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Abstract. Most image restoration techniques build “universal” image
priors, trained on a variety of scenes, which can guide the restoration
of any image. But what if we have more specific training examples,
e.g. sharp images of similar scenes? Surprisingly, state-of-the-art image
priors don’t seem to benefit from from context-specific training exam-
ples. Re-training generic image priors using ideal sharp example im-
ages provides minimal improvement in non-blind deconvolution. To help
understand this phenomenon we explore non-blind deblurring perfor-
mance over a broad spectrum of training image scenarios. We discover
two strategies that become beneficial as example images become more
context-appropriate: (1) locally adapted priors trained from region level
correspondence significantly outperform globally trained priors, and (2) a
novel multi-scale patch-pyramid formulation is more successful at trans-
ferring mid and high frequency details from example scenes. Combining
these two key strategies we can qualitatively and quantitatively outper-
form leading generic non-blind deconvolution methods when context-
appropriate example images are available. We also compare to recent
work which, like ours, tries to make use of context-specific examples.

Keywords: deblur, non-blind deconvolution, gaussian mixtures, image
pyramid, image priors, camera shake

1 Introduction

Deblurring is a long-standing challenge in the field of computer vision and com-
putational photography because of its ill-posed nature. In non-blind deconvolu-
tion, even though the point spread function (PSF) is known, restoring coherent
high frequency image details can still be very difficult. In this paper, we address
the problem of non-blind deconvolution with the help of similar (but not iden-
tical) example images, and explore deblurring performance across a spectrum
of example image scenarios. For each type of training data, we evaluate various
strategies for learning image priors from these examples. In contrast to popular
methods that apply a single universal image prior to all pixels in the image [12,
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15, 10, 22, 16], we adapt the prior to local image content and introduce a multi-
scale patch modeling strategy to fully take advantage of the example images
and show improved recovery of image details. Unlike the recent instance-level
deblurring method of [7], we do not require accurate dense correspondence be-
tween image pairs and hence generalize better to a wide variety of example image
scenarios.

In a typical deblurring framework, a blurry image y is often modeled as a
convolution between a PSF k and a sharp image x, with additive noise n:

y = k ∗ x+ n. (1)

In non-blind deconvolution, both y and k are given, and n is often assumed to be
i.i.d Gaussian with known variance. A typical choice of image prior is to encode
the heavy-tailed characteristics on image gradients [12, 15, 10], and regularize the
deconvolution process via some form of sparsity constraints on image gradients:

x = argminx ||y − k ∗ x||2 + λ(||Dxx||α + ||Dyx||α) (2)

where λ is proportional to the noise variance. For Gaussian priors (α = 2), there
exist fast closed-form solutions via Fourier transform [12, 1]. However, Gaussian
priors are not appropriate for capturing the heavy-tailedness of natural images,
hence produce oversmoothed image gradients. Sparsity priors based on Laplace
distribution (α = 1) [12] and hyper-Laplacian distributions (0.5 ≤ α ≤ 0.8) [10]
have been shown to work well. Other forms of parameterization have also been
introduced, such as the generalized Gaussian distribution [2] and mixture of
Laplacians [14]. Constraints on image gradients alone are usually insufficient
and methods that are able to reason about larger neighborhoods lead to state-of-
the-art performance [17, 25, 23, 18, 19]. In particular, Zoran and Weiss [25] model
image patches via a simple Gaussian mixture model (GMM). This prior turns
out to be extremely powerful for removing blur and noise. More recently, dis-
criminative methods trained on corrupted/sharp patch pairs [18, 19] have shown
impressive performance without specifically modeling the image prior. However,
a common problem for these generic methods is that restoring coherent high
frequency details remains a challenging task. Deblurred results often contain
artifacts such as broken lines and painterly structure details (see Fig. 1).

One likely cause is that given only very local image evidence based on a few
adjacent pixels [12, 10, 2] or image patches [17, 21, 25, 13, 23], there is insufficient
contextual information to drive the solution away from the conservative smooth
state. In addition, most existing methods apply a single image prior to the whole
image, which will inevitably introduce a bias towards smooth solutions, since
natural images are dominated by smooth gradients.

