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Source: embedded.com 

Multicore Performance Scaling 

u  Problem: Locking 

u  Solution: HTM? 

u  IBM BG/Q, zEC12, 
POWER 

u  Intel Haswell TSX 



3 

Restricted Transactional Memory (RTM) 

xbegin() 

xend() 

Atomic region called transaction 

Execute optimistically, without any locks 

Read and Write Sets 

Abort on memory conflict: programmer defined behavior 
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RTM Fallback: Global Lock 

if (xbegin() == XBEGIN_STARTED) 

xend() 

Execute Transaction 

else 

Execute Fallback Path 



Source: Anand Tech 5 

Lock Elision 



Why Lock Elision Is Not Enough 
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u  [Gottschlich et al., CGO 2010]  

u  Scalable 

u  Good for large transactions 

u  Conflict detection using bloom filters 
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InvalSTM (prior work) 



SW 
Txn 

Ti
m

e 

Commit 

Invalidation 
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InvalSTM Software Transaction (prior work) 

update memory 

Main body of SW txn 
 
On read:  
Add to read Bfilter  
On write:  
Add to write Bfilter  
Add writes to hash table 

If can_commit() Invalidation 
Else restart 
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InvalSTM Invalidation (prior work) 

Committing  
Transaction 

Inflight Transactions 

Contention  
Manager 

Can I commit? 

Conflicts? (using bloom filters) 
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InvalSTM Invalidation (prior work) 

Committing  
Transaction 

Inflight Transactions 

no 
yes 

no 

ABORT 

Contention  
Manager 
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Aborted 

Inflight Transactions 

Contention  
Manager 

InvalSTM Invalidation (prior work) 
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Committing  
Transaction 

Inflight Transactions 

no 
yes 

no 

COMMIT 

Contention  
Manager 

InvalSTM Invalidation (prior work) 
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InvalSTM Invalidation (prior work) 

Committed 

Inflight Transactions 
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Contention  
Manager 
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Software Transaction (InvalSTM) 



HW 
Txn 

Commit 

Invalidation 
ABORT 
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Hardware Transaction + Invalidation 

Ti
m

e 



HW 
Txn 

Commit 
(Check BF) 

Invalidation 

COMMIT 

Already committed,  
can’t abort 
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Hardware Transaction + Invalidation 

Ti
m

e 
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Txn 

Commit 
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Software Transaction (Modified InvalSTM) 

Ti
m

e 
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SW Transaction 1 
(commit) 
    
                                                             
         x++;  
         y++;    
             
 
(invalidation)                                   

x = 2; y = 1; 

SW Transaction 2 
(execution) 
  
Read x; 
  
                  
Read y; 
z = 1/(x - y); 

Ti
m

e 

ABORT 

z = 1/0!!! 



SW Transaction 2 
(execution) 
  
 Read x; 
  
                  
 Read y; 
 z = 1/(x - y); 
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Read Validation 

SW Transaction 1 
(commit) 
    
                                                             
         x++;  
         y++;    
                               

Ti
m

e 

Check BF 

Check BF 

ABORT 
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SPECSW (Speculative Software) 

SW 
 

Ti
m

e 

Commit 
Acquire commit_lock 
Validate 
If can_commit() update memory 
Else release lock and restart 

 
Main body of SW txn 
 
On read:  
Validate and add to read Bfilter 
On write:  
Add to write Bfilter 
Add writes to hash table 
 

Post-
Commit 

Invalidation 
Decrement sw_cnt, release lock 

Begin SW txn, increment sw_cnt 
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BFHW (Bloom Filters Hardware) 

HW 

Commit 

if (commit_lock)  
    if (BF conflict()) xabort() 
xend() 

Main body of HW txn. 
 
