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Abstract—Near-threshold and sub-threshold voltage designs
have been identified as possible solutions to overcome the limi-
tations introduced by energy consumption in modern very large
scale integration circuits. However, as we approach sub-10 nm
transistor technology, aggressive voltage, and gate length scaling
will reduce the reliability of logic circuits due to the increas-
ing impact of noise and variability effects. Therefore, designers
need new tools to simulate logic circuits in the presence of noise.
Time-domain analysis helps understand how transient faults
affect a circuit and can guide designers in producing noise-
resistant circuitry. However, standard approaches to modeling
intrinsic noise sources in the time domain are computationally
expensive. Moreover, small noise-driven fluctuations in electron
occupation of circuit nodes introduce time-varying biasing point
fluctuations, increasing the modeling complexity. To address these
challenges, this paper introduces a new approach to modeling
thermal noise and random telegraph signal noise directly in the
time domain by developing and solving a series of stochastic dif-
ferential equations. In comparisons to traditional SPICE-based
simulations, our approach can provide three orders of magni-
tude speedup in simulation time without sacrificing accuracy.
Moreover, we introduce a novel, iterative threshold-crossing
algorithm, aimed at the efficient sampling of rare noise tran-
sients. We show that Monte-Carlo simulations based on this
approach can detect rare high-amplitude single event transients
that would be impossible to uncover with standard transient
simulators.

Index Terms—Random telegraph signal (RTS) noise, reliability,
simulation, single-event transients, thermal noise.

I. INTRODUCTION

AMAJOR advantage of CMOS digital circuits is their rel-
atively high signal-to-noise ratio, making them resilient

to various sources of error. Even so, their error resiliency is
being challenged by the increasing impact of intrinsic noise
and variability sources. Much of the research on error rate
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analysis and fault tolerance techniques has been targeted at
radiation-induced single-event upsets, specifically, in SRAMs
and latches [1]–[4], and more recently in combinational logic
circuits [5]–[11]. According to the International Technology
Roadmap for Semiconductors (ITRS), we can expect transis-
tors to have gate length Lg = 5 nm and VDD < 0.6 V by
2028 [12]. Even more aggressive voltage scaling has been sug-
gested as near- and subthreshold operation design has gained
popularity [13]–[15]. As the gate length of the transistors
enters the sub-10 nm range and the operating voltage is scaled
to a fraction of a volt, the number of electrons responsible for
the total charge of a CMOS node is greatly reduced. For a
minimum sized inverter with Lg = 16 nm and VDD = 0.9 V,
we can expect the number of electrons N ∼ 900. However, for
the 5 nm technology predicted by ITRS for 2028, the number
of electrons is expected to go down to N < 100. As a result,
combinational logic circuits will become more and more sus-
ceptible to intrinsic noise sources that would otherwise be a
concern only for specific design domains.

For example, thermal noise, which is the current or volt-
age fluctuation on a conductive component associated with the
electron’s thermal agitation, is usually addressed as an issue
only in analog circuits. To a first approximation, a transistor in
a CMOS circuit can be represented as an RC equivalent circuit.
The standard deviation of thermal noise is equal to

√
kT/C,

where C is equivalent to the total capacitance attached to the
CMOS gate output node. Since C decreases with technology
scaling, thermal fluctuations will correspondingly increase. If
we consider again the two technology processes above, as tran-
sistor dimensions scale down from 16 to 5 nm, we expect
thermal noise voltage fluctuations to increase from a few mV
to tens of mV (i.e., an increase by an order of magnitude).
Hence, while transistors manufactured in current technology
processes are still not affected by thermal noise, this has been
identified as one of the factors that will lead to the end of
technology scaling as we know it [16]. Moreover, random
telegraph signal (RTS) noise, a phenomenon related to the trap-
ping and de-trapping of carriers in the gate oxide, has become
a growing concern for digital circuit designers. While scaling
the transistor’s dimensions down reduces the number of traps
per device, each trap has a greater impact on the threshold
voltage shift. Therefore, these trapping events produce dis-
crete step changes in the drain current which can be as large
as 80% of the total current [17].
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Time-domain noise analysis offers a detailed description of
the dynamic response of a circuit in the presence of noise
and may be used as a guide in designing noise-immune
circuitry. Several works have also targeted the modeling
of RTS noise, e.g., [18]–[20]. In particular, the work of
Mahmutoglu and Demir [18] and Wirth et al. [19] have
shown the importance of taking into account time-varying
biasing conditions for the correct estimation of RTS noise
characteristics. The same consideration applies to thermal
noise modeling. However, state-of-the-art time-domain ther-
mal noise simulators are SPICE-based simulators, which are
computationally very costly, especially, if the goal is to observe
rare fault-inducing noise transients.

Accurate modeling of thermal noise in sub-threshold circuits
requires a careful choice of the proper probability distribution
to match the physical behavior of these circuits. Thermal noise
has commonly been modeled using additive white Gaussian
noise, where the voltage fluctuations follow a Gaussian distri-
bution with zero mean and fixed standard deviation. However,
when the total charge at the output of a CMOS gate is very
low, even fluctuations of a few electrons can bring substantial
changes to the operating point of the transistors, implying a
nonlinear behavior that requires adopting time varying param-
eters to compute the noise. Moreover, it has been shown
that thermal fluctuations in circuits operating in the sub-
threshold regime follow a Poissonian rather than Gaussian
distribution [21].

In order to address these issues, we recently proposed a
fast simulation framework for the analysis of noise transients
induced by thermal noise fluctuations [22]. In that work,
we modeled CMOS gates in the presence of noise using
stochastic differential equations (SDEs). The resulting sim-
ulator allowed us to accurately simulate thermally induced
noise transients with a three orders of magnitude speedup com-
pared to traditional SPICE-based simulators. In addition, we
introduced a novel iterative algorithm that allows extracting
rare transient events that would not be possible to simulate
otherwise.

In this paper, we expand on and complete our previous
framework [22] in several significant ways to improve accu-
racy and demonstrate broader applicability.