To combat the tendency to oversmooth details, several recent works con-
sider a content-aware formulation of image priors to accommodate the spatially-
varying statistical properties in natural images [2, 3, 26]. While such content-
aware approaches are promising, it is difficult to choose the right prior in the
presence of blur and noise. For example, [2, 3] estimate content-aware paramet-
ric priors based on the downsampled input image. The power of such internal
statistics can be rather limited when faced with limited resolution or large blur.
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However, constructing expressive, content-aware image priors becomes feasible
if we have access to sharp example images that are similar to the input.

In the digital age, photographers are likely to take many photos of the same
physical scene over time, and this is the type of context we exploit to restore an
image and enable content-aware adaptation of image priors. As an experiment,
we randomly picked 100 query photos on Flickr and found instance level scene
matches right next to the query in their respective photostream 42% of the time.
This is probably a conservative estimate because photographers are exercising
editorial restraint and tend to only publish good and unique photos. For photos
where the shutter count was visible, 29% of the time the photographer had
taken additional (non-uploaded) photos between instance level matching scenes.
It is frustrating for photographers that restoring a blurry photo, even when they
can often provide sharp photos of the same scene, remains a problem seldom
considered by the research community, with the exception of [7], which requires
a dense correspondence between the input and the example. However, in the
presence of blur and noise, such dense correspondence is unreliable and cannot
handle occlusions (see Fig. 1).

Given the recent advances in blur kernel estimation [5, 15, 1, 22, 20, 9] and
the fact that non-blind deconvolution can be regarded as separate step in the
deblurring process, we consider the stand-alone problem of by-example non-
blind deconvolution: given a blurry input image, a known PSF, and one or more
sharp images with shared content, how can we reliably remove blur and restore
coherent image details?

2 Overview

In order to explore non-blind deconvolution performance over a broad range
of example image scenarios, we need to define a general deconvolution frame-
work. We extend the EPLL/GMM framework from Zoran and Weiss [25] by
augmenting the single-scale patch priors to a multi-scale formulation (Sec. 3).
Once the form of image prior and deconvolution method is defined, we consider
two training strategies: global training using data from example images, or local
training using specific subsets of example data based on a region level correpon-
dence (Sec. 4). Based on this setup, we can investigate various baseline methods
that incorporate (1) different parameters in the prior configuration, and (2) dif-
ferent training strategies. We evaluate the performance of these baselines for
each example image scenario (Sec. 5) and discover a set of key strategies that
show significant benefit from having better example images. Finally, we compare
experimental results (Sec. 6) using both synthetically blurred and real photos,
against leading methods in generic non-deconvolution as well as by-example de-
blurring.
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Zoran [25]Groundtruth Our

Blurred input

Our output Schmidt [18]

Dense correspondence [6, 7] Our correspondence
and example images (given groundtruth images) (given blurred input)

Fig. 1. The synthetically blurred input and sharp example images show different views
of downtown Seattle. Even when given the groundtruth input image, the core corre-
spondence algorithm in [6, 7] returns partial (22%) correspondence from example 1 and
zero matches from example 2. Our algorithm is able to establish meaningful region level
correspondences, and locally adapt the prior to produce significantly more details than
state-of-the-art non-blind deconvolution methods.

3 Patch-pyramid Prior

Our work builds on Zoran and Weiss [25] in which a single-scale patch prior
is trained from DC-removed patches. Natural images exhibit diverse yet struc-
tured content in different frequency bands that are tightly coupled. A single-scale
patch model lacks the ability to learn such statistical dependencies. We propose
to jointly model multi-scale concentric patches extracted from an image pyra-
mid, which we call patch-pyramids. This naturally extends the spatial scale of
the patches without a geometric increase in dimensionality as would happen at a
single scale. Furthermore, by capturing how mid and high frequency details co-
vary, image details can be restored more coherently to remove common artifacts
such as smudged-out structures, zigzag edges, and painterly appearance.

