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SmoothSketch: 3D free-form shapes from complex sketches
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Figure 1: The user draws the visible contours of a shape; our program infers the hidden contours, including hidden cusps, and then creates
a fairly smooth 3D shape matching those contours. The 3D shape can be viewed from any direction. A smoothed version of Penrose’s
polyhedral impossible triangle shows that the algorithm can handle objects with complex holes.

Abstract

We introduce SmoothSketch—a system for inferring plausible 3D
free-form shapes from visible-contour sketches. In our system, a
user’s sketch need not be a simple closed curve as in Igarashi’s
Teddy [1999], but may have cusps and T-junctions, i.e., endpoints
of hidden parts of the contour. We follow a process suggested by
Williams [1994] for inferring a smooth solid shape from its vis-
ible contours: completion of hidden contours, topological shape
reconstruction, and smoothly embedding the shape via relaxation.
Our main contribution is a practical method to go from a contour
drawing to a fairly smooth surface with that drawing as its visible
contour. In doing so, we make several technical contributions:

• extending Williams’ and Mumford’s work [Mumford 1994]
on figural completion of hidden contours containing T-
junctions to contours containing cusps as well,

• characterizing a class of visible-contour drawings for which
inflation can be proved possible,

• finding a topological embedding of the combinatorial surface
that Williams creates from the figural completion, and

• creating a fairly smooth solid shape by smoothing the topo-
logical embedding using a mass-spring system.

We handle many kinds of drawings (including objects with holes),
and the generated shapes are plausible interpretations of the
sketches. The method can be incorporated into any sketch-based
free-form modeling interface like Teddy.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
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1 Introduction

Our visual system, presented with a line-drawing, makes nearly-
instant inferences about the shape that the drawing represents.
Some aspects of this inference mechanism are surely based on ex-
pectation — when we see something that looks like an ear, it’s easy
to infer that the nearby protrusion must be a nose, for instance. But
other aspects depend on local cues — a contour that ends, or that
disappears behind another — and a gestalt view that helps us inte-
grate these local cues into a coherent whole [Hoffman 2000].

Dual to this recognition ability is our ability to learn to draw con-
tours of objects in a way that lets us communicate their shape to
others. While drawing well can be difficult, even children can draw
easily recognizable shapes. On the other hand, while drawing out-
lines or contours is relatively easy, we know few people who can
reliably draw the hidden contours of even simple shapes.

When we seek to create shapes with a computer, however, there are
few interfaces based directly on drawing; inferring a shape from
a complex contour-sketch has generally proved too difficult. The
value in doing so, from the sketching point of view, is that it allows
a user to draw what he or she is thinking of directly. Teddy’s in-
flation algorithm is a good step, but limited to simple closed curve
contours. Our work extends this substantially, although it is by no
means a final answer. Such a final answer may never be found,
though—it’s easy to draw contour sets that are so complicated that
different viewers make different inferences about them. The best
one can hope for is to create plausible shapes for a fairly large class
of contours on which users agree on the interpretation. That is what
our work does.

Our work, therefore, is not about a system like Teddy; it’s about a
component that can be used in a free-form-sketching interface like
Teddy. We believe that a sketching program should let the user and
the computer share the work, each doing what it does best. The
computer can infer a plausible shape from a moderately complex
contour like the ones shown in this paper. Then, to create more
complex objects (or to, say, modify the thickness of the inflated
models), a user would use various gestures like the ones available
in Teddy and other sketch-based systems. We believe we succeeded
in the first step, and thus provided a new starting-point for sketch-
based systems.

Our system takes a user’s contour-drawing of a smooth, compact,
oriented, embedded surface-without-boundary (which we’ll call a
good surface) and determines a 3D surface whose contours match
those that the user drew. Because this is an under-determined
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problem—is that circle a contour drawing of a pancake? a sphere? a
cigar viewed end-on?—we aim to generate surfaces that have gen-
erally low curvatures, to the degree allowed by the constraints of
the contours. The contours must be oriented, i.e., drawn so the sur-
face lies on the left. Thus to draw a torus, a user would draw a
counter-clockwise outer stroke and a clockwise inner stroke.

Williams’ thesis [1994] and subsequent work lay out a plan for find-
ing a surface fitting a given collection of visible contours1. The
steps involved are

1. Complete the drawing by inferring the hidden contours, and
provide a Huffman-labeling for it [Huffman 1971].

2. Convert the completed-drawing to an abstract topological sur-
face, and map this surface to ℜ2 so that the “folds” of the
mapping match the contours of the drawing.

3. Lift this mapping to a smooth embedding in ℜ3 whose projec-
tion is the mapping to ℜ2.

Having laid out this scheme, Williams then completes several sig-
nificant parts: he completes step 1 for “anterior surfaces” – roughly
the front-facing parts of scenes, which generically have no cusps,
and does step 2 for both these and for drawings of smooth sur-
faces. For our purposes, we need step 1 for good surfaces, and we
need step 3, which we do in two steps: first we lift to a topologi-
cal embedding in ℜ3, and then we smooth that. We cannot claim
to produce a smooth embedded manifold; with our current tuning
constants, our results are usually immersed (i.e., have self inter-
sections) rather than embedded. Furthermore, the contours of the
surfaces we construct cannot in general project exactly to the input
drawing, because, for example, the projection of the contour near a
cusp always has infinite curvature at the cusp [Koenderink 1990],
while our user’s input may not satisfy that constraint. We produce a
fairly smooth mapping of the manifold into 3-space, whose visible-
contour projection nearly matches the user’s drawing.