1) We improve the accuracy of the simulation framework
by replacing the single iterative functions presented
in [22] with a matrix representation of the SDE
system.

2) We present a more detailed definition of the iterative
threshold-crossing algorithm introduced in [22] with
the addition of an empirical method for obtaining the
circuit’s time-to-failure.

3) We incorporate RTS noise in the simulation framework
by integrating the effect of carrier trapping and detrap-
ping events on the Poisson charging rates of circuit
nodes.

4) Based on these improvements we present a comprehen-
sive analysis of the impact of intrinsic noise sources on
the circuits’ reliability.

The remainder of this paper is organized as follows.
Section II provides an overview of related work. In Section III,

we present the derivation of the SDEs used for circuit time-
domain modeling and introduce the conjoint model for thermal
and RTS noise. In Section IV, we describe the implementa-
tion of our simulator as well as the methodology used for fast
detection of thermally induced SETs from [22]. In addition,
we highlight the algorithm modification needed to include RTS
noise modeling. We report simulation results in Section V and
provide concluding remarks in Section VI.

II. BACKGROUND AND RELATED WORK

A. Thermal Noise Modeling

In recent years, there have been several efforts to
address the design of thermal-noise-tolerant circuit architec-
tures [23]–[26]. All these works modeled the thermal noise by
scaling the noise standard deviation up to a value that would
allow an SET to be observed more easily in the logic circuits.
While this approach does allow for some means of evaluat-
ing the relative noise robustness of different circuit designs,
the noise itself is ill-defined. In fact, while increasing the
noise standard deviation to an unrealistically high value, such
as 60 mV RMS, makes it possible to rapidly generate high-
amplitude fault-inducing events, these events do not reflect the
transient behavior of real signals. Instead, the goal of the work
described in this paper is to develop a simulation framework
that allows for fast detection of physically accurate thermal
noise transients. More specifically, our approach is to develop
a stochastic representation of noise fluctuations for a device
operated in the sub-threshold region.

Note that thermal noise for transistors in sub-threshold oper-
ation follows statistics that are fundamentally different from
those used in classical above-threshold circuits. It has been
shown that for transistors in sub-threshold operation, electron
rate fluctuations can be described using a two-sided Poisson
process whose rates can be derived from the forward and
reverse components of the transistors’ drain currents [21].
For transistors biased in sub-threshold, the drain current is
given by

ID = I0 exp

(
qVgs

mkT

)
exp

(
qVdsλD

kT

)[
1− exp

(
−qVds

kT

)]
(1)

where λD is the DIBL parameter [27] and m and I0 are
technology-dependent factors. The drain current in (1) rep-
resents a deterministic quantity: the average net drain current
produced by electrons traveling from source to drain and from
drain to source. The two opposing forward and reverse electron
currents, If and Ir, are random in nature, and can be treated as
two independent Poisson processes [21]. The rates for these
two Poisson processes can be obtained by simply dividing the
average currents, If and Ir, by the electron charge q. For an
nMOS transistor we can derive the rates expressed in terms
of number of electrons per unit time as

μn = If

q
= I0

q
exp

(
qVdsλD

kT

)
exp

(
qVgs

mkT

)
(2)

λn = Ir

q
= μn exp

(−qVds

kT

)
. (3)
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Accordingly, we can define the two stochastic processes
describing the forward and reverse electron flows as

Xf ∼ Poiss(μn)

Xr ∼ Poiss(λn) (4)

where Xf and Xr are time series of Poisson-distributed random
variables. In order to apply these definitions to the circuit’s
transient behavior, let us consider the example of an nMOS
transistor discharging a capacitor C. We can write the current
ID discharging the capacitor as

dVC

dt
C = −ID. (5)

Following stochastic calculus conventions [28], and using
the definitions from (4), we can write the stochastic counter-
part of (5) as:

dV̂C = − q

C

(
dXf − dXr

) = − q

C
dX (6)

where qdX = IDdt. Integrating the resulting equation over
a time interval [0, t] we obtain the following solution of
the SDE:

V̂C(t) = VC(0)−
∫ t

0

q

C
dX. (7)

In this solution, VC(0) represents the initial voltage on the
capacitor and the voltage transient output is entirely con-
structed from the net count of the electrons flowing in
the channel via a random process. This definition sets our
approach apart from previous thermal noise models, in which
the noise was considered as an additive feature to deterministic
voltage and current variables. It is important to recognize that
the equilibrium net current can be retrieved from the expected
value of the net charge

ID = qE[X] = q
(
E
[
Xf
]− E[Xr]

)
= q(μn − λn) = If − Ir (8)

in which we have used the equivalence between the expected
value of the two Poisson processes and the forward and reverse
current components.

The extension of this model to the inverter gate can be
easily constructed by considering that the sum of two or more
independent Poisson processes is still a Poisson process with
a rate given by the sum of the original processes [29].

As an example, consider the inverter in Fig. 1. Here, we
have adopted the convention of labeling the rates associated
with the current components flowing into the output node,
i.e., charging the output capacitance, as λ and the rates for the
opposing discharging process as μ. The rates for the charg-
ing/discharging processes can be summed together and the
original four processes can be reduced to two cumulative
opposing Poisson processes with rates λinv = λn + λp and
μinv = μn + μp. In our formulation, we extend this simpli-
fication to any CMOS gate, regardless of the complexity of
the circuit, by combining the rates of all the transistors con-
nected to the output node. The two-sided Poisson model has
been used to create a probabilistic framework with the goal
of estimating the failure rate of memory storage elements due

Fig. 1. Inverter rates for nMOS and pMOS transistors.

to thermal noise [30]. Specifically, the framework used pro-
jected data from the ITRS to model a cross-coupled inverter
in a 10 nm technology node and was used to investigate the
failure-in-time due to thermal noise as a function of other
parameters such as fabrication process, VDD, and temperature
variations. This paper differs from [30] in two ways; we aim
to describe the dynamic response of the circuits to voltage
transients generated by thermal noise and, while doing so, we
extend the study to more complex circuit architectures with
multiple logic gates.

