Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu (Brown)

Irina Calciu (VMware Research)

Maurice Herlihy (Brown)

Onur Mutlu (ETH)

Concurrent Data Structures

Are used everywhere: kernel, libraries, applications

Issues:

- Difficult to design and implement
- Data layout and memory/cache hierarchy play crucial role in performance

The Memory Wall

Near Memory Computing

- Also called Processing In Memory (PIM)
- Avoid data movement by doing computation in memory
- Old idea
- New advances in 3D integration and die-stacked memory
- Viable in the near future

Near Memory Computing: Architecture

- Vaults: memory partitions
- PIM cores: lightweight
 - Fast access to its own vault
- Communication
 - Between a CPU and a PIM
 - Between PIMs
 - Via messages sent to buffers

Data Structures + Hardware

- Tight integration between algorithmic design and hardware characteristics
- Memory becomes an active component in managing data
- Managing data structures in PIM
 - Old work: pointer chasing for sequential data structures
 - Our work: concurrent data structures

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-ofthe-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW

CONTENTION

HIGH

Pointer-chasing

Cacheable

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-ofthe-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW

CONTENTION

HIGH

Pointer-chasing e.g., uniform distribution skiplist & linkedlist

Cacheable

Pointer Chasing Data Structures

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-ofthe-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW

CONTENTION

HIGH

Pointer-chasing e.g., uniform distribution skiplist & linkedlist Cacheable

Naïve PIM Skiplist

Concurrent Data Structures

Skiplist Throughput

N	Size of the skiplist	
p	Number of processes	
L CPU	Latency of a memory access from the CPU	
$\mathcal{L}_{ ext{LLC}}$	Latency of a LLC access	
L ATOMIC	Latency of an atomic instruction (by the CPU)	
L PIM	M Latency of a memory access from the PIM core	
$\mathcal{L}_{ ext{MSG}}$	Latency of a message from the CPU to the PIM core	

$$\mathcal{L}_{CPU} = rl \mathcal{L}_{PIM} = r2 \mathcal{L}_{LLC}$$
 $rl = r2 = 3$

$$\angle$$
MSG = \angle CPU

Algorithm	Throughput
Lock-free	p/(8* 2cpu)
Flat Combining (FC)	1/(8* LCPU)
PIM	1/(8* LPIM + LMSG)

Skiplist Throughput

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-ofthe-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW

CONTENTION

HIGH

Pointer-chasing e.g., uniform distribution skiplist & linkedlist

Cacheable

New PIM algorithm: Exploit Partitioning

PIM Skiplist w/ Partitioning

Algorithm	Throughput
Lock-free	p/(8* 1cpu)
Flat Combining (FC)	1/(8* LCPU)
PIM	1/(8* Lpim + Lmsg)
FC + k partitions	k/(8* Lcpu)
PIM + k partitions	$k/(\mathcal{B}^*\mathcal{L}_{PIM} + \mathcal{L}_{MSG})$

Skiplist Throughput

Skiplist Throughput

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-ofthe-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW

CONTENTION

HIGH

Pointer-chasing

Cacheable e.g., FIFO queue

FIFO Queue

PIM FIFO Queue

Pipelining

Can overlap the execution of the next request

Parallelize Enqs and Deqs

Conclusion

PIM is becoming feasible in the near future

We investigate Concurrent Data Structures (CDS) for PIM

Results:

- Naïve PIM data structures are less efficient than CDS
- New PIM algorithms can leverage PIM features
 - They outperform efficient CDS
 - They are simpler to design and implement

Thank you!

icalciu@vmware.com

https://research.vmware.com/

