates custom hybrid models for a given
query from the available training data.

For this experiment, we used the 12 templates shown in Figure 9,
with 11 of them used in training and the remaining for testing. That
is for each template we build and test separate prediction models
based on the training data of the other templates. The two other
TPC-H templates were excluded because they include specific op-
erators exclusively found in those templates, and thus cannot be
modeled with our current setup. We show results for plan-level,
operator-level, hybrid (with error-based and size-based strategies),
and online modeling algorithms.

As expected, plan-level models perform poorly across the board
and thus do not offer much value in the presence of dynamic work-
loads. We also observe that the online (hybrid) modeling algorithm
performs best in all cases, except for template-7. Further investi-
gation reveals that the training data lacks a specific sub-plan that
is the root cause of the error on template-7. These results confirm
the ability of online modeling to identify the models that are very
likely to help by utilizing the knowledge of a given query plan.
Such models can be eliminated by offline strategies if they do not
help improve training accuracy.

Another interesting observation is that the size-based hybrid strat-
egy performs somewhat better than the error-based strategy in these
experiments. This can be explained by the ability of the former to
favor models for smaller sub-plans that are more likely to occur in
unseen queries.
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Figure 9: Dynamic Workload Prediction Results

6. RELATED WORK



Query-plan-level predictions have recently been studied [1]. In [1],
authors consider plan-level query performance prediction for the
following static query workloads: the TPC-DS query benchmark
and a query workload obtained from a customer database. They
report that they can predict individual query execution times within
20% of the actual time for 85% of their test queries. In addition to
the query execution time, estimation of other performance metrics
such as disk I/O and message bytes is also considered. In this paper,
we focused on the execution time performance metric. While we
can apply our techniques separately for each performance metric,
we plan to consider the extension to joint prediction of multiple
metrics in future work.

In previous work, machine learning techniques have been used in
the context of the query optimizer [8, 9, 10]. In the learning op-
timizer (LEO) [8, 9] project, model-based techniques are used to
create a self-tuning database query optimizer. The goal in [8, 9] is
to produce better cost estimates for use in query optimization. The
approach taken is to compare the estimates of the query optimizer
with the actual values observed during query execution to repair
the inaccurate estimates. In [10], a statistical modeling technique
calledtransform regressionis used to create cost models for XML
query operators. In addition, new training data can be efficiently
integrated into their existing cost models for adapting to changing
workloads.

Recently, there have been successful applications of machine learn-
ing techniques in system self-management problems. In [11], au-
thors present a statistics-driven modeling framework for data-intensive
Cloudapplications. Kernel Canonical Correlation Analysis (KCCA)
modeling techniques are used to make predictions for the execution
performance of Hadoop jobs. In [14], a statistics-driven workload
generation framework is presented for the purpose of identifying
suggestions (e.g., scheduling and configuration) to improve the en-
ergy efficiency of MapReduce systems.

In [12, 13] authors describe a successfull experimental modeling
approach for capturing interactions inquery mixes, i.e., sets of con-
currently running queries. Given a query workload, the goal is to
come up with a query execution schedule (in terms of query mixes)
that minimizes the total execution time. The query interactions are
modeled using statistical models based on selectively chosen sam-
ple executions of query mixes. In our study, we have not yet con-
sidered performance prediction in concurrent query workloads.

Finally, there has also been work on query progress indicators [15,
16]. Query progress indicators provide estimations for the comple-
tion degrees of running queries. Such studies assume that the work
done by individual query operators are transparent, i.e., externally
visible. While these studies are also related to query execution per-
formance, they do not provide predictions for the execution time of
queries.

7. CONCLUSIONS
This paper studied techniques for learning-based modeling of query
execution for QPP over analytical workloads. We proposed novel
query modeling techniques and demonstrated their general appli-
cability and effectiveness with implementation on PostgreSQL and
TPC-H data and queries. We provide the most comprehensive work
on this topic to date, and show results that significantly improve
upon the existing solutions in terms of generality and predictive
accuracy.

Learning-based QPP is a fertile research area, with many open op-
portunities and challenges to be explored. One immediate idea is to
supplement the static models studied in this paper with additional
run-time features. The values for such features can be obtained dur-
ing the early stages of query execution, and used to create richer
models that yield higher predictive accuracy with modest delays
in prediction. A generalization of this approach will lead us to an
online, progressive prediction model, where predictions are contin-
ually updated during query execution, in a manner similar to online
aggregation [20].

As mentioned earlier, this paper does not address QPP in the pres-
ence of concurrent query execution. There is already some promis-
ing work addressing this problem [12, 13], and we believe the tech-
niques proposed here can be extended to provide an alternative per-
spective to this challenge. As yet another direction, our techniques
can be adapted to work for other data processing platforms such as
MapReduce/Hadoop [18] and Dryad [19].

As database systems and the underlying software-hardware plat-
forms become increasingly sophisticated, it is becoming increas-
ingly infeasible to manually develop and maintain accurate mod-
els for system behavior. As such, learning-based modeling will
become increasingly more useful, prevalent, and eventually indis-
pensable. Our work and results form another promising step to-
wards facilitating this vision.
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