B. RTS Noise Modeling

RTS noise is another intrinsic noise source that is observ-
able in modern submicron CMOS circuits. It is manifested
as discrete steps in the transistor’s drain current due to car-
rier trapping and detrapping in the gate oxide. An important
result from [31] is that 1/f noise and RTS noise are linked to
the same physical phenomenon. In fact, the 1/f spectrum can
be derived by combining Lorentzian components that have a
1/f 2 shape and are associated with individual traps. For this
reason, larger devices, which are likely to have more traps in
the oxide, are affected by 1/f noise, while nanoscale devices
exhibit quantized noise current fluctuations.

One of the first attempts to create an RTS model to be used
for SPICE transient simulations was presented in [20] where
the authors used a Gaussian process filtered by a 2-stage circuit
that consisted of an RC low-pass filter followed by a compara-
tor. The effectiveness of the model was shown by simulating
SRAM cells and ring oscillators. While correctly reproducing
a 1/f 2-shaped spectrum, the approach had several limitations.
First, it only allowed for simulating single traps with arbitrary
values for the trapping and detrapping rates, instead of consid-
ering the statistical trap distribution. Moreover, the probability
of a trap capturing or emitting carriers is a function of the
biasing conditions of the circuit. More accurate models that
take into account the nonstationary nature of RTS noise are
reported in [19] and [32]–[34], on which we base the RTS sta-
tistical modeling used in our simulator. Other works [35], have
specifically targeted the modeling of oxide traps in HfO2 and
their effect on the variability of FinFET devices, and could be
used to further improve the model accuracy.
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In modeling RTS noise, we combine a static trap character-
ization for each transistor with the dynamic characterization
of trap occupation. The static trap characterization defines the
number of traps per device, the depth of each trap in the gate
oxide, and the initial trap state. While this configuration varies
from device to device, we assume that both the number of
traps and their position do not change over time. The number
of traps can be sampled from a Poisson distribution whose
average is related to the trap density per unit area and energy,
NT , while the trap position is uniformly distributed across the
whole oxide thickness [32].

RTS noise transient behavior can be described by three main
parameters associated with each active trap, namely the current
noise fluctuation relative to the mean current, �I/I, and the
capture and emission time constants τc and τe. In particular,
given an initial state, which could be either filled or empty,
the trap will either capture or emit an electron, and the time
between these events follows an exponential distribution. Once
a trap captures an electron, it will produce a discrete step �I in
the drain current. The current noise relative amplitude for each
filled trap depends on technology parameters and the depth of
the trap in the oxide dtr

�I

I
= q

mVtWLCox

(
1− dtr

Tox

)
(9)

where m is the transistor ideality factor and Vt is the thermal
voltage. Notice that for a trap at the silicon-to-oxide interface,
the relative noise will be at its maximum value, and it becomes
smaller as the trap’s location moves deeper into the oxide. The
values of the average trapping and detrapping event times can
be expressed using the following relationships [32]:

β = τc

τe
= g exp

(
ET − EF

kT

)
(10)

τc = τ · (β + 1) (11)

τe = τc

β
. (12)

The total time constant τ for a given trap is calculated
as [36]

τ = τ0eγ dtr (13)

τ0 = 1/(n0 · νt · σ) (14)

γ =
√

2m∗	barrier

�
(15)

where γ and τ0 are technological parameters depending on
the characteristic of the oxide, n0 is the carrier density, νt

is the thermal velocity, and σ is the capture cross section.
Equation (10) shows the exponential dependency of the cap-
ture to emission time ratio on the trap energy level relative to
the Fermi level ET −EF . This dependency also highlights the
nonstationary nature of the RTS noise events as the difference
between the energy levels depends on the transistor’s biasing
conditions [32]. The technology parameters used to implement
the model have been extracted from the SPICE BSIMCMG
model for a 7 nm FinFET process [37], [38] and from various
reports from [39]–[43]. A list of these parameters for SiO2
and HfO2 oxides is shown in Table I. Fig. 2 shows the values

Fig. 2. Trap time constant as a function of the depth in the oxide for SiO2
and HfO2 with Tox = 5.38 nm.

TABLE I
TECHNOLOGY PARAMETERS USED FOR DERIVING

THE RTS NOISE RATES AND AMPLITUDES

of trap time constants as a function of the trap depth in the
oxide.

In the following section, we present the derivation of the
nodal SDEs used by our simulator for computing the output
voltage of CMOS logic gates in the presence of noise.

III. NOISE-DRIVEN SIMULATION

Consider the circuit in Fig. 3(a) with transient response
of the voltage at node VoutA shown in Fig. 3(b). The over-
shoot shown at the beginning of the transition is caused by
the input/output coupling through the Miller capacitance, CMA,
while the tail toward the end of the transition is due to feed-
back coupling through the Miller capacitance of the second
stage CMB. Note that this “heavy tail” is noticeable in this
circuit when operated in sub-threshold, due to increased prop-
agation delay; it would be negligible if the same circuit were
operated at standard above-threshold voltages.

These two effects can be modeled by considering Kirchoff’s
current law at the output node of the first inverter. The equi-
librium state at VoutA when the node charge is not subject to
any noise can be expressed as

dVoutA

dt
CL = d(Vin − VoutA)

dt
CMA + IP − IN

+ d(VoutB − VoutA)

dt
CMB.

As previously mentioned in Section II, we define the sub-
threshold current as a result of two competing stochastic
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(a) (b)

Fig. 3. (a) Two inverters connected in series and (b) the transient response at node VoutA to an input step function at Vin.

Fig. 4. Poisson rates for a NAND gate, as shown in [44].

Poisson processes as:

ÎP − ÎN = q(Xch − Xdis) = Î (16)

where Xch ∼ Poiss(λp + λn) and Xdis ∼ Poiss
(
μp + μn

)
.

