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Abstract

This paper introduces Kaizen, a system to bootstrap classi-
fiers for pathology detection in whole-slide images. Kaizen
contains automatic patch creation as well as deep convolu-
tional neural network feature extraction and uses an active-
learning pipeline seeded by a small number of annotated
examples. We examine the efficacy of the crowd to iden-
tify visually similar but complex pathologies with little prior
knowledge. We run several experiments on the Camelyon16
dataset released by the International Symposium on Biomed-
ical Imaging (ISBI) grand challenge in order to evaluate the
utility of classifiers seeded by a varying number of starting
examples.

1 Introduction
A pathologist’s diagnosis has significant implications for pa-
tient treatment and overall health. Human pathologists have
the time consuming task of sorting through thousands of
stained whole-slide images. In this paper, we examine meth-
ods for the automated pathological diagnoses. Training clas-
sifiers to detect pathologies from whole-slide images is a
daunting task, not least because of the immense size of the
images. Accurate classifiers also require significant amounts
of training data and, most importantly, labels. Collecting
this medical training data is often difficult on two fronts.
Firstly, using and aggregating data can pose privacy con-
cerns and require the machine learning specialist to navigate
through a bureaucratic maze. Secondly, accurate global la-
bels (and segmentations) are incredibly time-consuming and
require the effort of pathologists, costing significant sums of
money. Labeling also requires a high level of expertise be-
cause of the sometimes minute differences that differentiate
healthy from unhealthy tissue. In this paper, we seek to cost-
efficiently label pathological whole-slide image patches. We
will use a crowd-in-the-loop active learning pipeline to boot-
strap labeling and classifier creation.

The dataset used in this paper is Camelyon16, provided by
the ISBI. Camelyon16 is a set of whole-slide images of sen-
tinel lymph node biopsies. 41% of the whole-slide images
contain metastatic breast cancer complete with annotations.
The manual review of sentinel lymph nodes took around 1
hour per whole-slide image for individual pathologists. The
Camelyon16 dataset is unprecedented in scale for metastatic
breast cancer in sentinel lymph nodes.

This paper introduces Kaizen, an online active learning
system that queries the crowd in order to create classifiers
using only a small number of labeled examples. Kaizen has
similar functionality to Tropel, the system designed by (Pat-
terson et al. 2015), but is more extensible, allows deep-
feature extraction, and contains GPU support . Unlike Patter-
son et al., who asked the crowd to identify common objects
like birds or clothing, we prompt crowd workers with visual
events they have never seen before, namely tissue samples
from whole slide images. We use the Camelyon16 dataset
because of its large number of labeled examples that can be
used for future baseline testing. Our goal is to answer the
question: Can a relatively unskilled crowd train a detector
for high-expertise pathologies?

2 Related Works
Using machine learning to identify pathology in whole-
slide images is an expanding field. (Veta et al. 2014) de-
scribe various algorithms for the automatic counting of mi-
totic figures in breast tumors from teams competing in the
AMIDA13 challenge (Assessment of Mitosis Detection Al-
gorithms 2013). Many teams use shallow convolutional neu-
ral networks (five or less layers) as classifiers. Common im-
age processing techniques include thresholding methods for
image segmentation or manipulating color channels. (Cruz-
Roa et al. 2014) use a similar approach to detect invasive
ductal carcinoma, a common form of breast cancer, from
whole-slide images. Cruz-Roa et al. crop each WSI into
non-overlapping 100x100 pixel sections, and then change
each patch from the RGB space to the YUV color space.
The CNN for classification contains two convolutional lay-
ers with pooling. Cruz-Roa et al. show that even a shallow
CNN performs better than classifiers trained on handcrafted
features (RBG-hist, Fuzzy color hist, Haralick, etc). (Wang
et al. 2016) use the same CAMELYON16 dataset as this pa-
per, using deep convolutional nets to detect metastatic re-
gions in lymph node whole-slide images. They use Otsu
thresholding to process images and select patches that con-
tain tissue as well as a patch-based classification technique.
State-of-the-art deep learning models including GoogLeNet,
AlexNet, VGG16, and FaceNet are trained from scratch on a
variety of patch magnification levels. Wang et al. show that
a deep-learning based approach is effective at solving com-
plex classification questions in whole-slide images. How-



ever, the papers above are completely dependent on access
to large, fully labeled datasets. Without access to datasets
like CAMELYON16 or AMIDA13, supervised classifiers
for specialized pathologies cannot be trained.