In carrying out step 2, Williams (a) observes that the projection
of the complete contours of a generic view of a good surface onto
an image plane gives a knot-drawing-with-cusps which can be la-
beled by Huffman’s labeling scheme for smooth surfaces (see fig-
ure 2) [Huffman 1971], and (b) gives a method (the paneling con-
struction) [Griffiths 1981] to build an abstract manifold M that can
be embedded so that its projection has contours matching the knot-
drawing. (He does not actually construct an embedding e : M →ℜ3,
but instead describes a map f : M → ℜ2 with the property that if
such an embedding e exists, and if P is projection onto the drawing
plane, then f = P◦ e.)

To carry out step 1 for good surfaces, we must establish which
drawings of visible contours can be extended to complete contour
drawings; not all can, as figure 3 shows. We partially solve this
problem by exhibiting a large class of drawings that admit such ex-
tensions; the general problem of characterizing extendable visible-
contour drawings remains open, however.

For the anterior-surface case, Williams and Jacobs [1997] (and
Mumford [1994]) describe an approach to completing the hidden
contours, which generically join tee-points in the drawing (see fig-
ure 4). To join a pair of tees, they consider all C1 random walks
(i.e., random walks in which the tangent direction θ changes by an
amount X at each point, where X is a Gaussian random variable)
starting at the first tee, headed in the right direction, and ending at
the second, and assign to each a probability based on the product

of the probabilities of each angle-change and e−λ , where λ is the

1The reader interested in implementing the ideas of this paper will need

first to become acquainted with Williams’ work.

Figure 2: Huffman’s labeling scheme for contours of generic
smooth projections. Labels indicate the number of surfaces in front
of the contour (visible contours have label zero); the surface on
which the contour lies is to the left when you traverse it in the di-
rection shown by the arrow. Any cusped knot diagram—i.e., col-
lection of circles in the plane, possibly intersecting themselves and
each other, and smoothly immersed except at finitely many cusp
points, which are distinct from the crossing points—that can be so
labeled corresponds to the projection of a smooth surface in 3-space
(mostly proved by Williams), and all generic projections of smooth
surfaces have this property (proved by Huffman). The first picture
shows the surfaces corresponding to the first case of Huffman’s la-
beling (the second picture). Figure 6 (left) corresponds to the last
case.

Figure 3: None of these drawings can be extended by invisible con-
tours to be the contour set of any good manifold projection. They
exhibit two problems: in the first, a cusp appears in the outer region
of the plane surrounding the figure. In the second, the outermost
path around the drawing is clockwise. Although the third has nei-
ther of these problems, it is still not extendable.

length of the curve. They posit that the maximum-likelihood ran-
dom walk is a good candidate for the completion; when multiple
pairs of tees might be joined, they compute which pairings have
largest likelihoods and choose those.

Figure 4: How can we join the two tee-points on the left? With
an optimal completion, as shown in the middle. Optimality is de-
termined by choosing, among all C1 random walks from p1 to p2,
the most likely one, under a simple probabilistic model. Mumford
shows such curves are elastica, which had been studied by Euler.

We extend this approach, in Section 4.2, to the cases where a T-
point must be joined to a cusp, or two cusps must be joined. To
determine which visible endpoints (tees or cusps) should be joined
to which, we use a greedy search similar to Nitzberg et al. [1993].

To carry out step 3, we take the results of Williams’ paneling con-
struction — an abstract manifold and a continuous mapping f of
it to ℜ2 and “lift” it to a mapping e into ℜ3 whose projection is
f . We construct e a dimension at a time, first placing the vertices
of the paneling construction, then embedding the edges, and finally
each panel. This algorithm is described in section 5.1. The result is
a topological embedding (i.e., a 1-1 continuous map from the sur-
face into ℜ3). Finally, in section 6 we talk about smoothing out
the creases in this topological embedding by an ad-hoc mass-spring
system to produce the desired fairly smooth mesh in 3-space.
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2 Related Work

Shape from drawings. The problem of inferring 3D shape from
2D drawings has been studied in a great many forms; if one extends
it to include determining drawings from images as a first step, it oc-
cupies much of the computer vision literature [Witkin 1980]. We’ll
only describe the work most closely related to this paper.

Much early shape-from-drawing work applied to blueprint-like
drawings of machined surfaces. The important features of such
shapes are sharp bends, like the edges of a cube – and their tri-
hedral intersections. Lipson and Shpitalni [1997] introduced a sys-
tem in which a user sketches both visible and hidden contours and
boundaries of a rectilinear CAD-like geometric object, and the sys-
tem infers a shape. Their approach is based on correlations among
arrangements of lines in the drawing and lines in space.

Pentland and Kuo [1989] presented a system that infers simple 3D
curves and surface patches from 2D strokes by minimizing the en-
ergy of the corresponding snakes.

A classic paper in this area is by Huffman [1971], who devel-
oped two labeling schemes—one for objects made from planar
surfaces, one for smooth objects—and proved that their complete
contour drawings must have the corresponding sorts of labeling.
Williams [1994] [1997] did the defining work in inverting the
smooth-surface labeling scheme, as described in the introduction.

Contour completion. Of course, Huffman labelings are for com-
plete contour projections — the projections of both the visible and
invisible parts of an object’s contours. Given a drawing of the vis-
ible parts of a contour, we must infer where the invisible parts lie.
Kanizsa’s work [1979] on contour completion (and its relationship
to the mechanisms of the human visual system) forms the basis for
much of the later work in the area.