Following the same approach used for solving (6), and
grouping together the terms referring to the same node,
Kirchoff’s equation can then be rewritten as:

dV̂outA = dV̂in
CMA

Ctot
+ dV̂outB

CMB

Ctot
+ dÎ

Ctot
(17)

where Ctot = CL + CMA + CMB, whereas dÎ = qdX.
This SDE can be used to model the state of the inverter in

the presence of noise. Note that for circuits operated in sub-
threshold with a total voltage swing of a few hundred mV,
we can consider the transistor capacitances to be constant.
The random electron counts, Xch and Xdis, can be computed
for arbitrarily complex CMOS gates. For the NAND shown

Fig. 5. Small example circuit used to describe the system of SDEs.

in Fig. 4, we can define Xch ∼ Poiss(λp1 + λp2 + λn) and
Xdis ∼ Poiss(μp1+μp2+μn). Once again, the contribution of
the bottom nMOS transistor to the pull-down transition rate
comes from setting the voltage Vx, which determines the bias-
ing point of the transistor connected to the output node. In our
previous work [22], we built a discrete-time iterative function
expressing the node voltage at each time step. This approach,
however, has some limitations when the circuit under test has
feedback paths, for example in ring oscillators and latches. In
these cases, the iterative function has to be broken down, and
the calculation is performed in two successive time steps. As
we will see in Section V, this solution introduces an approx-
imation that produces a drift between the predicted and the
real transient response.

Instead, our new approach presented here uses a matrix-
based description of the SDE system governing the circuit’s
transient behavior. We will use the small circuit in Fig. 5 to
introduce the approach we use for building the system matrix.
Following the same steps that led to (17), we can write an
SDE for each node in the circuit, as follows:

dV̂4CtotA − dV1CMA1 − dV2CMA2 − dV̂6CMC1 = dÎA

dV̂5CtotB − dV3CMB − dV̂6CMC2 = dÎB

dV̂6CtotC − dV̂4CMC1 − dV̂5CMC2 = dÎC

CtotA = CL4 + CMA1 + CMA2 + CMC1

CtotB = CL5 + CMB + CMC2

CtocC = CL6 + CMC1 + CMC2 .
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Since V1, V2, and V3 are external voltages, we can express the
associated differential terms as known functions f1(t), f2(t),
and f3(t), respectively, and move them to the right hand side
of the equations. We can then write this system in matrix
form as

CdV̂ = dÎ

where

dV̂ =

⎡
⎢⎢⎢⎢⎣

dV̂4

dV̂5

dV̂6

⎤
⎥⎥⎥⎥⎦, C =

⎡
⎢⎢⎢⎢⎣

CtotA 0 −CMC1

0 CtotB −CMC2

−CMC1 −CMC2 CtotC

⎤
⎥⎥⎥⎥⎦

dÎ =

⎡
⎢⎢⎢⎢⎣

dÎA + f1(t)CMA1 + f2(t)CMA2

dÎB + f3(t)CMB

dÎC

⎤
⎥⎥⎥⎥⎦.

It is important to note that the system matrix is sparse
for large logic circuits, which plays an important role in the
performance scaling of our simulator, as will be discussed
later. The elements in the vector dÎ are the sums of the stochas-
tic current components associated with the gate’s transistors
and, where applicable, the coupling current from the primary
inputs.

Following the example we have shown in (7), the solu-
tion of this system of SDEs can be numerically computed.
For instance, the solution at time tn computed using the Euler
method [45], which is the same method used in [22], can be
written as

Vn = Vn−1 + C−1dÎn−1. (18)

Here, we have assumed that the matrix C is invertible. This
assumption can be justified considering that we model each
node in the circuit with a lumped capacitance Ctot, which also
makes all the diagonal entries nonzero values. While we have
modified the mathematical framework used for describing the
circuit, we have kept the noise-driven simulator approach orig-
inally presented in [22]. In contrast to other simulators that
compute the stable solution and then add noise in the analy-
sis, our formulation allows us to directly characterize the state
of a CMOS circuit in the presence of thermal noise. As a
result, we can greatly speed up the simulation time without
sacrificing the accuracy of the results.

In order to add the effect of RTS noise to the formulation,
we need to include the random current fluctuations produced
by trapping and detrapping events in the definition of the ther-
mal noise rates. Let us first extract the value of the equilibrium
current from their stochastic representation. As mentioned in
Section II, the equilibrium current values can be recovered
from the expected values of the two Poisson distributions by
using (8).

Without loss of generality, for the inverter in Fig. 1, we have

IP − IN = q(E[Xch]− E[Xdis])

= q(λinv − μinv). (19)

For an nMOS transistor, the contribution of RTS noise to
the total current can be written as

I +�I = I

(
1+ �I

I

)

= I

(
1+

Ntr∑
i=1

�I

I

∣∣∣∣
i
· tr_statei

)

= q(λ− μ)

(
1+

Ntr∑
i=1

�I

I

∣∣∣∣
i
· tr_statei

)
(20)

where tr_state is a variable equal to 1 if the trap is “filled” and
0 otherwise. By expanding (20), we can redefine the thermal
and RTS noise rates as

λRTS = λ

(
1+

Ntr∑
i=1

q

m Vt W L Cox

(
1− dtri

Tox

)
· tr_statei

)

(21)

μRTS = μ

(
1+

Ntr∑
i=1

q

m Vt W L Cox

(
1− dtri

Tox

)
· tr_statei

)
.

(22)

This new analytical formulation allows us to include the
effects of both RTS noise and thermal noise in the same set
of Poisson rates for the charging and discharging processes.

IV. SIMULATOR IMPLEMENTATION

In the previous section, we have derived the SDE system
used for computing the output voltage for a logic gate.
Moreover, we have presented a new expression for the Poisson
rates that incorporate the combined effects of RTS and thermal
noise when computing the current fluctuation. In this section,
we will first provide a description of the simulator implemen-
tation. This includes reviewing the approach presented in [22],
highlighting the algorithmic modifications required to repre-
sent the system in matrix form, and describing the additional
steps required to include RTS modeling in the framework.
Next, we will describe our incremental threshold-crossing
algorithm used to provide fast extraction of thermally induced
SETs. In addition, we describe how the simulation time can
be further improved through a multithreaded implementation.

