Invyswell: A HyTM for Haswell RTM

Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Gilles Pokam, Maurice Herlihy

Multicore Performance Scaling

Problem: Locking

- Solution: HTM?
 - ► IBM BG/Q, zEC12, POWER
 - Intel Haswell TSX

Source: embedded.com

Restricted Transactional Memory (RTM)

-xbegin()

Atomic region called transaction

-xend()

Execute optimistically, without any locks

Read and Write Sets

Abort on memory conflict: programmer defined behavior

RTM Fallback: Global Lock

```
if (xbegin() == XBEGIN_STARTED)
```

Execute Transaction

xend()

else

Execute Fallback Path

Lock Elision

Source: Anand Tech

Why Lock Elision Is Not Enough

Labyrinth

InvalSTM (prior work)

- [Gottschlich et al., CGO 2010]
- Scalable
- Good for large transactions
- Conflict detection using bloom filters

InvalSTM Software Transaction (prior work)

Inflight Transactions

Contention Manager

Software Transaction (InvalSTM)

Hardware Transaction + Invalidation

Hardware Transaction + Invalidation

Software Transaction (Modified InvalSTM)

$$x = 2$$
; $y = 1$;
SW Transaction 1 SW Transaction 2

(execution)

Read x;

(invalidation)

Read Validation

SPECSW (Speculative Software)

BFHW (Bloom Filters Hardware)

Read Validation

BFHW

Read Validation

BFHW SPECSW Expensive! SW On Read: add to read Bfilter HW On Write: add to write Bfilter Time Commit Commit Invalidation Post-Expensive! Commit Post-Commit

LITEHW (Light Hardware)

Ensuring Progress

Inflight Transactions Contention Can I commit? Manager Committing SW **Transaction**

Ensuring Progress

Does not abort – Guarantees Progress IRREVOCSW (Irrevocable Software)

SGLSW (Single-Global-Lock Software)

Invyswell State Diagram

Invyswell State Diagram

Concurrent Execution Matrix

Types	BFHW	LiteHW	SpecSW	IrrevocSW	SglSW
BFHW	yes	yes	yes	yes	yes
LiteHW	yes	yes	yes	yes	yes
SpecSW	yes	yes	yes	yes	no
IrrevocSW	yes	yes	yes	no	no
SgISW	yes	yes	no	no	no

Speedup

Intruder.

ssca2.

Speedup

Labyrinth.

Speedup

Yada.

Transaction Types - 1 Thread

Transaction Types - 8 Threads

Conclusions

- ► HLE and RTM w/ SGL fallback are not enough
- Invyswell is 35% faster than NOrec, 18% faster than Hybrid NOrec and 25% faster than HLE across all STAMP benchmarks

Thank you!

- http://cs.brown.edu/~irina
- ▶ irina@cs.brown.edu