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Abstract—Humans naturally integrate vision and haptics for
robust object perception during manipulation. The loss of either
modality significantly degrades performance. Inspired by this
multisensory integration, prior object pose estimation research
has attempted to combine visual and haptic/tactile feedback.
Although these works demonstrate improvements in controlled
environments or synthetic datasets, they often underperform
vision-only approaches in real-world settings due to poor gen-
eralization across diverse grippers, sensor layouts, or sim-to-real
environments. Furthermore, they typically estimate the object
pose for each frame independently, resulting in less coherent
tracking over sequences in real-world deployments. To address
these limitations, we introduce a novel unified haptic represen-
tation that effectively handles multiple gripper embodiments.
Building on this representation, we introduce a new visuo-haptic
transformer-based object pose tracker that seamlessly integrates
visual and haptic input. We validate our framework in our
dataset and the Feelsight dataset, demonstrating significant per-
formance improvement on challenging sequences. Notably, our
method achieves superior generalization and robustness across
novel embodiments, objects, and sensor types (both taxel-based
and vision-based tactile sensors). In real-world experiments,
we demonstrate that our approach outperforms state-of-the-art
visual trackers by a large margin. We further show that we
can achieve precise manipulation tasks by incorporating our
real-time object tracking result into motion plans, underscor-
ing the advantages of visuo-haptic perception. Project website:
https://ivl.cs.brown.edu/research/v-hop.

I. INTRODUCTION

Accurately tracking object poses is a core capability for
robotic manipulation, and would enable contact-rich and dex-
terous manipulations with efficient imitation or reinforcement
learning [68, [31, 123|]. Recent state-of-the-art object pose
estimation methods, such as FoundationPose [70], have sig-
nificantly advanced visual tracking by leveraging large-scale
datasets. However, relying solely on visual information to per-
ceive objects can be challenging, particularly in contact-rich or
in-hand manipulation scenarios involving high occlusion and
rapid dynamics.

The cognitive science findings show that humans naturally
integrate visual and haptic information for robust object per-
ception during manipulation [46, 12} 28]]. For instance, Gordon
et al. [[15] demonstrated that humans use vision to hypothesize
object properties and haptics to refine precision grasps. The
human “sense of touch” consists of two distinct senses [42, 6]
the cutaneous sense, which detects stimulation on the skin
surface, and kinesthesis, which provides information on static
and dynamic body posture. This integration, known as haptic
perception, allows humans to effectively perceive and ma-

Fig. 1: Visuo-haptic sensing for 6D object pose tracking. We
fuse egocentric visual and haptic sensing to achieve accurate
real-time in-hand object tracking.

nipulate objects [28]. In robotics, analogous capabilities are
achieved through tactile sensors (cutaneous sense) and joint
sensors (kinesthesis) [46]].

Drawing inspiration from these human capabilities, re-
searchers have explored the integration of vision and touch
in robotics for decades. As early as 1988, Allen [1] proposed
an object recognition system that combined these modalities.
More recently, data-driven approaches have emerged to tackle
object pose estimation using visuo-tactile information [32} 54}
8L 1611 150, 159, [14) 133]. Although promising, these methods
face two major barriers that hinder their broader applicability:
(i) Cross-embodiment: Most approaches overfit specific grip-
pers or tactile sensor layouts, limiting their adaptability. (ii)
Domain generalization: Compared to visual-only baselines,
visuo-tactile approaches struggle to generalize, hindered by
insufficient data diversity and model scalability. Moreover,
they typically process each frame independently, which can
result in less coherent object pose tracking over sequences
in real-world deployments. As a result, existing methods are
challenging to deploy broadly and often require significant
customization to specific robotic platforms.

To address these challenges, we propose V-HOP (Fig. [I):
a two-fold solution for generalizable visuo-haptic 6D object
pose tracking. First, we introduce a novel unified haptic
representation that facilitates cross-embodiment learning. We
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consider the combination of tactile and kinesthesis in the
form of a point cloud, addressing a critical yet often over-
looked aspect of visuo-haptic learning. Second, we propose
a transformer-based object pose tracker to fuse visual and
haptic features. We leverage the robust visual prior captured
by the visual foundation model while incorporating haptics. V-
HOP accommodates diverse gripper embodiments and various
objects and generalizes to novel embodiments and objects.