A solution proposed first by Grenander [1981] was to use a stochas-
tic process to model the space of all possible edges. Mumford
proves that elastica that arise in the completion problem described
in the introduction could be modeled by a white noise stochastic
process and gives needed formulas. Williams [1997] approximates
the solution by considering a sampling of the space of all random
walks (with varying ∆θ — the direction of the walk) starting from
the first point with the first direction and coming to the second point
with the second direction, and taking the random walk with the
highest probability as the best path connecting two edges.

Although contour completion is a well-studied research topic, many
problems are still open; in section 4.2 we propose our solution, in-
spired by the work of Williams and Mumford, to the problem of
finding a hidden cusp for a cusp-contour completion case.

Sketching interfaces. Several gestural interfaces for sketching
3D shapes have been developed for different classes of models.
For rectilinear objects, the Sketch system described by Zeleznik
et al. [1996] lets a user create and edit models through gestural
interface, where geometric aspects of gestures determine numeri-
cal parameters of the objects; a cuboid is created by drawing three
lines meeting at a point; the lengths of the lines and position of the
point determine the geometry of the cuboid. These ideas were ex-
tended by several research groups [Shesh and Chen 2004] [Pereira
et al. 2004], and appear in the SketchUp [SketchUp ] architectural
design software.

For free-form objects, Igarashi’s Teddy [1999] was the first inter-
face for free-form modeling via sketching. In it, a user inputs a
simple closed curve and the system creates a shape matching this
contour. Then the user can add details by editing the mesh with
operations like extrusion, cutting and bending, all done gesturally.

The Smooth Teddy [Igarashi and Hughes 2003] system extended
this by adding algorithms for beautification and mesh refinement,
as well as organizing the shapes into a hierarchy.

Karpenko et al. [2002] described a system for creating shapes
from free-form sketches; the primitive objects were variational im-
plicit surfaces, which facilitated operations like surface blending.
ShapeShop [Schmidt et al. 2005] uses hierarchical implicit vol-
ume models to let a user interactively edit complex models via a
sketching interface. Alexe et al. [2005] extract the skeleton from
the sketch and then construct a convolution surface. None of these
systems handle complex strokes containing tees and cusps.

Nealen et al. [2005] presented a sketch-based interface for laplacian
mesh editing where a user draws reference and target curves on
the mesh to specify the mesh deformation. A similar interface was
developed by Kho and Garland [2005] for posing 3D characters, in
particular, bodies and limbs.

Finally, Karpenko and Hughes [2005] demonstrated a method for
inferring certain free-form shapes from sketches by detecting ’tem-
plates’ in the sketches and building a part of the 3D surface from a
standard recipe for each template.

Pseudo-3D models. Tolba et al. [2001] describe a system that lets
a user draw a scene with 2D strokes and then view it from several
new locations as if a 3D scene had been created. This is done by
projecting the 2D strokes on a sphere centered at the eye point and
then viewing them in perspective. Bourguignon et al. [2001], de-
scribe a system that takes a set of 3D strokes representing contours
and creates a small piece of surface near each stroke whose contour
is the given stroke; contours of this surface, seen from nearby view-
points, give the appearance of a full-fledged 3D model, although in
distant viewpoints the illusion is lost. Johnston [2002] computes
lighting on 2D drawings without reconstructing 3D geometry by
estimating surface normals from the drawing.

Shape from contours for special classes, and other shape-from
methods. Ulupinar et al. [1995] solve the “shape-from-contour”
problem for images by considering only a special class of symmet-
rical 3D shapes: straight homogeneous- and constant cross section
generalized cylinders. Apart from inferring the shape from the con-
tour, researchers have long tried to infer shape from texture, shad-
ing, and other cues. An overview of some of these methods can be
found in the paper by Ulupinar [1993].

3 Notation and problem formulation

Much of the material that follows relies on ideas from differential
geometry and combinatorial and differential topology. We refer the
reader to the books of Guillemin and Pollack [1974] and Koen-
derink [1990] for clear expositions of the necessary background.

Suppose that S is a smooth, closed, compact, orientable surface-
without-boundary (i.e., a good surface) embedded in the z > 0 half-
space of ℜ3. The orthogonal projection of S onto the z = 0 plane
will have a compact image. Following Williams and Mumford, we
will assume that the embedding and this projection are generic, i.e.,
that no probability-zero events occur, e.g., no projector meets three
contours, no cusp projects to a point on another contour, etc. If the
projector through the point s ∈ S lies in the tangent plane at s, then
s is called a contour point; if the projector first meets S at s, then
s is a visible contour point (see figure 5). For a generic projection,
the set of all contour points forms a compact 1-manifold-without-
boundary C in S, i.e., a collection of disjoint topological circles in S.
The set of visible contour points form a compact 1-manifold-with-
boundary, V in S, i.e., a collection of disjoint topological circles and
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line-segments. The projection of C to the z = 0 plane is the contour
drawing of S; the projection of V to the z = 0 plane is the visible
contour drawing of S.

Figure 5: (Adapted from Williams’ [1997]) The contour, in blue, of
a good surface embedded generically in 3-space projects to a con-
tour drawing, in green; the visible contour (drawn bold) projects to
the visible-contour drawing. A point where the projector is tangent
to the contour projects to a cusp in the contour drawing. The re-
striction of the projection to just the contour is 1-1 except at finitely
many points, where two contours cross in the drawing; these are
called T-points.

The projection from the contour to the contour drawing is an em-
bedding at most points; the exceptions are crossings, where two
contours meet, and cusps. A cusp is a point s ∈ S where the projec-
tor through s is tangent to C at s. The projection of a cusp appears
as a point where the contour drawing “reverses direction” (see fig-
ure 6, left). When an arc of the visible contour drawing reaches a
crossing, it appears as a T-point: one part of the contour becomes
invisible there.