On Read: add to read Bfilter 
On Write: add to write Bfilter 

Post-
Commit 

Invalidation 

Ti
m

e 

xbegin() 
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HW Transaction 1 
(commit) 
    
                                                             
         x++;  
         y++;    
             
 
(invalidation)                                   

x = 2; y = 1; 

SW Transaction 2 
(execution) 
  
Read x; 
  
                  
Read y; 
z = 1/(x - y); 

Ti
m

e 

ABORT 

z = 1/0!!! ABORT 
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Read Validation 

HW Transaction 1 
(commit) 
    
                                                             
         x++;  
         y++;    
                               

SW Transaction 2 
(execution) 
  
 Read x; 
  
                  
 Read y; 
 z = 1/(x - y); 

Ti
m

e 

Check BF 

Check BF 
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BFHW 

HW 

Commit 

if (commit_lock)  
    if (BF_conflict()) xabort() 
++hw_post_commit; 
xend() 

Main body of HW txn. 
 
On Read: add to read Bfilter 
On Write: add to write Bfilter 

Post-
Commit 

Invalidation 
--hw_post_commit (fetch_and_sub) 

Ti
m

e 
xbegin() 
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Read Validation 

HW Transaction 1 
(commit) 
                                                     
         x++;  
         y++;    
                               

SW Transaction 2 
(execution) 
  
 Read x; 
  
                  
 Read y; 
 z = 1/(x - y); 

Ti
m

e 

Wait for hw_post_commit == 0 

Wait for hw_post_commit == 0 
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BFHW 

HW 

Commit 

Post-
Commit 

Ti
m

e 
SPECSW 

SW 
 

Commit 

Post-
Commit 

 
On Read: add to read Bfilter 
On Write: add to write Bfilter 

Invalidation 

Expensive! 

Expensive! 
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LITEHW (Light Hardware) 

HW 

Commit if (sw_cnt) xabort(); 
else xend() 

Main body of HW txn. 

Ti
m

e 

xbegin() 
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Committing 
SW  

Transaction 

Contention  
Manager 

Inflight Transactions 

Ensuring Progress 
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Ensuring Progress 

Committing 
SW  

Transaction 

Inflight Transactions 

Committing 
HW 

Transaction 

Contention  
Manager 
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IRREVOCSW (Irrevocable Software) 

SW 

Acquire commit lock, increment sw_cnt 

Commit 
Do nothing 
(Changes are already committed) 

Main body of SW txn. 
 
On Read: add to read Bfilter 
On Write: add to write Bfilter 
Use direct updates 

Post-
Commit 

Invalidation 
Decrement sw_cnt, release lock 

Ti
m

e 

Expensive! 

Expensive! 

Does not abort – Guarantees Progress 
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SGLSW (Single-Global-Lock Software) 

SW 

Acquire commit lock, increment sw_cnt 
++commit_sequence 

Commit Do nothing 
(Changes are already committed) 

Main body of SW txn. 
 
Use direct updates 
 

Post-
Commit 

++commit_sequence 
Decrement sw_cnt, release lock 

Ti
m

e 



LiteHW BFHW 

SpecSW IrrevocSW 

retry retry 

retry 

conflict 

SW txns  
running? 

yes no 

retry threshold exceeded 

SglSW 
large txns with unsupported 
HTM instructions / overflow 

small txns with 
unsupported  

HTM instructions 
retry threshold 

exceeded 
retry threshold 

exceeded 

Start 

Invyswell State Diagram 



LiteHW BFHW 

SpecSW 

retry retry 

retry 

SW txns  
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Fail-fast? 

yes no 

SglSW 
large txns with unsupported 
HTM instructions / overflow 

small txns with 
unsupported  

HTM instructions / fail-fast 
retry threshold 

exceeded 
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no 
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Start 

Invyswell State Diagram 



Concurrent Execution Matrix 
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Transaction Types – 1 Thread 

benchmarks 
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u  HLE and RTM w/ SGL fallback are not enough 

u  Invyswell is 35% faster than NOrec, 18% faster than 
Hybrid NOrec and 25% faster than HLE across all STAMP 
benchmarks 

Conclusions 



Thank you! 

u  http://cs.brown.edu/~irina 

u  irina@cs.brown.edu 