We build a multi-embodied dataset with eight grippers using

the NVIDIA Isaac Sim simulator for training and evaluation.
Compared to FoundationPose [70]], our approach achieves 5%
improvement in the accuracy of object pose estimation in terms
of ADD-S [72] in our dataset. These results highlight the
benefit of fusing visual and haptic sensing. In the FeelSight
dataset [54]], we benchmark against NeuralFeels [54], an
optimization-based visuo-tactile object pose tracker, achieving
a 32% improvement in the ADD-S metric and ten times faster
run-time speed. Finally, we perform the sim-to-real transfer
experiments using Barrett Hands. Our method demonstrates
remarkable robustness and significantly outperforms Founda-
tionPose, which could lose object tracks entirely (Fig. [).
When integrated into motion plans, our approach achieves 40%
higher average task success rates. To the best of our knowl-
edge, V-HOP is the first data-driven visuo-haptic approach
to demonstrate robust generalization across both taxel-based
tactile sensors (e.g., Barrett Hand) and vision-based tactile
sensors (e.g., DIGIT sensors), as well as on novel embodiments
and objects.

In conclusion, our contributions to this paper are two-fold:

1) Unified haptic representation: we introduce a novel
haptic representation, enabling cross-embodiment learn-
ing and addressing the cross-embodiment challenge by
improving adaptability across diverse embodiments and
objects.

2) Visuo-haptic transformer: We present a transformer
model that integrates visual and haptic data, improving
pose tracking consistency and addressing the domain
generalization challenge.

II. BACKGROUND

In this section, we first define the problem formally and
then review existing haptic representations and our proposed
unified representation.

A. Problem Definition

We tackle the model-based visuo-haptic 6D object pose
tracking problem, assuming access to:
e Visual observations: An RGB-D sensor observes the
object in the environment.
o Haptic feedback: The object is manipulated by a rigid
gripper equipped with tactile sensors.
Our approach takes the following as input:
1) The CAD model M, of the object.
2) A sequence of RGB-D images O = {O;}!_,, where
each observation O; = [I;, D,] includes an RGB image
I, and a depth map D;.

3) An initial 6D pose To = (Ro,tp) € SE(3), where
Ry € SO(3) is 3D rotation and ty € R is 3D trans-
lation.

In practice, the ground-truth initial pose T is hard to obtain
and can only be estimated through pose estimation [72, |62}
4/1\8, 36, 163,130, [70% 27, 18l 140, |37, 157, 167]]. Therefore, we treat
To = Ty in the following. At each timestep ¢, our model
estimates the object pose T; given all the inputs with the
initial pose being the estimate T;_; at the previous timestep.
The above inputs are the standard inputs from the model-
based visual pose tracking problem [66 [7], while the inputs
below will serve our haptic representation and will be detailed
in later sections.

4) Gripper description in Unified Robot Description Format
(URDF).

5) Gripper joint positions j = {41, 42, .-, JDoF }-

6) Tactile sensor data S, including Positions S, and read-
ings S, of tactile sensors, which will be formally defined
in the next section.

7) Transformation between the camera and the robot frames
obtained through hand-eye calibration [44]].

B. Haptic Representation

The effectiveness of haptic learning hinges on its repre-
sentation. Prior approaches using raw value [38], image [16],
or graph-based [75, 33 I50] representations often struggle
to generalize across diverse embodiments. For instance, Wu
et al. [71] and Guzey et al. [16] project tactile signals from
Xela sensors into a 2D image format. While this allows
efficient processing with existing visual models, extending
the method to different grippers or sensor layouts proves
challenging. Similarly, Li et al. [33]] and Rezazadeh et al. [50]
employ graph-based mappings, where taxels are represented
as vertices. However, variations in sensor layouts result in
different graph distributions, creating significant generalization
gaps.