In order to take into account the nonlinear response of the
circuit to noise fluctuations, we need to update the rates of the
Poisson processes at each time step, before sampling the ran-
dom variables Xch and Xdis. This updating is required because
the rates depend exponentially on the biasing voltages Vgs and
Vds, as shown in (2) and (3). In addition, we need to know the
values of the coupling capacitances and the total output node
capacitance for each gate to build the system matrix C.

A gate-level characterization of the Poisson rates and capac-
itances allows us to ensure accurate estimations at a minimum
computational cost. For both pMOS and nMOS transistors, we
build the rate look-up tables (LUTs), which can be indexed
based on the Vgs and Vds values. In particular, we precom-
pute the rates from DC SPICE simulations by sweeping
the values of both Vgs and Vds with increments of 1 mV,
which roughly corresponds to a single electron change in the



DONATO et al.: SUB-THRESHOLD NOISE TRANSIENT SIMULATOR 649

Fig. 6. Mapping the circuit netlist. get_vin() and set_vout() update the gate
voltages at each iteration.

charge of a minimum-sized inverter in the considered tech-
nology, described by the 7 nm FinFET predictive technology
model [37], [38].

Each gate in our library is defined as a separate class that
contains the values of the internal capacitances and the meth-
ods for computing the total rate values from the rate LUTs.
An abstract class representation allows us to conveniently rear-
range the circuit netlist into an array of gate objects. The
voltage value at each node is stored in a matrix of size
N × net_size, where N represents the depth of the simulation
buffer and net_size is the number of nodes in the circuit. A
virtual connection between the gates is achieved by storing the
appropriate indexes to the voltage matrix as input and output
indexes. Fig. 6 shows a simple example netlist mapped into a
netlist_array which contains the gate instances, and a v_array
that stores the indexed voltage values for each node. The func-
tions get_vin() and set_vout() are used to set the biasing point
for each gate.

During the netlist initialization, we associate a total output
capacitance of each node as the sum of its drain capaci-
tance and the gate capacitance of every input connected to
it. Similarly, we build the system matrix C by assigning the
ratio between the fanout capacitance from node j and the total
capacitance for node i to cij. Here, we have assumed that the
gates in the netlist are ordered following the circuit causality,
which we ensure when parsing the Verilog input file. For the
matrix representation, we used the Eigen library [46], which
provides classes and methods for linear sparse problem solv-
ing. Finally, we perform the RTS trap profiling following the
methodology from [32], and the parameters summarized in
Table I. We initialize the traps for each gate with a random
state (either filled or “empty”) and a next event time. The
list of traps and the correspondent times are then sorted in
increasing event time order. The amplitude of the RTS noise
is computed by adding together the contribution of each trap
in the filled state. This initialization procedure is described in
the Init block of Algorithm 1.

The simulation core is shown in the Sim block of
Algorithm 1. Given a simulation time of length Tsim, we divide
our iterations in time windows of length TN = Tsim/N. This
allows us to optimize the simulation runtime by sampling the

Algorithm 1: Simulator Algorithm Description. Init Parses
the Input Verilog to Create a Netlist, and Initializes the
Gates’ Parameters. At This Stage, the System Matrix
Is Populated As Well. Sim Executes the Actual Noise
Transient Simulations. The Algorithm Solves the SDE
System and Computes the Derivatives Using Euler’s
Numerical Method

Data: Verilog structural netlist, transistor rates LUTs
Result: Voltage time-series

Init Parse Verilog file
Create netlist_array of gate objects
Initialize output matrix v_array
foreach gatei in netlist_array do

gatei.Cout ←− gatei.Cdd

foreach gatej in netlist_array \gatei do
if gatei.O_idx is equal to gatej.I_idx then

gatei.Cout ←− gatei.Cout + gatej(Cgg)

add gatej to gatei.Fan_out
Initialize gatei.rts_traps
foreach trap in gatei.rts_traps do

add get_next_time(trap.rates) to gatei.rts_times
Sort gatei.rts_traps, gatei.rts_times

Populate System Matrix C
Sim n = 0

N = Tsim/TN

while n < N do
foreach gatei in netlist_array do

if t > gatei.rts_times[0] then
rts_thinning(gatei.rts_traps[0])
add get_next_time(gatei.rts_traps[0].rates) to
gatei.rts_times
Sort gatei.rts_traps, gatei.rts_times

for t ∈ {0, . . . , TN} do
foreach gatei in netlist_array do

gatei.get_vin()

gatei.set_vout()
Update parameters λt, μt

Xt ←− gatei.gen_noise(λt, μt)

dÎ[i] = Xt × q
if gatei.Vin in PI then

dÎ[i] = dÎ[i]+
(gatei.Vin(t)− gatei.Vin(t − 1)× gatei.CM

Vt = Vt− 1+ C.solve(dÎ)
n++

RTS and thermal noise fluctuations on different time scales.
In fact, while thermal noise is evaluated at each time step,
which is in the order of 10 ps, the RTS noise process does
not need the same time resolution, as the characteristic time
constant of the traps is in the ms time scale (see Fig. 2). As a
result, using (21) and (22), we can include the effect of RTS
current shifts in the rates responsible for thermal noise instead
of treating the two sources independently.

In order to run the RTS model in the time domain, we use
an approach similar to Aadithya et al. [33], [34]. At the begin-
ning of each iteration window, for each gate, we select the trap
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Algorithm 2: Algorithm Describing the Generation of
RTS Trapping and Detrapping Events. The Algorithm Is
Called at the Beginning of Each Simulation Window,
TN , and it Uses a Thinning Algorithm for Generating
Nonhomogeneous Poisson Samples

Data: A RTS trap
Result: The updated RTS state sampled from the NHPP
t_next←− 0
init trap_state
u←− U(0, 1)

t_next←− t_next − ln(u)
λ∗

At beginning of simulation window
if t_next ≥ t then

if trap_state is “filled” then
λt ←− λe

else
λt ←− λc

v←− U(0, 1)

if v < λt
λ∗ then

trap_state =∼ trap_state
u←− U(0, 1)

t_next←− t_next − ln(u)
λ∗

with the earliest event time and we update the trap status due
to RTS noise according to a nonhomogeneous Poisson pro-
cess (NHPP). The pseudocode for computing samples from
an NHPP is summarized in Algorithm 2. The function gen-
erates interarrival times from an exponential distribution with
rate defined by the maximizing rate λ∗. Given the current rate
λt, each of these events are then captured with probability
(λt/λ

∗). In the case of our implementation, the candidates for
the next event time are computed from an exponential dis-
tribution with rate λ∗ > max((1/τe), (1/τc)). Note that this
parameter depends only on the maximum rate and not on the
current state of the traps. At the beginning of each time win-
dow of length TN , we check if we have reached the next event
candidate for each trap and we change the state with probabil-
ity (λ{e,c}/λ∗). Whenever we reach a transition time, regardless
of the sampling outcome, we also compute a new candidate
for the next event time. Fig. 7 shows an example of the output
generated by the RTS noise algorithm.

