Figuring out the amplitude
of the sun — an explanation of what the
spreadsheet is doing.

The amplitude of the sun (at sunrise, say) is the direction you look to see the sun come
up. If i’ srising exactly in the east, its amplitude is 90E, which is usually written in the
form of an azimuth: N 90 E. If it’sin the southeast, maybeit’'s N 105 E. If it’s setting a
little north of west, it'sN 80 W. (i.e.,, start at north, and go 80 degrees towards the west).

The model used for computing this assumes that
* Theearth’sinacircular orbit (not elliptical) about the sun, and moves with
constant speed.
* Theearth’'saxisisinclined at a constant angle (23.5 degrees) to the plane of its
orbit
* Thisinclined axisliesin the plane perpendicular to the plane of the orbit and
containing the earth at the winter equinox.

Here'sadrawing that captures al that:

The earth shown at left iswhereit is at the winter solstice. Y ou can see that the polar axis
istilted in the xz-plane. By the way, I’ ve chosen to use coordinates centered at the sun,
with the x-axis passing through the earth’ s center at the winter solstice, and the entire
orbit lying in the xy-plane, which is (I believe) called “the plane of the ecliptic” by
astronomers. The direction “z” is perpendicular to this plane.



After some number of days — about 55 in the drawing above — the earth has moved some
part of the way around its orbit. Because its speed is assumed constant, that part is
55/365.25 of the way; in degrees, that would be 360 * 55/365.24 = 54.2 degrees. That
angleis called “theta’ in the picture, and that’s how I'll be referring to it in general. But
I’ll write theta in radians, which are the mathematician’s way of measuring angles.
Instead of 360 degreesin the circle, there are 2pi (about 6.28) radian. So to find theta, I'd
do the following:

Theta=2* pi * (days since solstice) / 365.25.

I’m also going to give a name to the angle between the z-direction and the polar axis (i.e.,
23.5 degrees). I’'m going to call that alpha.

Next, I’'m going to name our location as we observe the sunrise: we're at a point U on the
earth’s surface. | want to point out something important about U right here:

Theray from U to the center of the earth is perpendicular to the ray from U towards any
direction on the horizon, and sinceit’s sunrise, we know in particular that it's
perpendicular to the ray from U to the sun. Again: theray fromU to thesunis
orthogonal to the ray from U to the center of the earth.

I’m going to draw a picture of the earth, showing the point U and the plane that contains
U but is perpendicular to the line from U to the earth’s center (i.e., the “horizontal plane
at U” or “tangent plane at U”):

I’ve aso drawn, on that plane, apair of arrows; the one labeled n points in the northerly
direction from U (i.e., if you were standing at U and looked towards the horizon in the



direction your compass called north, you' d be looking in the direction u); similarly the
arrow labeled e points to the east in the tangent plane. The arrow from U to the sun also
liesin this plane (I've drawn it in as ared arrow), and the big question we' re trying to
answer is“how many degreesisit from the ray labeled n around to thered ray, and is it
clockwise or counterclockwise?’

With the definitions above made, so that we know what we' re talking about in generd, |
need to digress briefly about vectors, since those are what I’ll use to do the computations.
('m amathematician by training, and vector mathematicsis infinitely easier for me that
spherical trigonometry, so that’s how I'll explain all this stuff.) Let me start in two
dimensions. In the picture below, there' sagrid and afew points, and a pair of axes
labeled x and y. Let’slook at how you get from one point to another:

yA

A

From A to B requires that you go right two steps (or two stepsin the “x direction” and go
-2 stepsin they direction. So we cal this displacement (2, -2). In the same way, to go
from F to G isadisplacement of (11, 2). What about C to D?It's (2, -2) — the same as the
displacement from A to B. So although A and B are different points from C and D, the
displacement from A to B is the same as the displacement from C to D. What about from
D to E? That's (2, 2). What about C to E? That’s just four stepsto theright, i.e., (4, 0).
Notice that if you take the displacement from C to D (2, -2) and the displacement from D
to E (2, 2), and add up corresponding numbers, you get the displacement from C to E,
namely (4,0).