In contrast, we adopt a point cloud representation, which
naturally encode 3D positions and can flexibly accommodate
multi-embodiments. We broadly classify tactile sensors into
taxel-based and vision-based. A more comprehensive review
on tactile sensors can be found at [[74]. Below, we outline how
they are converted into point clouds in prior works [J8} 54, 64}
13]], paving the way for our unified framework.

Taxel-based Sensors. The tactile data is defined as S =
{s;};,, which encapsulate n; taxels. s, represents individual
taxels. The tactile data consists of S = (S,,S,):

o Positions (Sp): Defined in the gripper frame and trans-

formed into the camera frame using forward kinematics.

o Readings (S,): Capturing contact values. Readings are

commonly binarized into contact or no-contact states [[78,
73, 132, 18, 134]] based on a threshold .
The set of taxels in contact is:

Se={s,€S|S:(s;) > 7}, ()
and the corresponding tactile point cloud S, . is defined as

Sp,e = {Sp(si) | si € S} )



Vision-based sensors. For vision-based tactile sensors [29,
79, [10, [56], the tactile data includes S = (S,, Sr):

« Positions (S,): Sensor positions in the camera frame,

similar to taxel-based.

o Images (S7): Capturing contact states using regular RGB
image representation. Using the tactile depth estimation
model [3] 54, 26l [53],[52, [2]], we can convert S into tactile
point cloud S, ..

Yet we are not the first to employ point cloud representations
for tactile learning, prior works [ 154, 64, [13] focus on a
single type of sensor and overlook the gripper posture. Our
key contribution is a unified representation spanning both
taxel-based and vision-based sensors on multi-embodiments,
empowered by our multi-embodied dataset. We demonstrate
generalizability on the Barrett hand (taxel-based) during our
real-world experiments and on the Allegro hand (vision-
based DIGIT sensor) using the Feelsight dataset [54]. Our
novel haptic representation seamlessly integrates the tactile
signals with the gripper posture, enabling more effective
gripper-object interaction reasoning. In subsequent sections,
we describe our approach and provide empirical evidence
demonstrating that our representation improves generalization
capabilities, bridging the gap between heterogeneous tactile
sensor modalities.

III. METHODOLOGY

We propose V-HOP, a data-driven approach that fuses visual
and haptic modalities to achieve accurate 6D object pose
tracking. Our goal is to build a generalizable visuo-haptic
pose tracker that accommodates diverse embodiments and
objects. We first outline the core representations used in our
haptic modality: gripper and object representations. Our choice
for the representations follows the spirit of the render-and-
compare paradigm [35]. Later, we introduce our visuo-haptic
model and how it is trained.

A. Gripper Representation

Tactile signals only represent the cutaneous stimulation,
while haptic sensing combines tactile and kinesthetic feedback
to provide a more comprehensive spatial understanding of
contact and manipulation. We propose a novel haptic rep-
resentation that integrates tactile signals and gripper posture
in a unified point cloud representation. This gripper-centric
representation enables efficient reasoning about spatial contact
and gripper-object interaction.

Using the URDF definition and joint positions j, we gen-
erate the gripper mesh M;, through forward kinematics and
calculate the surface normals. The mesh is then downsampled
to produce a 9-D gripper point cloud Pj, = {p;};";:

Pi = (i, Vi, Ziy iy Nigyy Mizy €) € RY, 3

where z;,v;, z; represent the 3-D coordinate of the point.
Nz, Niy, Ni» represent the 3-D normal vectors, and ¢ & R3
is a one-hot encoded point label:

e [1,0,0]: Gripper point in contact.

e [0,1,0]: Gripper point not in contact.

« [0,0,1]: Object point (for later integration with the object
point cloud).

To obtain the contact state of each point, we map the tactile
point cloud S, ., representing the contact points detected by
the tactile sensors (Sec. [[I-B)), onto the downsampled gripper
point cloud Py,. Specifically, for each point in S, ., we find its
neighboring points in Py, within a radius r. These neighboring
points are labeled as “in contact”, while all others are labeled
as “not in contact”. The choice of the radius r is randomized
during training and determined by the measured effective
radius of each taxel during robot deployment. The resulting
haptic point cloud, Py, serves as a unified representation for
both tactile and kinesthetic data (Fig. [2).