Once we have completed the RTS procedure, we proceed
with simulating the circuit transient evolution for a fixed time
step �t, which we choose based on the fastest time constant
for a minimum-sized inverter. For VDD = 180 mV, we fixed
the time step at 50 ps. In these conditions, we can assume that
the rates do not change markedly within a single time step.
Therefore, we compute the noise fluctuations at each time step
without resorting to thinning. The resulting random fluctuation
Xt is used to update the values in the Î vector. The algorithm
for computing thermal noise fluctuations at each time step, is
shown in Algorithm 3.

The derivatives are computed using Euler’s method as
shown in (18). Note that we use the inverse matrix just for
sake of notation. Instead, the value C−1Î is computed using

Fig. 7. RTS noise extracted from our simulator. The figure shows the relative
current noise (�I/I) for a device with several traps. For the 7 nm FinFET
model considered in this paper, the maximum noise for a single trap at the
Si−HfO2 interface, is 9%.

Algorithm 3: Algorithm for Generating Samples From the
Charging and Discharging Poisson Processes

Data: The current rates λt and μt

Result: A sample Xt from a Poisson process in a time
interval �t

t0 ←− 0
event_fw ←− 0
event_rev ←− 0
u←− U(0, 1)

t0 ←− t0 − ln(u)
λt

while t0 < �t do
event_fw++
u←− U(0, 1)

t0 ←− t0 − ln(u)
λt

t0 ←− 0
u←− U(0, 1)

t0 ←− t0 − ln(u)
μt

while t0 < �t do
event_rev++
u←− U(0, 1)

t0 ←− t0 − ln(u)
μt

Xt ←− event_fw - event_rev

one of the sparse solvers available in the Eigen library, which
allows us to take advantage of the sparse nature of the system
matrix for speeding up the simulation.

A. Fast Extraction of Thermally Induced SET

As will be explained in Section V, the proposed imple-
mentation allows us to speed up noise transient simulations
by at least three orders of magnitude when compared to
SPICE-based simulations. This translates to the ability of
detecting up to 7σ events in hours rather than days, where
σ = √kT/C. However, we are interested in capturing rare
fault-inducing transients, whose deviation from the mean is
greater than 7σ . Therefore, we propose a methodology to
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reduce the simulation time of thermal noise transients even
further, based on the use of an incremental threshold-crossing
algorithm. The main principle behind this algorithm follows
from the Markov property associated with our simulation
framework. In fact, the net electron count at the output node
of each CMOS gate can be modeled as a Markov chain with
transition probabilities determined by the two Poisson distri-
butions governing the charging and discharging processes. As
such, the next state of the system, i.e., the charge on the out-
put capacitance at the next time step, depends only on the
present state and not on the sequence of voltage fluctuations
that brought the node to its current state.

The Markov property can be used to build a set of
Monte-Carlo simulations in which the voltage at a given node
will progressively approach a large deviation event, without
incurring the computational cost of a very large number of
iterations. As an example, let us consider the initial condition
in which all the nodes in the circuit are at equilibrium, i.e.,
depending on the logic gate that drives them, their voltage
will be set at either VDD or 0. We shall label this initial state
as S0. At this point, we start running a transient simulation
looking for a deviation from the equilibrium condition that
can be reached using the approach shown in the previous sec-
tion. We label the voltage value associated with this event as
Vσ [0]. At each time step, we check whether any of the circuit
node voltages are within the region defined by the inequality
Vσ [0] < Vouti < (VDD − Vσ [0]), indicating a departure from
the equilibrium logic value of a node. Once we have reached
this event for any of the nodes in the circuit, we save the event
time and the voltages for all nodes as a new initial state, S1,
which we set as the initial condition for a new simulation run.
Let us define the event time as period_count × TN + tevent,
where period_count is the number of times we loop through
the simulation window, TN is the size of the simulation win-
dow, and 0 ≤ tevent < TN is the time step within the simulation
window at which we reached the threshold-crossing condition.
Starting from the initial state S1, we seek an event deviating
from the mean by Vσ [1] > Vσ [0]. As we move further away
from equilibrium, we can expect that the vast majority of the
simulation outcomes will return back to the equilibrium point
rather than push the voltage toward larger deviations. Our algo-
rithm detects these outcomes within a few time steps, at which
point, the simulation is interrupted and reverted to the latest
valid initial state.

As an example, let us assume that we reached the event
Vσ [n] and the simulation has been reset to the state Sn+1
associated with the nth threshold crossing. As the transient
simulation progresses, we have three possible outcomes.

1) We fall back below the threshold at Vσ [n − 1]. In this
condition we can assume that the noise-driven excur-
sion is likely to go back to the equilibrium conditions
and therefore we exit the current run, increment an exit
counter and restart the simulation at state Sn+1.

2) We reach the next threshold Vσ [n+1]. As for the initial
case, we save the current time tevent, and the current state
Sn+2 as next reset state.

3) We reach the end of the simulation buffer without leav-
ing the boundaries defined by Vσ [n−1] and Vσ [n+1] in

Fig. 8. Graphical representation of the three possible scenarios between
iterations of the iterative threshold-crossing algorithm. Note that waveform 1
represents the dominant outcome.