Consider an image x1 and its Gaussian pyramid layers {x1, . . . , xm}. Given
a fixed patch width w, we denote a patch-pyramid by [xm1 ]i, meaning a collec-
tion of m patches centered at the same relative coordinates i in each layer of
the Gaussian pyramid. For conciseness, we use [x]i to denote patch-pyramid at
relative location i with some fixed size. We use bold fonts to indicate matrices.
[x]i ∈ Rmw2

is formed by concatenating patches in each layer of the pyramid.
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We treat patch-pyramids with DC removed per layer as random variables
and model the joint occurence of these m layers via a Gaussian Mixture Model
(GMM). For simplicity, a w×w×m GMM prior means that the model is trained
using patch size w with m layers.

Let x and y be the latent and observed image. We follow the EPLL framework
of [25] to minimize:

fp(x|y) =
λ

2
||Ax− y||2 −

∑
i

log p([x]i) (3)

where A represents the blur operator, λ = mw2

σ2 , σ2 is the noise variance in
the image formation process, and p([x]i) ∼

∑
k πkN([x]i;µk,Σk) is the density

function of the GMM prior for patch-pyramids. {πk,µk,Σk} are the mixture
weight, mean, and covariance of the kth Gaussian component, respectively. The
single-scale patch model in [25] is a special case when m = 1 and µ = 0.

3.1 Optimization

To optimize Eqn. (3) directly is challenging. A common strategy is to introduce
auxiliary variables to assist the optimization process via half quadratic split [10,
25]. To achieve this, we introduce auxiliary patch-pyramids [z]i to each location
i and minimize the following global objective:

cp,β(x, {[z]i}|y) =

λ

2
||Ax− y||2 +

∑
i

β

2
(([x]i − [z]i)TΣ−1

noise([x]i − [z]i))− log p([z]i) (4)

The diagonal matrix Σnoise reflects the varying relative noise level in each
layer, with diagonal entries σ2

j , j ∈ {1, 2, ...,m}, each repeating w2 times. How-
ever, the noise across layers is correlated due to the effect of filtering and
downsampling in the Gaussian pyramid. We empirically found the relationship
σ2
j+1 = σ2

j /2 to work well in our experiments. We set σ2
1 = 1.

The optimization iterates between updating the auxiliary variables [z]i (Sec.
3.2) and solving the latent image x (Sec. 3.3). Over iterations, β increases to
tighten the coupling of [z]i and [x]i via the second term, which enables con-
vergence. We empirically found the schedule β = 60 · [1, 2, 4, . . . ] to work well,
typically converging within 8 iterations as shown in Fig. 4.

3.2 Z-Step

Given the current estimate for x, finding [z]i amounts to solving for the MAP
estimate, but computing the exact MAP solution is intractable. We follow the
approximation procedure from [25] to obtain a Wiener filtering solution:

[z]i = (Σkmax
+ βΣnoise)

−1 (
Σkmax

[x]i + βΣnoiseµkmax

)
(5)

where kmax is the index of the Gaussian component with the highest responsi-
bility.
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3.3 X-step

Keeping [z]i fixed, we solve for x by the following update:

x̂=

λATA+
∑
i

∑
j

βj(PijHj)
T (PijHj)

−1λATy+
∑
i

∑
j

βj(PijHj)
T [z]ij


(6)

where j indexes over layers in the pyramid, Hj is the Toeplitz matrix representa-
tion of the Gaussian filtering and downsampling operators associated with layer
j, βj = β/σ2

j , [z]ij is the jth layer patch in [z]i, and Pij is the matrix operator
extracting the patch at location i in layer j.

4 Locally Adapted Priors

Clearly, the prior in Eqn. (3) plays a central role in the deblurring processs.
But how much can the prior benefit from example images? One way is to learn
the GMM parameters globally using training data collected from the example
images. Unfortunately, globally trained priors do not seem to benefit from having
better example images, as we will show in Sec. 5. This may be because image
statistics vary significantly across image locations and using a single global image
prior for all image content inevitably compromises image details for smoothness.
Instead, we show that priors can be adapted to local image content to provide
significantly better recovery of image details.