Figure 6: (Left) The generic projection of a contour at a cusp re-
verses direction at the cusp. (Right) A drawing with the tee-points
and cusps marked; hidden contours and hidden cusps that must be
inferred are shown in dotted lines.

For a generic smooth surface and viewpoint, tees and cusps of the
contour will be isolated, as will curvature zeroes of the contour;
this guarantees a unique osculating plane at a cusp, which means
the projected contour must reverse direction rather than emanating
from the cusp in any other direction (see figure 6, left).

The “bean” example (figure 5) is something of an archetype for the
method described in this paper, in the sense that it’s the simplest
shape that has a cusp; the way that this single cusp is processed
is the key to processing more general drawings, hence we use the
bean as an example throughout.

In Figure 6 (right) we show in solid lines a typical input drawing;
in dotted lines are the projections of invisible contours. Certain
hidden contour points are also cusp-points; the visible cusps are
marked with a “C” while the hidden cusps are marked with an “H”.

Note that the user input is the part of the contour drawn in solid
lines. Everything marked by a dashed line is a part of a hidden
contour and needs to be inferred by our program.

With this terminology, our goal is to take a user-provided directed
visible-contour drawing of a good surface as above and to deter-
mine a surface S whose visible contours match the given drawing.
Note that we do not seek to reconstruct exactly the surface that the
user was drawing; the map from surfaces to drawings is many-to-
one, hence non-invertible. Note too that we require that the drawing
arise from some surface, so that the problem has at least one solu-
tion; a drawing consisting of a single line segment, for instance,
cannot be the projection of the visible contours of any surface.

Our system currently produces a surface consistent with the user’s
drawing, and one which we generally find to be plausible. Eventu-
ally, we would like to solve a more general problem: we want not
only to produce one of the reasonable-looking shapes, we would
like to return the most natural shape. Of course, “most natural”
can be very subjective and depend on a user’s preferences, but ex-
perience shows that people generally agree about what a drawing
conveys. We could take cartoon illustrations (see figure 7) as an ex-
ample. These pictures vary from simple to very sophisticated, but
their expressiveness is such that people interpret them immediately.
Such a degree of “naturalness” (or indeed, any way of measuring
it) appears to be a very long-range goal.

Figure 7: This cartoon-like illustration shows us how even the sim-
plest drawings can have complex contours.

4 Figural Completion for Smooth Surfaces

Given the visible contour drawing, in the z = 0 plane, for a good
surface in ℜ3, we describe an approach to completing the drawing,
i.e., adding hidden contours so that the resulting drawing can be
Huffman-labeled. The approach works in a large number of cases,
although not all. We begin by showing a construction that provably
works for a large class of drawings, but often produces “unlikely”
completions according to the Williams-Mumford measure of like-
lihood; we then describe our actual implementation, which approx-
imates the construction while preferring ‘more likely’ completions
that occasionally lead to problems.
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4.1 Completable drawings

Although the class of visible-contour drawings that can be com-
pleted has not been characterized, to the best of our knowledge, we
can demonstrate that a large class can be completed. Once again
we consider the ‘bean’ as our example (see figure 8). Taking a di-
rected visible contour as input, we consider the regions into which
it divides the plane; traversing the boundaries of these regions, and
pushing slightly into each region, gives a collection of disjoint em-
bedded curves (which we call red curves), each of which may pass
by some number of T-points or cusps. We give the key steps in an
argument that if (a) the curve for the outermost region passes no
such points, and has turning number one (i.e., can be smoothly de-
formed to a counter-clockwise circle) and (b) all other curves pass
an equal number of “starting” and “ending” points, then there is a
Huffman-label-able completion of the visible contour. The formal
proof involves careful application of the tubular neighborhood the-
orem, the isotopy extension theorem, and other standard techniques
from topology; we present only the essential insights here.

Figure 8: The visible contours of the bean divide the plane into two
regions; traversing a path slightly displaced from the boundaries of
these regions gives the two red curves shown. The inner one passes
the cusp and then the T-point (we don’t count where it makes a turn
at the T-point as “passing” it); the passages are marked with dots.
The outer one passes no endpoints at all.

The first step is to assign depth 0 to all visible edges. Now consider
one of the red curves that meets at least two endpoints. Starting
from any point of the red curve, we traverse it, noting whether the
points we encounter are “starting points” (S) or “ending points”
(E) of the visible contour arcs. The resulting circular sequence of
Ss and Es contains at least one of each, by hypothesis; there must
therefore be an adjacent pair of points, one a starting point and one
an ending point. We’ll show how to remove these from the se-
quence by completing the two contours; induction then shows that
all contours can be completed and we are done.

The adjacent S and E points can be either cusps or Ts. Figure 9
shows how these can be joined. In the cusp-tee case, we can add a
hidden contour and a hidden cusp, all within the region between the
red curve and the contour between the two points being processed;
after this addition, the red arc can be redrawn; the points S and E are
no longer arc endpoints, and thus the start-end sequence for the arc
is now two characters shorter. Similarly, in the T-T case, we can add
a short completion arc. The only remaining case is the cusp-cusp
case. Depending on whether the cusps appear in S-E order or E-S
order, one of two standard solutions shown provides the necessary
completion.

We note that there are drawings that do not satisfy the criterion
above, but which nonetheless admit completions, so this class, al-
though large, is not exhaustive.