B. Object Representation

No

We denote the object model point cloud as Py = {q;}.;.
Similar to the gripper point cloud, q; follows the same 9-D
definitions (Equation [3)),

9
qi = (4, Yis Zis Nig, Nigy, Nz, €) € R,

with ¢ = [0, 0, 1] for all object points. At each timestep i > 0,
we transform the model point cloud into a hypothesized point
cloud P, = {q}}°, according to the pose from the previous
timestep T;_1. For each point g} in the hypothesized point
cloud P,

/ / / / / / /
q; = (meyivzmnmanzyanizac)a 4)
where:
! /
xT; x; Mo Nig
/A / —_
Yi| =Ric1 [yi| +tic1,  [ngy | =Rica |nig| . (5)
/ /
% Zi My Niz

To enable reasoning about gripper-object interactions, we
fuse the gripper point cloud P, and the hypothesized object
point cloud P, to create a gripper-object point cloud P,

P =P,LUP,. (6)

This novel unified representation adopts the principles of the
render-and-compare paradigm from visual approaches [35, 66,
27, [70, 58], in which the rendered image (based on pose
hypothesis) is compared against the visual observation. The
hypothesized object point cloud P, serves as the “rendered”
pose hypothesis (Fig.[2). The gripper point cloud Py, represents
the real observation using haptic feedback, which we used to
compare with. By leveraging this representation, the model
captures the contact-rich interactions between the gripper and
the object by learning feasible object poses informed by haptic
feedback.

C. Network Design

Visual modality. Unlike prior works, which train the whole
visuo-haptic network from scratch, our approach can effec-
tively leverage the pretrained visual foundation model. Our
design extends the formulation of FoundationPose [70], as
it demonstrates great generalizability on unseen objects and
a narrow sim-to-real gap. To harness the high-quality visual
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Fig. 2: Network design of V-HOP. The visual modality, based on FoundationPose [70]], uses a visual encoder to process
RGB-D observations (real and rendered) into feature maps, which are concatenated and refined through a ResBlock to produce
visual embeddings [11]. The haptic modality encodes a unified gripper-object point cloud, derived from 9D gripper P}, and
object P, point clouds, into a haptic embedding that captures gripper-object interactions. The red dot in the figure denotes the
activated tactile sensor. These visual and haptic embeddings are processed by Transformer encoders to estimate 3D translation

and rotation.

prior captured by it, we utilize its visual encoder f, and freeze
it during our training. Using this encoder, We transform the
RGB-D observation into visual embeddings Z,, = f,(O).

Haptic modality. In parallel, we encode the gripper-object
point cloud P using a haptic encoder f}, resulting in a haptic
embedding Zj;, = f,(P). By representing all interactions in
point cloud space, our novel haptic representation provides
the flexibility to utilize any point cloud-based network for
encoding. For this purpose, we choose PointNet++ [49] as
our haptic encoder f;. To improve learning efficiency, we
canonicalize the point cloud using the centroid of the gripper
points, ensuring P is spatially centered around the gripper
during processing.

Visuo-haptic fusion. Integrating visual and haptic modali-
ties, however, poses significant challenges. Existing methods
often apply fixed or biased weightings between these modali-
ties [32} 154} I8, 59], which can fail under specific conditions.
For example, when contact is absent, the visual modality alone
should be leveraged, or when occlusion is severe, haptics
should be favored. Inspired by the principle of “optimal inte-
gration” in human multisensory perception [12, |19} 28} |55} 201,
where the brain dynamically adjusts the weighting of visual
and haptic inputs to maximize reliability, we adopt self-
attention mechanisms [60] for the adaptive fusion of visual
and haptic embeddings. This ensures robustness across varying
scenarios, whether the object is in contact or in clear view.

To achieve this fusion, we propose haptic instruction-tuning,
inspired by visual instruction-tuning [39]. While keeping the
visual encoder f, frozen, we feed both visual embedding
Z, and haptic embedding Z; into the original visual-only
Transformer encoders [60, [70]], which are initialized with the
pretrained weights from FoundationPose. We then fine-tune

the Transformer encoders and the haptic encoder f;, together.
Consequently, visual and haptic information is fused adap-
tively using self-attention blocks, and the model dynamically
adjusts the modality weight based on the context (Fig. [9).
Following FoundationPose, we disentangle the 6D pose into
3D translation and 3D rotation and estimate them using two
output heads (Fig. [2), respectively.