To construct locally adapted priors, we operate on a half-overlapping grid
of image crops and seek local correspondence as shown in Fig. 2. First, a fast
L2-based deconvolution is performed to provide a rough estimate of the latent
image, which is then divided into half-overlapping 64× 64 crops. For each crop,
a HOG descriptor [4] is computed and compared against a database of crops
extracted from the sharp example images. We apply scale (factor of 1, 0.9, 0.8)
and rotation (−3, 0, 3 degrees) adjustments to each example image to better
fit query image content. To reduce noise, we downsample the image by 0.5 in
each dimension and apply Gaussian blur before computing the HOG features. A
visualization of the nearest neighbor (NN) crops overlay is shown in Fig. 2, where
salient image content is matched to reasonable example crops in the presence of
noise. Additional visualizations across various example image scenarios can be
found in Fig. 4.

Given the above crop-level correspondences, we train independent local GMM
priors using patch data collected from 20 nearest neighbors for each query. For
each query crop qi, we adaptively choose the number of Gaussian components
Ki ∈ [Kmin,Kmax] according to gradient complexity in the training data. Specif-
ically, we first run canny edge detection on the sharp example images, and the
total count of edge pixels Ni in the 20-NN crops for each qi is recorded. We
linearly scale Ki’s by Ki = Kmin+(Kmax−Kmin)(Ni−Nmin)/(Nmax−Nmin),
where Nmin and Nmax are the smallest and largest count among all queries. We
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blurred input, PSF
initial latent image query

nearest neighbor
overlay of NN crops

(b)(a) (c) (d)

sharp example images example crops

Fig. 2. (a) Input blurred image with known PSF and sharp example images, (b) initial
latent image, (c) best matching example image crops for several query crops from the
input, (d) visualization of the nearest neighbor crops overlaid on the input image. The
initial latent image is very noisy, the nearest neighbor crops are misaligned and incoher-
ent. Neither alone is a satisfactory image restoration, but we will use the information
from both sources to restore blurry photos.
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Fig. 3. (a) Using patch-pyramids from nearest neighbor crops for the bottom query
crop in Fig. 2(c), we train a 7×7×2 local GMM and compare its random samples (left)
against patches drawn directly from training data (right). The prior captures intricate
coupling in different frequency bands. (b) The global objective function in Eqn. (3)
converges over iterations with a fixed schedule for β, while the PSNR of the latent
image increases. Locally trained 7×7×2 priors are used to restore the input image in
Fig. 2.

set Kmin = 5,Kmax = 50 and learn the GMM via the Expectation-Maximization
(EM) algorithm.

Due to the overlapping structure, each pixel is governed by at most four
different local GMM priors. To be consistent with the overall objective in Eqn.
(3), we choose the solution that gives the highest posterior log likelihood during
the MAP approximation of [z]i (see Sec. 3.2).

5 How Do Example Images Help?

In order to answer this question, we consider how performance is affected by
(1) various example image scenarios and (2) different parameters in our prior.
Since the state-of-the-art by-example deblurring method of [7] requires instance-
level examples, it is hard to evaluate its performance across a wide spectrum
of examples. In this section only, we use the groundtruth image content for
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Fig. 4. Comparing various baselines across example scenarios and prior configura-
tions. From top to bottom: various scenarios of example images, from the best possible
(groundtruth) to similar scenes, to irrelevant images (random scenes); averaged overlay
of 20 nearest neighbor crops; output using globally trained priors and locally adapted
priors. Results obtained using 7× 7× 1, 5× 5× 2 and 5× 5× 3 GMM priors are shown
in row (a), (b) and (c) respectively. Better image details can be recovered by (1) using
better example images and (2) local training of patch-pyramid priors.

retrieving similar scenes as well as finding crop-level correspondences so that we
can more accurately experimentally manipulate the quality of training data.