4.2 Practical contour completion

The completions described in the previous section are formally cor-
rect, but since many of them have sharp turns in the hidden con-
tours, they are, from the Williams-Mumford random-walk perspec-

Figure 9: Adjacent cusp-T pairs can be joined with two arcs and a
hidden cusp; adjacent T-T pairs can be joined with a single arc, as
can adjacent cusp-cusp pairs; the side on which the arc lies, in this
case, depends on the order in which the two cusps were encoun-
tered.

tive, unlikely. As a practical matter, therefore, we take a differ-
ent approach in our program: we consider all visible-contour end-
points, and estimate the likelihood of a hidden contour joining each
possible pair. Following Nitzberg et al. [1993], we pair up points
using their greedy algorithm, testing multiple configurations for (a)
probability, and (b) consistency (can they be Huffman-labeled?); if
the most-likely configuration is inconsistent, we move to the next-
most-likely, and so on.

Pairwise completions. First, for each pair of endpoints of the vis-
ible contour we compute an initial estimate of the probability that
they are connected by a hidden contour. Each endpoint has a loca-
tion and associated direction for the completion curve (for T-points,
the direction is given by the tangent ray of the visible contour; for
cusps it is the opposite). To compute the likelihood of joining two
tees or two cusps, we compute an energy function for the pairing,
inversely proportional to the likelihood. The energy function of the
pairing is a sum of two energy functions E = Ecurve + Eend points,
where Ecurve is the energy of the curve that would connect them
were they to be matched and Eend points is the energy corresponding
to the heuristic defined by the endpoint tangent directions. We now
describe each in detail. First, we approximate the elastica curve
with a Bézier spline connecting the endpoints given their tangent
vectors. The Bézier curve is defined by the two endpoints and the
points displaced from the endpoints along the tangent vectors. The
distance by which the endpoints are displaced along the tangents is
1
3 of the distance between the endpoints. The Bézier curve is then
uniformly sampled and the energy function of the resulting polyline
is computed as follows (see figure 10):

Ecurve = e∑i li ·∑
i

∆θi

where li is the length of the i-th segment of the polyline, and ∆θi

is the absolute value of the angle change between two consecutive
segments of the polyline. Eend points corresponds to another heuris-
tic similar to [Nitzberg et al. 1993], where we use the tangents at
the endpoints to estimate the likelihood of the matches. Intuitively,
if the tangent directions at the two endpoints are very similar, it is
likely for them to be paired even if the length of the curve con-
necting them would be long (think of a fat snake whose tail passes
behind its body). Similarly, if the tangents at the endpoints are very
different, it should be pretty unlikely for them to be paired up. Cur-
rently, Eend points is a constant 1.0 if the angle between the tangents
at the endpoints is between ε1 = 0.3 and ε2 = 2.5, 0 if the angle

between them is ≤ ε1 and proportional to eangle if the angle is ≥ ε2.
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Figure 10: The energy of the polyline approximating the Bézier
spline is computed as a product of the sum of angle changes be-
tween the consecutive segments and the exponent of the sum of the
segment lengths.

Figure 11: When we have a T-point and a cusp to match it to,
we seek the location of a hidden cusp such that the two hidden
contour parts joining our points to the hidden cusp have the highest
probability.

When we want to join a T and a cusp (see figure 11), we ask the
question “for all possible locations of a hidden cusp, and all pos-
sible tangent directions there, what are the probabilities of a C1

random walk joining the T to this cusp and of another joining the
visible cusp to the hidden cusp?” We treat the product of these
probabilities as the probability of this point-and-direction being the
hidden cusp. We posit that the ideal location of the hidden cusp is
the one with the highest probability. Unfortunately, computing this
probability directly by generating many random walks, etc., is im-
practical and slow. We therefore did this once, offline, and stored
the precomputed probabilities in a table. That is to say, we placed
one point at the origin, with a tangent ray along the positive x-axis;
we generated many (ca. 108) C1 random walks from there and
recorded (in a discretized form) where each ended, and in which
direction it was going. We did the same for a second point, situated
on a unit circle, and with a given initial direction; we then found the
point and direction that was most likely to be an endpoint of both
sets of random walks. This was repeated for multiple points on the
unit circle, and multiple initial directions, and the results stored in
a table. This table, then, represents the function (P,φ) = h(Q,θ) =
the location and direction of the hidden cusp when one point is at
the origin and has horizontal tangent, and the other is at Q and has
tangent direction θ . Given an actual tee and cusp, we can translate
one to the origin and rotate so that its tangent is in the positive-x di-
rection; we then use the other point’s location and direction to look
up an answer in the table. (Note that this assumes that the optimal
answer is scale-invariant, in that the second point may not be at a
unit distance from the first, and we must scale this distance to one
in order to use our table.) We connect the hidden cusp to the tee
point and the visible cusp with Bezier curves, and compute Ecurve

for their union as described above.

Greedy search for the best configuration. After a likelihood for
each pair of endpoints is computed, we need to match up pairs to
find the best total configuration (a configuration consists of end-
point pairs, where each endpoint appears in only one pair). For
instance, if we have 4 endpoints numbered 1 to 4, the possible con-
figurations are: {(1,2),(3,4)}, {(1,3),(2,4)} and {(1,4),(2,3)}.
The likelihood of a configuration is defined as the product of like-
lihoods of its pairs. It is not practical to compute the likelihoods
of all possible configurations as the number of them grows expo-
nentially in the number of tees and cusps. Instead, we do a greedy
search similar to [Nitzberg et al. 1993]; starting with several best
pairs, for each of them we choose the next best pairs from the set
of valid configurations, and so on; we keep track of the 10 best
configurations at any time.