D. Training Paradigm

We train our model by adding noise (R, t¢) to the ground-
truth pose T = (R,t) to create the hypothesis pose T =
(R, t):

R=R. 'R, t=—t +t. (7)

The rendered image is generated using T, while the object
point cloud is transformed based on T} in contrast, the RGB-
D image and gripper point cloud represent actual observations.
The model estimates the relative pose AT = (AR, At)
between the pose hypothesis and observation. The model is
optimized using the Lo loss:

L1 = ||AR = Re|j2 + || At — t||2, (8)

where we use quaternion representations for rotations. The
estimated pose T = (R, t) is:
R=AR-R, t=At+t. )
We further incorporate an attractive loss (£,) and a penetra-
tion loss (£,,) to encourage the object to make contact with the
tactile point cloud S, . and avoid penetrating the gripper point
cloud Pp,. We first transform the initial hypothesized object
pose cloud P, using the estimated pose P, =T T~! P,
where P, is in homogenous form.



Fig. 3: Dataset sample visualization. (Top row) Barrett Hand, Shadow Hand, Allegro Hand, SHUNK SVH. (Bottom row)

D’Claw, LEAP Hand, Inspire Hand, Robotiq 3-Finger gripper.

The attractive loss enforces that each activated taxel must
make contact with the object:

1 .
> min sy — pl?,

B |SP,C| 5p,cE€Sp,c PEPo

La (10)

which can be interpreted as a single-direction Chamfer dis-
tance between the tactile point cloud and the object point
cloud.

The penetration loss avoids penetrations between the object
and the gripper 77, 4

Po = arg min ||q — pall2,
eP

q o
077 o —Po
Ep _ Z emax{ n, (Pn—pPo)} -1,
PhEPhL

(1)

where p, represents the nearest neighbor of each point py, in
the gripper point cloud Pp. Our overall loss is:

L=Lr+al,+BL,, (12)

where we set « =1 and 8 = 0.001 empirically. We optimize
the model using the AdamW optimizer with an initial
learning rate of 0.0004 and train the model for 20 epochs.

IV. EXPERIMENTS
A. Multi-embodied Dataset

Existing visuo-haptic datasets were not publicly avail-
able [8], 33 [61]] at the time of completing this work and focused
on a single gripper [54]], leaving the question of generalization
to novel embodiments unanswered. Consequently, we develop
a multi-embodied dataset (Fig. [B) using NVIDIA Isaac Sim
to enable cross-embodiment learning and thorough evaluation.
Our dataset comprises approximately 1,550,000 images col-
lected across eight grippers and thirteen objects. We utilize
85% of the data for training and the rest for validation. The
camera trajectories are sampled on the semi-sphere around
the gripper, which has a random radius between 0.5 and 2.5

meters. We selected graspable YCB object [3] and grippers
used in prior works [9, 45]]. Additional details about the dataset
can be found in the appendix.

In this paper, we follow the sim-to-real paradigm and utilize
only synthetic data for training. Increasing real-world training
data could indeed help mitigate the sim-to-real gap. However,
as demonstrated in recent work [70]], leveraging a large-scale
synthetic dataset enriched with domain randomization can
yield superior real-world performance compared to small-
scale real-world datasets. Our synthesized dataset exemplifies
this principle and supports our robust real-world performance.
Collecting real-world data with comparable scale and diversity
would be both challenging and resource-intensive. Moreover,
our unified haptic representation leverages point cloud repre-
sentation to maintain invariance across various tactile sensors.
Consequently, our sim-to-real experiments (Sec. [V) demon-
strate robust performance and eliminate the need for costly
real-world data collection.

B. Pose Tracking Comparison

In the following experiments, we evaluate performance
using the metrics:

e Area under the curve (AUC) of ADD and ADD-S

[72]], and

o ADD(-S)-0.1d [18]: ADD/ADD-S that is less than 10%

of the object diameter.