We consider a number of scenarios of example images: oracle, instance-level,
scene matches, and random scenes. The test images are synthetically formed
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Fig. 5. Quantitative evaluation of different image priors across example images at
various levels of similarity. The six groups of example images are the same visualized
in Figure 4. Both PSNR and SSIM scores are reported. Each point is obtained by
averaging scores from 20 test images.

based on the landmark dataset of [24] (see Sec. 6.1 for details). The oracle
scenario assumes that the groundtruth image is available for training the GMM
priors. The instance-level examples come directly from the dataset of [24]. Scene
matches are computed using the method and database described in [8]. The
“good” scene matches (rank 1 to 3) are very similar scenes at similar scale under
similar illumination, but typically not instance-level matches. The “fair” scene
matches (rank 10-12) are usually less similar but still reasonable. The “bad”
scene matches (rank 1998-2000) might only be of the same broad scene category.
Finally, we select three random scenes from the database of [8] to act as the
worst case scenario. See Figure 4 for examples of each set of training images.

For each example scenario, we consider six alternative prior configurations:
(1) the prior can be either globally or locally trained, and (2) the patch-pyramid
dimensions can be 7×7×1, 5×5×2, 5×5×3. For the globally trained priors, we
randomly sample 2 × 106 patch-pyramids from the example images (with scale
and rotation adjustments) and learn a 50-component GMM via mini-batch EM.

So how do example images help? Our experiments show that the answer is
rather subtle: it depends on the priors. In Fig. 4, we show how the deblurring
results change as the training examples become less similar to the blurry input.
Using a test set of 20 images (see Sec. 6.1), we present quantitative evaluation
of these baselines in Fig. 5.

We summarize several key observations below:

1 Better example images do help, but it also depends on the priors being
used. Locally adapted priors appear to be very sensitive to example images,
whereas global priors are not.

2 Given instance-level example images, local priors significantly outperform
global priors. This is because local priors can provide fine-grained content-
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aware constraints whereas global priors apply a universal treatment to all
image content, often introducing a bias towards smoothness.

3 Given sufficiently similar examples (not necessarily instance-level), multi-
scale priors outperform single-scale priors. Quantitatively, the 5×5×2 prior
consistently performs the best (both global and local). In Fig. 4, better
connected edges and structured details become much more visible under
multi-scale priors.

6 Comparison to Leading Methods

With the above analysis and observations, we combine local training and multi-
scale patch-pyramid modeling, and report our results using 7×7×2 local priors
for subsequent comparisons. For comprehensive evaluation, we consider a wide
range of test images, containing both synthetic uniform blur and real unknown
camera shake. We present quantitative and qualitative comparisons against lead-
ing methods in both generic and by-example deblurring methods.

6.1 Synthetically Blurred Images

For quantitative evaluation, we generate 20 synthetically blurred test images
using four kernels (number 2, 4, 6, 8) from Levin et al. [11] and five color
images with examples taken from [24]. 1% i.i.d Gaussian noise is added to the
luminance channel. Evaluation is based on only the gray scale output images
with the outer ring of 30 pixels removed. Color information is only used to
assist the correspondence step in [7] and our pipeline (see Sec. 4). In Table
1, we show quantitative comparisons based on PSNR and SSIM scores. For
comparisons against non-blind deconvolution methods [12, 10, 25, 18], we assume
the groundtruth PSF is known. In this case, our performance is better than the
compared methods 100% of the time. A visual comparison of deblurred results
can be found in Fig. 6.

When comparing to the recent by-example blind deblurring method of [7], we
assume the groundtruth PSF is unknown, and run our system with the estimated
blur kernels provided by the authors of [7] to ensure fair comparison. We report
PSNR and SSIM performance in Table 1. In this case, we outperform the method
of HaCohen et al. [7] 85% of the time. A qualitative comparison is shown in Fig.
8. Please note that a single example image is manually selected by the authors
of [7] (out of all the examples we supplied) to generate their results since their
system does not support multiple example images.