These representations of displacements are called “vectors,” and their written as pairs of
numbers. The rule for adding vectorsis that we add term-by-term, (as we did with C-to-D
and D-to-E above) so that

(ab)+(cdy=(a+c, b+ d)



We can also multiply a displacement: if we go from A to B (whichis (2, -2)) and then go
the same displacement twice more, we end up having traveled (6, -6). So we say that in
generd,

n (a, b) = (na, nb)

By the way, it’s conventional to denote vectors with boldface letters, so that we might
write u = (a, b), and then talk about the vector u. I'll also useitalics to denote ordinary
numbers, so that it's easy to tell the word “a’ from a number denoted by a.

One more new idea needs talking about. Y ou can see that it's possible for two vectors to
be perpendicular (the vector from C to D and the vector from D to E, for instance). Is
there away to tell this by looking at the numbers that represent them? Y es, thereis—and
it worksin 3 dimensions as well. Here' s the dedl:

If u=(a b)andv =(c, d)aretwo vectors, then we'll say that the number ac + bd istheir
inner product. This number comes from multiplying corresponding terms (a and ¢ are the
first part of each vector, b and d are the second part) and then adding up the results. What
does this inner product tell us about u and v? First of al, if it happens to be zero, then u
and v are perpendicular. Let’s see that in action: the vector from Cto D is (2, -2), and the
vector from D to Eis(2, 2). Theinner productis2x 2+ 2x (-2) = 0. Try it with afew
others to convince yourself.

If the inner product is zero, the vectors are perpendicular; if the vectors are
perpendicular, then theinner product is zero.

Here' s another application of inner products: how long is the vector w = (a.b)? Well, we
can use Pythagoras's theorem to answer that. By drawing atriangle with w along the
hypotenuse, and “a” along the bottom, and b as the right edge, we see that the length of w
squared is a*a + b* b, which happen to be exactly <w, w>. That means that the length of
w isjust sgrt(<w, w>). It’s usualy written |jw||. A vector whose length isoneis called a
unit vector.




In generd, if u and v are vectors, and the angle between them (when we move them so
that they start at the same point) is b, then awonderful theorem (which I won't try to
prove here) shows that

(1) <u,v>=ju]{{lv|l cos(b)

where “cos’ isthe cosine function on your calculator.

Theinner product redlly isalittle like multiplication. Recall that for numbersx, y, and z,
we know that x(y + z) = xy + xz. Well, asimilar thing is true for inner products:

(A) <u,v+w>=<uv>+ <u,w>

(B)
It'saso truethat if aisany number, then
(B) <u,av>=a<u,v>=<au,v>
and that in general
(C) <uwv>=<v,u>
That’s pretty much all we need to know about inner products.
That’s just about everything you need to know about vectors...except that it all worksin
3 dimensions aswell. That isto say, we can treat displacementsin 3D as being
represented by displacementsin x, y, and z (so you need three numbers to describe a
vector), they still get added term-by-term, and they get scaled up or down by multiplying
each term by the same number.
| forgot: there’s one last thing you need to know. If you have a pair of non-parallel
vectors, f and g, and you move them so that their starting points are the same, and you
have a pair of numbers s and t, then the vector
sf+1tg
actually liesin the plane that contains the vectorsf and g.
With that in mind, we're ready to proceed.
Recall that the earth’s center is at a point in the xy-plane, and that the sun is at the

location (0,0,0). And the earth is a an angle 6 around the circle from the x-axis. That
means that a vector from the earth to the sun pointsin the direction

Sun-to-earth = (cos (8), sin (6), 0).



You'll have to take that on faith, or plot some examples for afew values of thetato see
that they all liein acircle. Note that the vector above is aunit vector, for itslength is
cos(B) * cos(B) + sin(B) * sin(8) + 0*0, and the defining fact about sin and cos is that
cos(t) * cos(t) + sin(t) * sin(t) is always one.

WEe'll be looking instead at a vector from the earth towards the sun, which isjust the
negative of the vector above:

S = unit vector pointing from earth towards sun = (-cos(0), -sin(6), 0)
Now let’slook at the vector that pointsin the direction from the south pole to the north
pole. I'm not going to write down the actual vector, which is 8000 miles long, but instead

avector of length 1 (i.e., aunit vector) that points in the same direction.

Look at the earth at the winter solstice. You can see that the “pole vector” liesin the xz-
plane. In fact, it’stilted a bit from the straight-up-in-z vector. It turns out that it’s exactly

p =(sin(a), 0, cos(a))

where (you'll recall) a is the angle between this polar vector and the straight-up vector.
WEe'll use the vector p and the vector s a good deal. The other vector we'll usealotisu, a
unit vector that points from the center of the earth towards our location, U.