4.2.1 Limitations of the figural completion algorithm

The figural completion approach that we presented has a number of
limitations.

The location of the hidden cusp provided by the method above may
be unsatisfactory. Indeed, in the bean-like case shown in figure 12,
the hidden cusp is estimated to lie at a point that is not, in fact, hid-
den. Figure 12 (right) shows another example where the locations
of hidden cusps are estimated incorrectly because of the failed as-
sumption that the precomputed positions of hidden cusps are scale-
invariant.

Figure 12: Problem cases: our method can produce a contour com-
pletion which places the hidden cusps in impossible locations. This
happens because our method only considers local probabilities, and
not the shape of the remainder of the visible contour.

Consider a dog’s body with one leg on the left hand side, seen from
the right hand side (see figure 13). This is a case that our contour-
completion algorithm cannot handle. The “completion” of the ob-
scured contours consists of two hidden cusps connected by a U-
shaped hidden contour, and two “straight” segments connecting the
hidden cusps to two t-points. In the two-hidden-cusp completion,
the location of the two cusps is ambiguous. The algorithm for find-
ing a hidden cusp for a t-point/visible-cusp pair will not work for
this case, because there are no visible cusps.

(b)  (a) (c) (d)

Figure 13: (a) The back-leg drawing case; (b),(c), and (d) show
possible completions; our system would produce completion (d),
but would fail at later stages (although if we allowed multiple-
component surfaces, then (d) could be created).

The figural completion for this case could equally well consist of
just an arc joining the two t-points — there’s no a priori reason
for the system to assume that the shape being drawn has only one
connected component. Without the context (knowing that this is
a leg), we do not know of any principled algorithm to guess the
locations of the hidden cusps.

The back legs issue is something that can be handled pretty easily
by adding gestures to our system (where, say, a user could change
the view and draw a stroke corresponding to the back leg), or, by
incorporating our system as an inflation component into one of the
existing free-form sketch-based interfaces like Teddy. Such a sys-
tem would also ideally include the ability to sketch or edit the hid-
den contours (i.e., provide user-guidance to the optimization algo-
rithm).

Our contour-completion algorithm, based on the table-lookup,
should probably be improved. We would like to find a good approx-
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imation to the data in the table so that a lookup (and the computa-
tion and storage of the table) is unnecessary; if such a function were
based on a deep understanding, the unprincipled “scale-invariance”
assumption might also be eliminated.

Given that figural completion is an expensive search problem, it
becomes slower for a large number of tee/cusps (say, more than 15)
and is more likely to make incorrect inferences as the drawing gets
more and more complicated (we find only an approximate solution
to the optimization problem to make it tractable; as a result, the
approximate minimum is not always the global minimum).

We have shown that a large class of visible contour drawings admit
completions; it is known that others do not. But we do not know a
complete characterization of which drawings admit completions.

5 From drawing to topological embedding

At this point we have a completed contour drawing, with a
Huffman-labeling. This drawing consists of directed arcs (which
we call edges) between vertices corresponding to T-points and
cusps. The drawing partitions the plane into regions; Williams’
paneling construction tells how to take a disjoint union of multiple
copies of these regions and identify edges in pairs to produce an
abstract manifold. Williams’ description misses one subtlety: the
regions he is identifying must be closed sets so that they contain
their boundary points, for it is boundary points that are identified in
pairs. For regions like the large region of the bean, the “crossing
point” at the top must be counted twice – once as a point on the
left half of the contour, and once as a point of the right half, or the
object resulting from the identification of edges will not in fact be
a manifold. This can be addressed by examining the boundary of
each region for self-intersections and, if any are present, subdivid-
ing the region into two smaller regions; the details are finicky but
not difficult. We’ll simply treat that crossing point as two ever-so-
slightly-separated points for the purpose of this explanation.

In our implementation, each copy of the region at this point is a 2D
mesh created by triangulating the boundary of the region. We use
Triangle [Shewchuk 1996] which performs the constrained Delau-
nay triangulation algorithm on the given boundaries of the regions.

We consider (see figures 14, 15) the disjoint copies of a region R
as being of the form Ri = R×{i}, where the index i never appears
more than once in all copies of all regions. A typical identification
in Williams’ scheme is then that the point (r, i) is identified with
(r, j), where r is a point on the boundary of region R, and (r, i)
and (r, j) lie in Ri and R j respectively; another might be that (r, i)
is identified with (s, j), where R and S are adjacent regions in the
plane both containing the point r = s on their boundaries, (r, i) ∈ Ri

and (s, j)∈ S j. The disjoint union of all the copies of all the regions

will be called U ; there’s a natural map π : U → ℜ2 : (r, i) 7→ r in
which the multiple copies of any point r are all mapped to r.

For a point P in the plane, the set π−1(P) is a set of points of the
form (P, i); we call this the “stack over P.” Similarly, we can con-
sider the stack of edges over an edge in the plane, or the stack of
panels over a panel in the plane. If an edge e in the plane goes from
P to Q, we write ∂e = (P,Q) to denote that the boundary of edge e
consists of the points P and Q, in that order. If ei is an edge in the
stack over e, then ∂ei = (Pi,Qi) as well.