Algorithm 4: Pseudo-Code for the Iterative Threshold
Crossing Algorithm. The Algorithm Performs the Noise
Transient Simulation Until the Output Voltage of One of
the Gates in the Circuit Exceeds the Final Desired Value,
Vσ [K − 1]

Data: An array of K incremental voltage thresholds
Vσ [0] . . . Vσ [K − 1]

Result: The transient voltage matrix V , containing a SET
n = 0
while gatei.Vout < Vσ [K − 1] for all gatei in
netlist_array do

for t in (0, . . . , TN) do
foreach gatei in netlist_array do

if gatei.Vout(t) > Vσ [n+ 1] then
Sn+2 ←− Vt
n++
continue

else if gatei.Vout(t) < Vσ [n− 1] then
t = 0
Vt ←− Sn+1
exit_count ++
continue

period_count ++

which case we increment a period counter and continue
the simulation using the last available state.

The three possible outcomes are illustrated in Fig. 8, and the
algorithm’s pseudocode is shown in Algorithm 4. Notice that,
while we check for threshold-crossing events for all the gates
in the circuit, this search is interrupted as soon as the next
threshold is reached by any of the gates, and the algorithm
keeps running until the output of at least one gate reaches the
final desired value Vσ [K − 1].

Using this algorithm, we lose the sequential structure of the
stochastic time-domain simulation. However, given the recur-
sive approach for building the noise traces between thresholds,
we can retrieve the time to reach each of the crossing events
using the following equation:

T[n+ 1] = T[n]+ exit_count× T[n− 1]

+ period_count× TN + tevent. (23)
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The term exit_count ×T[n−1] takes into account that every
time we exit the current run we assume that the process will
return to the equilibrium condition and it will take on average
a time T[n − 1] to return to the same state. Since this event
is usually within a few samples from the beginning of the
simulation, we can immediately discard these runs and hence
achieve a considerable gain in computation time.

We conclude this discussion with two considerations. First,
as our approach requires dividing the voltage amplitude into
incremental steps Vσ [0] · · ·Vσ [N], it is important to identify
a criterion for selecting these thresholds. A sensible way to
divide up this voltage range is to use the noise standard devi-
ation at equilibrium,

√
kT/C. However, in order to reduce the

overhead associated with checking the threshold-crossing con-
dition for small deviations, we set the initial threshold to a
value between 3×√kT/C and 4×√kT/C, while spacing the
following thresholds by ∼ √kT/C. Second, it is important to
clarify that all these simulations are run for steady-state input
voltages, which allows us to isolate the effect of noise from
transients caused by changes in the primary input signals that
propagate through the circuit.

B. Multithreaded Implementation

The algorithm we just outlined can be further optimized
through parallelization. In general, circuit simulators take
advantage of multithreading by parallelizing the population
and inversion of the nodal matrix [47]. In our case, the most
time consuming operation consist of sampling over the pos-
sible circuit transient simulations in order to find the next
threshold-crossing event. Therefore, a straightforward way to
improve the simulation performance is to run the event search
in parallel. In order to accomplish this, we keep a voltage
matrix for each thread. Moreover, since each thread will have
to set different input and output voltages for the gates in
the circuit, we assign a copy of the netlist to each thread.
The netlist copy is performed by adding a clone() function
to the gate classes. In order to keep consistency between all
threads, each thread should run the simulation starting from
the same state. This requires initializing the voltage matrix for
each thread with the value of the last detected event.

A description of the whole simulation flow is depicted in
Fig. 9. During the initialization process, we extract the Poisson
rates from the transistor I-V curves at a given temperature and
operating voltage, and initialize the circuit netlist and volt-
age matrix. After the simulation setup is completed, we start
the simulation. Each thread independently generates the noise
samples based on Algorithm 1 and checks if any of the volt-
age nodes have reached the first threshold Vσ [0]. Once an
event is detected by one of the threads, the remaining threads
are locked. The thread that reached the event writes back the
data, reinitializes the voltage matrix for all threads to its cur-
rent state, and sets an exit flag that forces all threads to resume
the simulation from the reset state. This operation continues
until the final threshold is reached.

V. RESULTS

As a first set of experiments, we want to evaluate how well
our simulator can accurately model transient effects. As an

Fig. 9. Multithreaded simulation flow: the setup first requires extracting the
Poisson rates from SPICE I-V simulations for given temperature and operating
voltages. Additionally, the circuit topology is derived from verilog structural
netlists. The noise simulation is performed by each thread independently. In
the provided example, a crossing event is detected by thread 0.

example, we show in Fig. 10 the output of a NAND gate driving
an inverter from our simulator as compared to SPICE. The two
traces are accurately matched for both under/overshoot and tail
effects.

In order to ascertain the runtime improvement of our
approach, we compared the runtime of our simulator for a
full 100 μs simulation against a SPICE transient noise anal-
ysis. For SPICE, we ran the simulation for shorter times and
extrapolated a linear trend, which led to the estimated run-
time for a 100 μs simulation. The simulations were run over
a set of circuits from the MCNC benchmark suite and results
are summarized in Table II. All circuits were simulated at
T = 100 ◦C and VDD = 180 mV. Note that this chosen value
for the supply voltage is in line with other works that target
noise-immune design for sub-threshold circuits [4], [23], [26].
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Fig. 10. Output of a NAND gate as generated from our simulator and SPICE.

TABLE II
RUNTIME OF OUR SIMULATOR FOR MCNC BENCHMARK CIRCUITS FOR

A NOISE TRANSIENT SIMULATION OF 100 μs. THE SPEEDUP IS

MEASURED AGAINST THE ESTIMATED RUNTIME OF SPICE.
FOR LARGER CIRCUITS, THIS PAPER HAS BETTER

PERFORMANCE COMPARED TO [22], THANKS TO

THE ADOPTION OF A SPARSE SOLVER

We tested circuits with up to 2258 gates and achieved a
speedup of three orders of magnitude. Using a sparse solver
for the solution of the SDE system increases the performance
of the simulator for larger circuits compared to [22].