Now what can we do to discover aformulafor the vectors n and €? Let’swork on n for
the moment. We know that n isin the plane that contains u and p. So we can write it
down as acombination of u and p. Let’s seeif we candoit in the form

n=cu+p.

If we can find the right number ¢, we'll bein business. We'll soon see that we can’t quite
do so, but we can come pretty close.

What do we know about the vector n? It has to be perpendicular to u. That means that
<u,n> = 0. That, in turn, means that

<u, cu+p>=0
Now’sthe timethat al those facts about inner products come into play:
0=<u, cu+ p> (from above)

=<u, cu> + <u,p> (rule A)

=c<u,u>+<u,p> (rule B)

=C + <u,p> (because u was chosen to be a unit vector, so <u,u> = 1)

Hence ¢ = -<u,p>. Just what is this number? Well, recall (statement I) that



<u,p>. = |ull {|pl cos (t)

wheret is the angle between u and p. But since u and p are both unit vectors, their
lengths are both 1, so we find out that

<u,p>. = cos(t)

Now what is the angle between u and p? It’s the complement of the angle between u and
the equator, which isthe latitude of the point U, i.e., our latitude. That means that cos(t) =
sin(h), where his our latitude. So we can say that

c =-sin(h)
To be more accurate, we' ve found that if we choose ¢ to be —sin(h), then the vector
cu+p

will be perpendicular to u. But doesit have the right length? Let’s compute the square of
itslength, which isjust itsinner product with itself:

Length-sguared
=<cu+p,cu+p>

= ¢2 <u,u> + 2c <u,p> + <p,p>
=sn(h)"2 - 2sin(h) <u,p>+1
=sin(h)*2-2sin(h)*2 + 1
=1-sin(h)*2

= cos(h)"2

In other words, itslength is cos(h) instead of 1. By multiplying it by 1/cos(h), we'll get a
vector whose length is actually 1, and which isin the plane containing u and p, and which
is perpendicular to u, which means it can only be one of two vectors (the “north” vector
or the “south” vector. Because the amount of p in the vector is positive rather than
negative, we'll know that we' ve got the north-pointing one. So hereitis:

n=—(sin(h) / cos(h) ) u + (1/ cos(h))p

At this point, we're agood part of the way to the solution. We know the vector n, and we
know the vector s, so to find the angle 3 between n and s, i.e., the azimuth angle, we
only need to compute their inner product:

<n.s>= ||| [Is]| cos(B)
= cos() [because both are unit vectors]

So to find the angle 3 from n around to s, we just need to find the angle whose cosineis
<n,s>. Fortunately, that’s what the arc-cosine function does.



So let’swork out <n,s>. Firgt, it’s the same as <s,n> because of property C. So

<n.s> = <sn>
=<s,—(sin(h) / cos(h) ) u + (1/ cos(h))p
=<s,—(sin(h) / cos(h) ) u> + <s, (1/ cos(h))p>
= —(sin(h)/cos(h)) <s,u> + (1/cos(h)) <s,p>

Now thefirst term involves <s,u>. But since u goes from the center of the earth to us, and
s goes from us to the sun at sunrise, they are perpendicular, so thisterm is zero! That
means that

<n.s> = (Y/cos(h)) <s,p>

Look at that. We know s—we figured it out at the very start up above: it was just
(-cos(B), -sin(8), 0). And we know p : it’s(cos(a), O, sin(a)). So their inner product is—
cos(a) cos(B) + 0 + 0 = —cos(a) cos(6). And we know h becauseit’s our latitude. So

we' ve got everything we need:

cos(B) = —cos(a) cos(8)/cos(h)

hence

B = acos( —cos(a) cos(6)/cos(h) )

Now the only thing remaining isto tell whether the angle lookslike N 24 E, or N 24 W.
Fortunately, in this case that’ s very easy: the sun risesin the east and setsin the west. So
the morning azimuth will be N xx E, and the evening one will be N xx W. For more
complex situations, you need to use slightly more complex methods. Anyhow, our
situation isasimple one: if the spreadsheet says “sunrise”’, we use “E”, and similarly for
“sunset” and “W”.

And that’s it — the whole technique in a (large) nutshell.