Williams identifies certain panel edges in pairs (see figure 15), that
is, for certain i and j, he declares that ei is to be identified with
e j , which means that the point (x, i) ∈ ei, is identified with the
point (x, j) ∈ e j. This identification induces an identification on the
stacks above vertices: if ei is identified with e j, and ∂e = (P,Q), we

Figure 14: Schematic view of the disjoint union of panels that are
glued to form the topological manifold homeomorphic to the bean.
Each copy of each panel lies in a different layer; the union of all
these copies is called U . The map π is “projection back to ℜ2

along z.” The collection of all points that project to A (the red dots)
is called the “stack above A”. The magenta edges are the stack
above the edge e. Each panel is indexed by its height in z, so all
panels have different indices.

declare Pi ∼ Pj , and Qi ∼ Q j. The transitive closure of the relation
∼ partitions stacks into equivalence classes that we call clusters;
each cluster in each stack corresponds to a vertex in Williams’ sur-
face, which we’ll eventually embed.

Ordering the clusters. Williams’ construction gives a depth order
to the panels in each panel-stack; this order is generally unrelated
to the indices above. This order induces an order on the clusters as
follows: if Pi and Pj are in two clusters, and R is a region containing
P = π(Pi) = π(Pj) consider all the faces in the stack over R that
are adjacent to vertices in the first cluster, and all those adjacent to
vertices in the second cluster. By Williams’ construction, faces in
the first group will either be all in front of or all behind the faces in
the second group; we say that the first cluster is in front of or behind
the second group accordingly. Again by construction, this order is
independent of the adjacent region R that we choose.

Figure 15: The panels, re-ordered for visibility; edges with the
same colors are identified. This identifies clusters of vertices in
each stack; vertices with the same color form a cluster. Note that
the near vertex in the two large panels has been split into two copies.

Extra vertices. One important issue remains: if two edges e and e′

in the same edge-stack have the same clusters as their endpoints but
are not identified in the topological manifold, these distinct edges
would be assigned the same depth in the constructed surface, which
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would result in a non-embedding. Figure 16 shows two such edges
in the lower portion of the leg case. In such cases, we add a new
vertex at the midpoint of each of the edges e and e′ of the contour
(and to any other edges that are identified with these). The stacks
and the clusters within these stacks are then created for these newly-
inserted points in the same way we described above.

Figure 16: (a) A contour-completed drawing of a leg attached to a
body, with panels colored. (b) The two panels for the bottom of the
leg, colored to show edge identifications and vertex clusters. Note
that the top edges e and e′ share endpoints but are not identified.
(c) We add mid-edge vertices, sort, and cluster them as before.

5.1 Constructing a topological embedding

We now present a novel algorithm that constructs a topological em-
bedding from Williams’ abstract manifold.

Embedding vertices To each cluster of the vertex stack over a ver-
tex P, we associate a vertex whose xy-coordinates are those of P,
and whose z coordinate is yet to be determined (we call these clus-
ter vertices). We determine the z-placements using a mass-spring
system. Suppose that the vertices corresponding to the clusters of
one stack are Xα , where α ranges over the clusters. If cluster α is
behind cluster β , we want the z-coordinate, zα of Xα to be less than
that of Xβ . For each such order-relation between two of the Xs, we
attach a spring whose rest-length z0 is one, and for which the spring
force follows the rule

F(d) =

{

0 d ≥ 1,
Ce1−d d < 1

which ensures that if the z-order is inverted, there’s a substantial
force pushing back towards the proper ordering.

This ordering and set of z-values could also be found by simply
sorting the vertices; we use the mass-spring system as a way to
relate the z-depths for vertices in separate stacks. In particular, if
P and Q are distinct vertices joined by an edge e, then each cluster
over P is joined to one or more clusters over Q by edges in the
stack over e. For each such connection, we add a spring with rest-
length zero between the corresponding cluster-vertices; we use a
sufficiently small spring constant that the intra-stack ordering is not
disturbed. Our goal is to make each edge want to be somewhat
parallel to the z = 0 plane, rather than having vertices associated
with one stack be far in front of all others, for instance.

The mass-spring system acts on the points, which are constrained
to move only in z. Clearly if the spring constant for the inter-stack
springs is small enough, each stack will be ordered correctly. In our
implementation, we use the constant 1.3, which seems to perform
well on examples like the ones shown in this paper and the asso-
ciated video. The points of the drawings in our system lie in the
bounding box of −1.0 to 1.0 in each direction.

Embedding edges Having embedded the cluster vertices (i.e., the
vertices of the manifold that Williams constructs), we can extend
the embedding to edges by linearly interpolating depth along each
edge. The ordering of edges in Williams’ construction is generally

sufficient to show that if ei and e j are distinct edges of the manifold
corresponding to contour edge e, then they do not intersect except,
perhaps, at endpoints which they share. In the event that ei and e j

share both their endpoints, linear interpolation would assign them
the same depths at all points, and our mapping would not be an em-
bedding. Fortunately, the “extra vertices” step above inserts points
exactly when necessary to prevent this; thus we have an embedding
of both the vertices and the edges of Williams’ manifold.

Embedding faces We extend the embedding over the panel interi-
ors using Poisson’s formula to find a harmonic function on the panel
whose values on the boundary are the given depth values that we’ve
already assigned to the edges of the panel. Each interior point is
assigned a depth that is a weighted average of the depths of points
on the boundary edges. To prove that two panel interiors in the
same stack never intersect, suppose that P is a point of some panel
R, and that X and Y are points in the panel-stack over R, and that
π(X) = π(Y ) = P. Suppose that the panel to which X belongs, Ri, is
in front of the panel to which Y belongs, R j, so that the z-value for
X should be larger than the z-value for Y . Then points on the edges
of Ri are in front of (or equal to) the corresponding points on the
edges of R j. The z-coordinates of corresponding points cannot all
be equal unless the boundaries of Ri and R j are identical, in which
case the union of Ri and R j is a spherical connected component
of the manifold, and is handled as a special case. In the remain-
ing cases, since the z-values for Ri are greater than or equal to the
corresponding values for R j, and the z value for X is a weighted
sum of these values with all nonzero weights, and the z-values for
Y is the corresponding weighted sum of the other z-values, with the
same weights, we find that the z value for X is strictly greater than
that for Y . Thus the interiors of faces do not intersect. We have thus
constructed a continuous 1-1 map from Williams’ abstract manifold
into ℜ3, i.e., a topological embedding.