Crowdsourcing for medical purposes is also an expand-
ing field. Both (Nguyen and Patrick 2014) and (Cocos et
al. 2015) describe methods of employing the crowd for an-
notations of radiology reports. These reports contain tex-
tual information filled out by radiologists as opposed to vi-
sual image information. (Irshad et al. 2015) use the crowd
for nucleus detection and segmentation in whole-slide im-
ages. They use the CrowdFlower platform to obtain crowd-
workers and prompt them with multiple images of kidney
renal clear cell carcinoma, asking them to perform both a de-
tection task (select nuclei) and segmentation task (use poly-
gon tool to isolate nuclei). Irshad et al. then compare the
crowd results to an expert as well as automated methods.
The crowd, while having a higher sensitivity than the auto-
mated method, had a lower sensitivity and precision than an
expert. (Park et al. 2016) use the Amazon Mechanical Turk
crowd to detect polyps in virtual colonoscopy (VC) videos.
After uploading the VC videos, they present the crowd users
with a binary-classification task. Park et al.’s work shows
that the crowd is able to detect colon polyps with nearly
the same specificity as an expert radiologist. However, the
above studies require exhaustively labeled datasets. We in-
vestigate crowd-in-the-loop active learning to bootstrap clas-
sifier training and reduce labeling cost.

Active-learning has proved useful in past experiments for
bootstrapping classifiers from large unlabeled datasets (Pat-
terson et al. 2015; Collins et al. 2008; Hoi et al. 2006). The
authors believe that Kaizen is the first system to explore the
potential of crowd-bootstrapped classifiers for breast-cancer
detection in lymph node whole-slide images.

3 The Camelyon16 Dataset
Experiments in this paper use the Camelyon16 dataset of
sentinel lymph node whole-slide images. The dataset was
released for the Camelyon Grand Challenge 2016 by the In-
ternational Symposium on Biomedical Imaging (ISBI) for
the automatic detection of metastatic breast cancer. Came-
lyon16 consists of 400 whole slide images (WSIs) from
two independent datasets split into 270 WSIs for training
and 130 WSIs for testing. The datasets were collected from
the Radboud University Medical Center and the University
Medical Center Utrecht. Each of the 400 whole slide im-
ages had 10 downsample levels, with level 0 being around
20 Gigapixels in size. Ground truths for the train set images
were stored in both XML and binary mask format. For bi-
nary masks, values of 0 were considered negative and values
of 255 were considered positive. The 130 WSIs labeled for
testing did not come with ground truth labels.

4 Kaizen
Kaizen is designed to give pathologists the ability to train
classifiers using a very small number of labeled images and
a large unlabeled dataset. It is inspired by the Tropel active-
learning system for general visual classifier creation (Pat-

terson et al. 2015). The user is allowed to upload a dataset
along with pre-labeled seed examples.

Once the dataset is loaded, the user is given full control
of patch cropping and feature extraction. Users can either
select pre-defined patch specifications (PatchSpecs) or cre-
ate their own, setting height, width, overlap percentage, and
scale percentage. Upon submission the Kaizen system per-
forms patch extraction. Because of the large dimensions of
the whole-slide images, patching takes a significant amount
of memory and time. After patching, the user is given the op-
tion to add a feature extractor. Aside from commonly used
feature extractors like HoG and RGB Histogram, Kaizen in-
cludes a deep-network feature extractor using off-the-shelf
CNNs. Using deep convolutional neural networks for fea-
ture extraction has been shown to be effective for a variety of
image classification problems [13]. We implement GPU pro-
cessing, allowing Kaizen to utilize deep networks including
VGG16, Caffenet, and GoogLeNet. After feature extraction,
the user is then able to create a classifier with the previously
uploaded pre-labeled examples. To begin, Kaizen uses the
seed positive examples and randomly selects negative events
from the dataset. Because the visual events are assumed to be
sparse, a random selection of a single patch from the train-
ing set is likely to be negative. Kaizen then trains a linear
SVM, which is used to find the top 200 most confidently
scored patches from the training set. These 200 patches are
then shown on the active-labeling UI.

At this point, Kaizen uses the selected images to seed the
classifier, using a algorithm of the user’s choice (SVM, Lin-
ear Regression, KNeighbors Regressor). Once a type is se-
lected, the classifier is trained on the crowd selected exam-
ples. The top 200 classifications are then presented on the
active UI. Kaizen continues to update the classifier after each
active-learning iteration.

5 Experiments on the Camelyon Dataset
The Camelyon dataset serves as a baseline for our classifier
experiments. We use 110 labeled whole slide images for
the experiments, with each WSI large enough to generate
hundreds of thousands of patches. Experiments ran on
an Amazon EC2 g2.2xlarge instance, with a single K20
NVIDIA GPU, 8 CPU cores, and 16 GB RAM. Currently,
Kaizen does not support multiple-GPUs.

5.1 Image preprocessing
We first identify which downsample level provides opti-
mal results. Having lower downsample levels gives workers
closer views of the actual cells, whereas higher levels gives
workers a better overview of the shape of the lymph node
tissue (see Figure 1). Lower downsample levels are useful
for identifying pathologies that are more easily recognizable
at the cellular level, as opposed to pathologies that are more
easily detectable as large bodies.

After examining ground truth patches, it becomes clear
that classifying metastasis in high-level croppings is more
difficult than classification in low-level croppings. The his-
tological appearance of cancerous tumor cells often differs



Figure 1: Downsample levels 1, 2, 3 left to right, respectively.

