
Invyswell: A HyTM
for Haswell RTM

Irina Calciu, Justin Gottschlich, Tatiana Shpeisman,

Gilles Pokam, Maurice Herlihy

2

Source: embedded.com

Multicore Performance Scaling

u  Problem: Locking

u  Solution: HTM?

u  IBM BG/Q, zEC12,
POWER

u  Intel Haswell TSX

3

Restricted Transactional Memory (RTM)

xbegin()

xend()

Atomic region called transaction

Execute optimistically, without any locks

Read and Write Sets

Abort on memory conflict: programmer defined behavior

4

RTM Fallback: Global Lock

if (xbegin() == XBEGIN_STARTED)

xend()

Execute Transaction

else

Execute Fallback Path

Source: Anand Tech 5

Lock Elision

Why Lock Elision Is Not Enough

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

1	
 2	
 4	
 8*	

Sp
ee
du

p	

Threads	

NorecSTM	

NorecHy	

HLE	

Labyrinth

u  [Gottschlich et al., CGO 2010]

u  Scalable

u  Good for large transactions

u  Conflict detection using bloom filters

7

InvalSTM (prior work)

SW
Txn

Ti
m

e

Commit

Invalidation

8

InvalSTM Software Transaction (prior work)

update memory

Main body of SW txn

On read:
Add to read Bfilter
On write:
Add to write Bfilter
Add writes to hash table

If can_commit() Invalidation
Else restart

9

InvalSTM Invalidation (prior work)

Committing
Transaction

Inflight Transactions

Contention
Manager

Can I commit?

Conflicts? (using bloom filters)

10

InvalSTM Invalidation (prior work)

Committing
Transaction

Inflight Transactions

no
yes

no

ABORT

Contention
Manager

11

Aborted

Inflight Transactions

Contention
Manager

InvalSTM Invalidation (prior work)

12

Committing
Transaction

Inflight Transactions

no
yes

no

COMMIT

Contention
Manager

InvalSTM Invalidation (prior work)

13

InvalSTM Invalidation (prior work)

Committed

Inflight Transactions
IN

VA
LI

DA
TE

Contention
Manager

SW
Txn

Ti
m

e

Commit

Invalidation

14

Software Transaction (InvalSTM)

HW
Txn

Commit

Invalidation
ABORT

15

Hardware Transaction + Invalidation

Ti
m

e

HW
Txn

Commit
(Check BF)

Invalidation

COMMIT

Already committed,
can’t abort

16

Hardware Transaction + Invalidation

Ti
m

e

SW
Txn

Commit

Invalidation

17

Software Transaction (Modified InvalSTM)

Ti
m

e

18

SW Transaction 1
(commit)

 x++;
 y++;

(invalidation)

x = 2; y = 1;

SW Transaction 2
(execution)

Read x;

Read y;
z = 1/(x - y);

Ti
m

e

ABORT

z = 1/0!!!

SW Transaction 2
(execution)

 Read x;

 Read y;
 z = 1/(x - y);

19

Read Validation

SW Transaction 1
(commit)

 x++;
 y++;

Ti
m

e

Check BF

Check BF

ABORT

20

SPECSW (Speculative Software)

SW

Ti
m

e

Commit
Acquire commit_lock
Validate
If can_commit() update memory
Else release lock and restart

Main body of SW txn

On read:
Validate and add to read Bfilter
On write:
Add to write Bfilter
Add writes to hash table

Post-
Commit

Invalidation
Decrement sw_cnt, release lock

Begin SW txn, increment sw_cnt

21

BFHW (Bloom Filters Hardware)

HW

Commit

if (commit_lock)
 if (BF conflict()) xabort()
xend()

Main body of HW txn.

On Read: add to read Bfilter
On Write: add to write Bfilter

Post-
Commit

Invalidation

Ti
m

e

xbegin()

22

HW Transaction 1
(commit)

 x++;
 y++;

(invalidation)

x = 2; y = 1;

SW Transaction 2
(execution)

Read x;

Read y;
z = 1/(x - y);

Ti
m

e

ABORT

z = 1/0!!! ABORT

23

Read Validation

HW Transaction 1
(commit)

 x++;
 y++;

SW Transaction 2
(execution)

 Read x;

 Read y;
 z = 1/(x - y);

Ti
m

e

Check BF

Check BF

24

BFHW

HW

Commit

if (commit_lock)
 if (BF_conflict()) xabort()
++hw_post_commit;
xend()

Main body of HW txn.

On Read: add to read Bfilter
On Write: add to write Bfilter

Post-
Commit

Invalidation
--hw_post_commit (fetch_and_sub)

Ti
m

e
xbegin()

25

Read Validation

HW Transaction 1
(commit)

 x++;
 y++;

SW Transaction 2
(execution)

 Read x;

 Read y;
 z = 1/(x - y);

Ti
m

e

Wait for hw_post_commit == 0

Wait for hw_post_commit == 0

26

BFHW

HW

Commit

Post-
Commit

Ti
m

e
SPECSW

SW

Commit

Post-
Commit

On Read: add to read Bfilter
On Write: add to write Bfilter

Invalidation

Expensive!

Expensive!

27

LITEHW (Light Hardware)

HW

Commit if (sw_cnt) xabort();
else xend()

Main body of HW txn.

Ti
m

e

xbegin()

28

Committing
SW

Transaction

Contention
Manager

Inflight Transactions

Ensuring Progress

29

Ensuring Progress

Committing
SW

Transaction

Inflight Transactions

Committing
HW

Transaction

Contention
Manager

30

IRREVOCSW (Irrevocable Software)

SW

Acquire commit lock, increment sw_cnt

Commit
Do nothing
(Changes are already committed)

Main body of SW txn.

On Read: add to read Bfilter
On Write: add to write Bfilter
Use direct updates

Post-
Commit

Invalidation
Decrement sw_cnt, release lock

Ti
m

e

Expensive!

Expensive!

Does not abort – Guarantees Progress

31

SGLSW (Single-Global-Lock Software)

SW

Acquire commit lock, increment sw_cnt
++commit_sequence

Commit Do nothing
(Changes are already committed)

Main body of SW txn.

Use direct updates

Post-
Commit

++commit_sequence
Decrement sw_cnt, release lock

Ti
m

e

LiteHW BFHW

SpecSW IrrevocSW

retry retry

retry

conflict

SW txns
running?

yes no

retry threshold exceeded

SglSW
large txns with unsupported
HTM instructions / overflow

small txns with
unsupported

HTM instructions
retry threshold

exceeded
retry threshold

exceeded

Start

Invyswell State Diagram

LiteHW BFHW

SpecSW

retry retry

retry

SW txns
running?

Fail-fast?

yes no

SglSW
large txns with unsupported
HTM instructions / overflow

small txns with
unsupported

HTM instructions / fail-fast
retry threshold

exceeded
retry threshold

exceeded

no
yes

Start

Invyswell State Diagram

Concurrent Execution Matrix

Speedup

Speedup

Speedup

Transaction Types – 1 Thread

benchmarks

%
tr

an
sa

ct
io

ns

Transaction Types – 8 Threads

benchmarks

%
tr

an
sa

ct
io

ns

u  HLE and RTM w/ SGL fallback are not enough

u  Invyswell is 35% faster than NOrec, 18% faster than
Hybrid NOrec and 25% faster than HLE across all STAMP
benchmarks

Conclusions

Thank you!

u  http://cs.brown.edu/~irina

u  irina@cs.brown.edu

