A core operation in reinforcement learning (RL) is finding an action that is optimal with respect to a learned state–action value function. This operation is often challenging when the learned value function takes continuous actions as input. We introduce deep RBF value functions: state–action value functions learned using a deep neural network with a radial-basis function (RBF) output layer. We show that the optimal action with respect to a deep RBF value function can be easily approximated up to any desired accuracy.

We consider the problem of knowledge transfer when an agent is facing a series of Reinforcement Learning (RL) tasks. We introduce a novel metric between Markov Decision Processes and establish that close MDPs have close optimal value functions. Formally, the optimal value functions are Lipschitz continuous with respect to the tasks space. These theoretical results lead us to a value transfer method for Lifelong RL, which we use to build a PAC-MDP algorithm with improved convergence rate.

Reinforcement learning (RL) is the study of the interaction between an environment and an agent that learns to achieve a goal through trial-and-error. Owing to its generality, RL has successfully been applied to various applications including those with enormous state and action spaces. In light of the curse of dimensionality, a fundamental question here is how to design RL algorithms that are compatible with function approximation but also capable of tackling longstanding challenges of RL including convergence guarantees, exploration-exploitation, and planning.

When environmental interaction is expensive, model-based reinforcement learning offers a solution by planning ahead and avoiding costly mistakes. Model-based agents typically learn a single-step transition model. In this paper, we propose a multi-step model that predicts the outcome of an action sequence with variable length. We show that this model is easy to learn, and that the model can make policy-conditional predictions. We report preliminary results that show a clear advantage for the multi-step model compared to its one-step counterpart.

Deep Q-Network (DQN) is an algorithm that achieves human-level performance in complex domains like Atari games. One of the important elements of DQN is its use of a target network, which is necessary to stabilize learning. We argue that using a target network is incompatible with online reinforcement learning, and it is possible to achieve faster and more stable learning without a target network when we use Mellowmax, an alternative softmax operator.

State abstraction can give rise to models of environments that are both compressed and useful, thereby enabling efficient sequential decision making. In this work, we offer the first formalism and analysis of the trade-off between compression and performance made in the context of state abstraction for Apprenticeship Learning. We build on Rate-Distortion theory, the classic Blahut-Arimoto algorithm, and the Information Bottleneck method to develop an algorithm for computing state abstractions that approximate the optimal trade-off between compression and performance.

We examine the impact of learning Lipschitz continuous models in the context of model-based reinforcement learning. We provide a novel bound on multi-step prediction error of Lipschitz models where we quantify the error using the Wasserstein metric. We go on to prove an error bound for the value-function estimate arising from Lipschitz models and show that the estimated value function is itself Lipschitz. We conclude with empirical results that show the benefits of controlling the Lipschitz constant of neural-network models.

Learning a generative model is a key component of model-based reinforcement learning. Though learning a good model in the tabular setting is a simple task, learning a useful model in the approximate setting is challenging. In this context, an important question is the loss function used for model learning as varying the loss function can have a remarkable impact on effectiveness of planning. Recently Farahmand et al. (2017) proposed a value-aware model learning (VAML) objective that captures the structure of value function during model learning.

We propose a new algorithm, Mean Actor-Critic (MAC), for discrete-action continuous-state reinforcement learning. MAC is a policy gradient algorithm that uses the agent’s explicit representation of all action values to estimate the gradient of the policy, rather than using only the actions that were actually executed. This significantly reduces variance in the gradient updates and removes the need for a variance reduction baseline. We show empirical results on two control domains where MAC performs as well as or better than other policy gradient approaches, and on five Atari games, where MAC is competitive with state-of-the-art policy search algorithms.

A softmax operator applied to a set of values acts somewhat like the maximization function and somewhat like an average. In sequential decision making, softmax is often used in settings where it is necessary to maximize utility but also to hedge against problems that arise from putting all of one’s weight behind a single maximum utility decision. The Boltzmann softmax operator is the most commonly used softmax operator in this setting, but we show that this operator is prone to misbehavior.

End-to-end learning of recurrent neural networks (RNNs) is an attractive solu- tion for dialog systems; however, current techniques are data-intensive and require thousands of dialogs to learn simple behaviors. We introduce Hybrid Code Networks (HCNs), which combine an RNN with domain-specific knowledge encoded as software and system action templates. Compared to existing end-to-end approaches, HCNs considerably reduce the amount of training data required, while retaining the key benefit of inferring a latent representation of dialog state.

Representing a dialog policy as a recurrent neural network (RNN) is attractive because it handles partial observability, infers a latent representation of state, and can be optimized with supervised learning (SL) or reinforcement learning (RL). For RL, a policy gradient approach is natural, but is sample inefficient. In this paper, we present 3 methods for reducing the number of dialogs required to optimize an RNN-based dialog policy with RL. The key idea is to maintain a second RNN which predicts the value of the current policy, and to apply experience replay to both networks.