(a) Metastatic cell samples

(b) Non-cancerous cell samples

Figure 2: Types of cells considered.

from normal cells in three main ways starting with the cel-
lular nucleus, which has changes in nuclear size, shape,
and transparency (often reflected in stain intensity). Cancer-
ous regions also have the tendency to form tubular struc-
tures and have a greater mitotic rate, thus giving a highly
clumped appearance. Figure 2 shows various cancerous and
non-cancerous patches from the whole-slide images.

We programmatically extract 256x256 cancerous patches.
Patches are considered cancer-positive if they overlap with
the binary mask label by more than 80%. We then create a
train and test set with a 70/30 split.

5.2 Evaluation and Comparison
Once the whole-slide images and ground-truth patches
are loaded into Kaizen, we create a PatchSpec that crops
each whole-slide image into thousands of 256x256 sub-
patches. We use a deep convolutional neural network
feature extractor, running off of the AlexNet architecture
trained on ImageNet using model weights from Caffe’s
ModelZoo. Kaizen performs feature subsampling with
a 200-dimensional output feature vector. Subsampling
saves significant RAM and computational time, while
sacrificing little in terms of image representation. For these
experiments, the authors act as the crowd. Future classifier
training can be completed by crowd workers with Amazon
Mechanical Turk integration. The ground truth patches
are sampled from a single whole-slide image because
annotating a single whole-slide image is the bare minimum
work required to seed the classifier. We create multiple
classifiers using different numbers of starting examples: 1,
5, 10, 20, 50, and 100. Training is stopped after 3 iterations.

Classifier Starting
Examples

Average Precision

1 .73
5 .61

10 .54
20 .65
50 .66

100 .47

Table 1: Average precision at iteration 3 for experimental classi-
fiers using different numbers of seed examples.

Figure 3: Precision-recall curves for all classifiers at iteration 3.

Table 1 shows average precision scores and Figure 3 shows
precision-recall graphs for each of the 6 classifiers we
created.

Overall, the average precision for each classifier de-
creased as the number of classifier starting examples in-
creased. This could be due to using a single whole-slide im-
age for patch extraction. The classifier learned the features
of the metastatic tissue in the seed whole-slide image better
as the number of starting examples increased, but failed to
identify cancerous regions of other WSIs. Similarly, Kaizen,
which returns the top 200 classifier results as candidate im-
ages for the next iteration, makes it easy for the classifier
lock into a specific mode of cancerous tissue, returning im-
ages that look nearly identical to the starting examples (see
Figure 4).

Because of the large number of unlabeled patches, suc-
cessive training rounds can very well contain the same 200
patches as the previous iteration, thus preventing the classi-
fier from learning from different examples.

From Figure 3 we observe that at a certain varying thresh-
old, each classifier has a steep trade-off between precision
and recall. In classifier “100 ex”, for example, the trade-off
occurs as recall reached .3, while the value is .5 for clas-
sifiers “50 ex” and “20 ex”. Secondly, all of the classifiers
converge to the same precision value of .5 as recall goes to 1.

Qualitatively, as the iterations progress, the returned
patches with highest classifier output probability become



Figure 4: Ground truth patches from Classifier 100 ex and re-
trieved unlabeled images from successive iterations.

more and more visually similar to the ground truth. This
is an expected output. However, not all cancerous patches
within the test and even train dataset look similar to the
ground truth images provided. By using only a single whole-
slide image for seed patch extraction, we train the classi-
fier to detect only cancerous patches that are highly visually
similar to the ground truth, explaining the decline in aver-
age precision as we seed the classifier with more examples
from the same WSI. Kaizen can retrieve results from specific
modalities very well but that it performs poorly in retrieving
results from a variety of modes.

6 Conclusion and Future Work
In this paper we introduce Kaizen, a system for bootstrap-
ping classifiers for pathology identification in WSIs with a
small number of training examples. Kaizen includes patch-
ing and feature extraction functionality so users can upload
annotated patches from WSIs and use them to create more
labeled examples and seed classifiers. Our experiment on the
Camelyon16 dataset shows that seeding Kaizen with exam-
ples from only a single whole slide image is not enough
to create a classifier able to perform well on a variety of
lymph node tissues. The classifier trained using only a sin-
gle seed example performed better than all others. Increasing
the number of starting examples from a single WSI does not
improve the classifier, rather, it decreases average precision.
A future experiment would include examples from multiple
different whole-slide images in order to test whether Kaizen
can learn the multimodal nature of Camelyon16. Similarly,
training a standard classifier (SVM or the like) on the Came-
lyon dataset would provide a good baseline for comparing
our classifiers. Future work also includes exploring iteration
cutoff procedures and testing autoencoder feature extraction.
While the off-the-shelf AlexNet model functioned properly,
it would be interesting to see whether an autoencoder trained
on the whole-slide images will improve performance.
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