G. Baumgartner and V. F. Russo.
Signatures: A language extension for improving type abstraction and
subtype polymorphism in C++.
Software-Practice and Experience, 25(8):863-889, August 1995.
K. B. Bruce, L. Cardelli, G. Castagna, the Hopkins Objects Group, G. T.
Leavens, and B. Pierce.
On binary methods.
Theory and Practice of Object Systems, 1:221-242, 1995.
T. F. Coleman, B. S. Garbow, and J. J. Mor'e.
Algorithm 649: Fortran subroutines for estimating sparse hessian
matrices.
ACM Transactions on Mathematical Software, 11(4):378, December
1985.
T. F. Coleman and J. J. Mor'e.
Estimation of sparse jacobian matrices and graph coloring problems.
SIAM Journal on Numerical Analysis, 20:187-209,, 1984.
A. Curtis, M. Powell, and J. Reid.
On the estimation of sparse jacobian matrices.
Journal of the Institute of Mathematics and its Applications,
13:117-119, 1974.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Professional Computing. Addison-Welsey, 1995.
P. E. Hart, N. J. Nilsson, and B. Raphael.
A formal basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2):100-107, 1968.
J. B. Kruskal.
On the shortest spanning subtree of a graph and the traveling
salesman problem.
In Proceedings of the American Mathematical Sofiety, volume 7,
pages 48-50, 1956.
D. Welsch and M. B. Powel An upper bound for the chromatic number of a graph and its
application to timetabling problems
Computer Journal, 10:85-86, 1967.
G. Heber, R. Biswas, G.R. Gao Self-Avoiding Walks over Adaptive Unstructured Grids
Parallel and Distributed Processing, LNCS 1586,
Springer-Verlag, 1999, pp. 968-977
Esmond G. Ng amd Padma Raghavan Performance of greedy ordering heuristics for sparse {C}holesky factorization
SIAM Journal on Matrix Analysis and Applications (To appear)
J. Liu and A. Sherman Comparative analysis of the Cuthill-Mckee and the reverse
Cuthill-Mckee ordering algorithms for sparse matrices.
SIAM Journal of Numerical Analysis. 13 (1975), pp. 198-213.
E. Nuutila Efficient transitive closure computation in large digraphs
PhD Thesis, Helsinki University of Technology, 1995.
Acta Polytechnica Scandinavica, Mathematics and Computing in
Engineering Series, No. 74.
A. Goralcikova and V. Koubek A reduct and closure algorithm for graphs
In Mathematical Foundations of Computer Science,
volume 74 of Lecture Notes in Computer Science, pages 301-307.
Springer-Verlag, 1979
Klaus Simon An Improved Algorithm for Transitive Closure on Acyclic Digraphs
Theoretical Computer Science 58
Automata, Languages and Programming, 376-386, 1986