While our simulator can greatly improve the simulation
runtime just by running a standard transient simulation, we
extended its functionality using the methodology described
at the end of Section IV to improve the ability of captur-
ing rare transients. We tested this algorithm on a chain of 16
inverters and measured the time to event for thresholds up to
40 mV, which is the maximum amplitude for which we could
gather samples for the standard SPICE transient simulation in
a reasonable time.

In order to properly extrapolate the statistical event time
distribution, we completed a set of 1000 runs for each event
threshold. The time to reach the event follows an exponential
distribution, as shown in Fig. 11. For the iterative approxima-
tion, we used the same interval Vσ = 20− 40 mV with steps
�Vσ = 5 mV. When we apply our iterative threshold-crossing
algorithm for the extraction of SETs, the distribution is skewed
and can be fitted using a log-normal distribution. This behavior
follows a particular case of the central limit theorem (CLT).
Specifically, for higher thresholds, the predominant factor
in (23) is given by exit_count× T[n− 1]. Therefore, suc-
cessive event times will be generated by multiplying together
several independent random variables. Given the natural log-
arithm of these values, the CLT states that the sum of the

Fig. 11. Statistical distribution for five time-to-threshold transient simulations
using values from 20 to 40 mV. The data was fitted using an exponential
probability density function.

logarithms, will follow an Gaussian distribution, and there-
fore, the original samples’ distribution will be log-normal. The
time-to-event sample distributions are plotted in Fig. 12. It is
worth pointing out that the distribution for the first two thresh-
olds, 20 and 25 mV still follows an exponential distribution.
This is not surprising as for the first two iterations of the iter-
ative threshold-crossing algorithm, the exit condition is never
met. The comparison between the mean time for a simple
transient run, following an exponential distribution, and the
higher moments associated with the log-normally distributed
samples is shown in Fig. 13. This technique could generate
SET reaching amplitudes over 12σ with an average runtime
of 56.2 s. Fig. 14 shows a sample SET from our simulator with
a peak amplitude of 71 mV. It is worth mentioning that we
noticed that the overhead for creating the threads would be too
costly for those thresholds that could be reached within a few
seconds. Therefore, we enable the multithreaded simulation
only when the signal amplitude is greater than 30 mV, when
we start observing exit events. The extrapolated time to event
was in the order of 1016 s which would be clearly infeasible
to simulate with traditional transient simulation approaches. If
we wanted to look for a yardstick for this measure, it is useful
to keep in mind that the age of the universe is estimated at
1.41×1017 s. The large estimate for the time-to-failure should
be put into perspective considering that large modern circuits
have a much higher number of transistors compared to the
simulated circuit. Therefore, we can expect the error rate to
increase with the number of gates.
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Fig. 12. Statistical distribution for the same time-to-threshold transients as
Fig. 11 computed using the threshold-crossing approach.

Fig. 13. Comparison between the mean-time-to-event from a single run
(exponential distribution), and the higher moments for samples computed
using the iterative threshold-crossing method.

In addition to the analysis of thermally induced SETs, we
performed a study of the impact of RTS noise on logic cir-
cuits. For this purpose, we evaluated the impact of both RTS
and thermal noise on the clock jitter in a ring oscillator [48].
As we mentioned in Section III, one of the reasons for switch-
ing to a matrix-based solution for the SDE system is that
the two-step method proposed in [22] requires to push the
computation of feedback components to the next iteration.
In the previous sections of this paper, we have considered
only combinational logic, for which the only feedback com-
ponents that appear in the SDEs are the coupling currents
from the fanout stages. For those cases, the implementation

Fig. 14. Example of SET generated by our simulator.

Fig. 15. Simulation of a 7-stage ring oscillator using [22] (a), and this paper,
(b) and (c). Computing the solution of the SDE in two different iterations
produces a drift in the noisy simulation compared to the noiseless one.

proposed in [22] offers good accuracy in evaluating the
transient response. However, the limitations of that solution are
particularly marked when simulating ring oscillators. Fig. 15
shows the result of simulating a 7-stage ring oscillator using
the two different approaches. In both cases, the injection of
noise causes variations in the oscillator transition edges in the
output voltage. Notice that, although most traps are unlikely to
change their state in the small simulation time of 0.25 μs, we
can still evaluate the effect of the initial random trap charac-
terization at the beginning of the simulation. Fig. 15(a) shows
the output of the ring oscillator computed using a two-step
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Fig. 16. Standard deviation of the clock jitter computed at each integer
multiple of the clock period, T ∼ 35 ns, for thermal, and thermal and RTS
noise.

solution for the SDE. This solution induces a drift that is
amplified when the noise is injected in the circuit. On the other
hand, the matrix-based implementation produces oscillations
that are centered around the mean value, represented by the
dashed waveform. This result is shown in Fig. 15(b) and (c),
which illustrate the effect of thermal noise only and thermal
and RTS noise combined. In the latter case, the clock jitter
causes the overlap of edges from adjacent periods after a few
cycles. A quantitative measure of the clock jitter is given by the
standard deviation of the distribution of zero-crossing times for
the noisy circuit, as shown in Fig. 16. In both cases, the value
of the clock jitter rapidly approaches the clock period �T.

VI. CONCLUSION

In this paper, we have described the approach for design-
ing our fast circuit simulator for the analysis of thermal and
RTS noise transients in sub-threshold circuits. The SDE-based
implementation allows us to efficiently model transient effects
and run simulations independently from SPICE. The results
presented in this paper show that our simulator performs three
orders of magnitude faster than SPICE-based simulations.
Moreover, the matrix-based implementation provides increased
accuracy and better scalability with the circuit size compared
to our previous work. In addition to these improvements,
we have introduced a Monte-Carlo simulation approach that
can accurately extract high-amplitude SETs. We have demon-
strated that our iterative multithreshold algorithm can be used
to capture extremely rare noise-induced transient events in
times that would be impossible to reach with standard transient
simulators. At the same time, the analysis of the mean-time-to-
event has shown that intrinsic noise sources alone are unlikely
to endanger the correct functionality of relatively small combi-
national logic circuits considered to date. This may change in
the future, as logic circuits based on minimum-sized transistors
come to exceed billion-gate counts.
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