Our method clearly outperforms existing methods in terms of PSNR and
SSIM scores, and is capable of restoring coherent mid to high level frequencies
such as straight lines and structured details. The recent methods of [25, 18] are
very competetive without using context-specific example images, but can be
quite limited in terms of recovering high frequency details, as shown in Fig. 1
and Fig. 6.
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Schmidt [18]Groundtruth
Input, examples
and our output Our Zoran [25] Levin [12] Krishnan [10]

Fig. 6. Comparison on uniformly blurred synthetic test images. Groundtruth PSF’s
are assumed known and used by all competing methods.
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PSF

Our outputInput Example HaCohen [7]Our details

Fig. 7. Test image from HaCohen et al. [7] with spatially varying PSF estimates. Our
approach is highly competitive without requiring dense correspondence.
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Fig. 8. Comparisons against the state-of-the-art by-example method of HaCohen
et al. [7] on our uniformly blurred synthetic test images. Four examples are shown.
Within each example, the first row shows (from left to right): dense correspondence
found by [7], output of [7] with estimated PSF (top-left) and groundtruth PSF (top-
right), close-up of [7]. The second row shows (from left to right): our nearest neighbor
example crop overlay, our output, our close-up. The PSF estimates are supplied by
the authors of [7]. All results are generated using the same input blurry images and
PSF estimates, hence directly comparable. The last example shows a failure case due
to inaccurate PSF estimate.
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given groundtruth PSF given estimated PSF

method Levin[12] Krishnan[10] Zoran[25] Schmidt[18] Our HaCohen[7] Our

PSNR 28.94 28.43 29.85 29.90 31.79 27.00 27.60

SSIM 0.852 0.831 0.869 0.879 0.915 0.817 0.843

Table 1. Quantitative evaluation against existing methods. Methods [12, 10, 25, 18] uti-
lize universally learned image information for deconvolution, while [7] and our method
focus on by-example deblurring. For fair comparison, our results in the last column are
produced with the estimated PSF from [7]. Both methods make use of example images.

6.2 Real Photos with Unknown Blur

In Fig. 7, we show comparison on a test image from [7], where the input image
exhibits unknown and spatially varying blur. Our latent image is produced with
the PSF estimates from [7], and shows competitive restoration of details. In Fig.
9, we present additional results with unknown blur. All images are taken with
the same camera. For most of the test cases, we were unable to obtain successful
dense correrspondences using the online code provided by the NRDC algorithm
[6], which is at the heart of [7].

Zoran [25]Our outputInput (unknown blur) Our

Fig. 9. Except for the third row, the core correspondence algorithm at the heart of [7]
yields zero successful matches. For the third test image, it cannot explain more than
70% of the image. All input images are real photos with unknown blur. We estimate
the blur kernel using [1].
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Input and examples Our output Groundtruth Our Zoran [25]

Fig. 10. An example where our method produces convincing textures but also inap-
propriate high frequency content in background smooth regions (bottom crop).

6.3 Limitations

While our system achieves competitive restoration of details, it requires heavy
computation especially in the training stage. Using our unoptimized MATLAB
implementation, training a 50-component 5 × 5 × 2 GMM global prior takes
roughly 5 hours on an Intel Xeon E5-2650 CPU, whereas training its local prior
counterpart requires 12 minutes over a compute grid using 120 cores. However,
we find that simply changing the stopping criteria for EM lets us speed up
training by a factor of 100 at the expense of a 0.03 drop in PSNR on average.
We speculate that further speedup can be obtained by reducing the number
of parameters to learn via PCA and by optimizing our code. Finally, incorrect
synthesis of details can occur near texture transitions, as shown in Fig. 10.

7 Conclusion

In this work, we have provided a novel analysis for by-example non-blind de-
convolution by comparing performance against quality of example images for
various scenarios using patch-based priors. In particular, we show that locally
adapted priors with multi-scale patch-pyramid modeling leads to significant per-
formance gains. We propose a method relying on mid-level correspondence of
image crops that does not require dense correspondence at the pixel level. By
modeling local image content using multi-scale patch-pyramids, our approach
can efficiently take advantage of the sharp example images to restore coherent
mid to high frequency image details. We conduct extensive evalution based on
images with both synthetic and real blur, comparing against leading methods
in non-blind deconvolution as well as the state-of-the-art by-example deblurring
method. By-example deblurring is a promising direction to alleviate the funda-
mental difficulty of existing algorithms to restore coherent high frequency details,
and our method is one step closer to achieving high quality deblur results. For
future work, we would like to investigate how our approach can be extended to
utilize non-instance level (but still similar) example images and explore ways to
improve blind deconvolution via examples.
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