6 Smoothing the embedding

Now that mesh vertices corresponding to each panel have been as-
signed depths, we “stitch” the meshes of individual panels into a
single mesh. We start with the first panel, and stitch panels to it
one at a time. If two panels are identified along an edge e, we al-
ter the vertex indices on second to match those of the first. The
edge correspondences for the stitched panel (excluding the edge we
stitched along) come from the correspondence information of the
two component panels. Although the resulting stitched mesh has
the proper “contour projection” (for an appropriately modified def-
inition of “contour”), its shape is generally unsatisfactory, as can
be seen in the accompanying video. We therefore perform several
optimization steps. During these steps, we constrain the vertices
lying on the visible silhouette to remain on the silhouette so that the
contours will match the drawing. That is, these vertices can only
move in z, while others may move in x,y, and z.

First, we remesh the model using the algorithm proposed in
[Kobbelt et al. 2000] in order to create more regular triangles, as
the behavior of the mass-spring system is sensitive to the quality
of the triangulation. Then, ten iterations of Taubin’s λ/µ smooth-
ing [1995] are applied to the mesh.

At this point, the mesh is smoother, but rather flat and sharp along
the edges (because the silhouette constraints have not been incor-
porated smoothly). The next goal is to “inflate” the model, making
it more rounded. To achieve this, we construct a mass-spring sys-
tem on the initial mesh, with masses at the vertices and with two
types of springs: length springs and what we call “pressure force”
springs. The length springs try to keep the length of each edge as
close to zero as possible, while the “pressure springs” simply push
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each triangle outward along its normal with a force proportional
to the area of the triangle. We relax this mass-spring system and
although the convergence in general is not guaranteed, in practice
it converges quite fast. A model like the ones shown in the paper
inflates in several seconds on an AMD Athlon 64 3000+ processor.

Our mass-spring approach has several drawbacks; some of them
common to all mass-spring systems, others are particular to our
choice of springs. First, most mass-spring systems approximate the
physics of deformable models very crudely. Further, in our case,
even the underlying “physical” model is quite ad hoc. We intu-
itively think of the current model as inflating the initial flat shape
as a balloon, but with the restriction on the movement of silhouette
points and disregard for surface curvature, it is a very weak analogy.

Secondly, our mass-spring system has several tuning constants that
have to be chosen so that they work for most of the examples user
draws. Thirdly, there is currently no mechanism in the system to
prevent self-penetrations of the surfaces. We would like to address
this issue in the future. Sometimes, though, we would like to allow
self-penetrations: think of a body-with-two-legs example; there, the
legs being slightly pushed inside the body is often more desirable
than having them stick out far away from the body. Finally, there
is a known problem of stiffness [Gibson and Mirtich 1997] with all
mass-spring systems that leads to their potential instability.

Having said all this, the mass-spring system we created seems to
work reasonably well on most examples. The results of the relax-
ation of the mass-spring system are satisfactory except at the areas
that were completely flat and skinny initially (like the tips of the
legs). Finally, we may choose to apply a few iterations of Taubin’s
anisotropic smoothing [Taubin 2001], which first filters the normals
using λ/µ algorithm, and then filters the vertices, integrating the
new normal field in the least squares sense. The final results are
shown in figure 17.

7 Discussion, Limitations, Conclusions

Our system creates 3D shapes for a wide class of contour drawings;
certain limitations prevent it from working universally. One is that
the contour-completion approach is local–the completed contour
shape depends on the geometry of the starting and ending points,
but ignores the remainder of the input shape; it will require a much
deeper understanding of contour completion to address this.

Williams’ topological manifold construction, followed by our lift-
ing, creates a mesh embedding with “folds” matching the drawn
contour. But mesh contours and smooth contours are different. In
particular, the curvature of a smooth contour at a cusp goes to infin-
ity, which a mesh-cusp simply projects to some non-zero angle in
the contour-drawing. The problem of exactly fitting the drawing is
therefore generally impossible, unless users respect the conditions
on curvature at cusps. We need to develop a means to characterize
when we have adequately approximated the user’s drawing.

Our inflation algorithm currently requires tuning constants; the
constants that produce the most satisfactory-looking results actu-
ally produce self-intersecting surfaces, especially in locations like
“armpits” (i.e., between a limb and a body). We would like to find
an algorithm that produces embeddings instead. A more princi-
pled approach would optimize something about expected shapes of
the inflated surface, conditioned on the known shapes of the visi-
ble contours, but lacking a prior distribution on all smooth surface
shapes, such an approach seems intractable. We anticipate that a
minimization of some fairness functional might hold promise.

We would also like to extend our work to include minor surface
discontinuities—things like ridges or creases on a surface, which
often are perceptually significant (and indeed, in cases like armpits,
creased shapes are what a user might want to create).

Finally, although we have developed our system to be agnostic
about shape, treating it purely geometrically, users are familiar with
many shapes. We imagine the possibility of a hybrid system, in
which the user’s sketch is both inflated and matched against a large
database of known forms, for possible suggestions (“You seem to
be drawing a dog; would you like us to add the hidden legs for
you?”). The problems of searching such a database and forming
reliable hypotheses, however, seems daunting.
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