We compare V-HOP against the current state-of-the-art
approaches in visual pose tracking (FoundationPose [[70], or
FP in short) and visuo-tactile pose estimation (ViTa [8]).
To ensure a fair comparison, we finetune FoundationPose
and train ViTa on our multi-embodied dataset. To verify the
generalizability of the novel object and novel gripper, we
exclude one object (pudding_box) and one gripper (D’Claw)
during training.

Due to the absence of a visuo-haptic pose tracking approach,
we compare V-HOP with ViTa, an instance-level visuo-tactile



Object Name AUC Metric FP | V-HOP Method AUC ADD | ADD-0.1d | AUC ADD-S | ADD-S-0.1d
ADD 6495 | 6238 Without Tactile 60.10 43.69 7733 63.17
master_chef_can ADD-S 8460 | 8638 Without Visual 32.19 372 58.85 31.44
b ADD 73.21 74.75 V-HOP (Ours) 68.90 48.55 86.62 77.83
sugar_box
ADD-S 85.27 89.35 . . ags
oo soun can ADD 5702 | 5913 TABLE III: Ablapons of input Fn'Odallt.leS. Our resulFs
—-Soup ADD-S 78.45 83.30 confirm the effectiveness of combining visual and haptic
ADD 72.65 | 74.07 --
st modalities.
mustard_bottle ADD-S 86.05 88.57
pudding_box (Unseen) T DLy Mz : . . S
ADD-S 84.63 | 88.20 Fusion Type AUC ADD | ADD-0.1d | AUC ADD-S | ADD-5-0.1d
. ADD 63.89 69.75 Late Fusion 47.56 17.57 70.43 51.66
gelatin_box ADD-S 80.16 86.87 Early Fusion (Ours) 68.90 48.55 86.62 77.83
potted_meat_can igg_s g;g% ggg? TABLE IV: Ablations of fusion strategies. We evaluate the
b ADD 63.87 69.72 performance of early fusion and late fusion strategies.
anana ADD-S 79.99 | 8579
mu ADD 59.60 58.42
& ADD-S 82.16 | 84.10 _ _ )
power_dril ADD 67.21 68.56 HOP consistently outperforms ViTa and FoundationPose (FP)
- ADD-S 80.77 | 85.77 on most objects with respect to ADD and across all objects
e ADD 6623 | 70.67 . .
scissors ADD-S 3127 85.08 in terms of ADD-S. On average, our approach delivers an
Jarge_marker ADD 61.74 71.10 improvement of 4% in ADD and 5% in ADD-S compared
- ADD-S 7545 | 85.00 to FoundationPose. Notably, V-HOP demonstrates strong per-
large_clamp ADD JLod 7563 formance on unseen objects, highlighting the potential of our
- ADD-S 86.07 | 89.09 C jects, mghlhighting the p
Al ADD T 66.29 68.90 model to generalize effectively to novel objects.
ADD-S 1 8237 | 86.62 Similarly, Tab. [[l)illustrates the performance of each gripper.

TABLE I: Per-object comparison of AUC metrics for ADD
and ADD-S. The row of novel object is grayed out. Both
metrics are the higher, the better. The best results are bolded.

Gripper Name AUC Metric ViTa FP | V-HOP
Aleero Hand ADD 2448 | 7445 | 7620
egro Han ADD-S 77.60 | 88.74 | 90.48
Barrett Hand ADD 2463 | 7767 | 79.06
arre ADD-S 7774 | 8872 | 91.73
, ADD 2199 | 48.16 | 57.49
Dl (Uezsm) g 7600 | 77.06 | 85.48
Insbire Hand ADD 2456 | 7022 | 70.15
nispire Han ADD-S 77.65 | 8422 | 87.28
ADD 2388 | 6417 | 69.96

LEAP Hand ADD-S 7755 | 83.06 | 88.05
Robotia 3.Fi ADD 2340 | 7948 | 79.14
ObOtiq S-HINger  App-s 76.87 | 89.39 | 90.61
ADD 2440 | 61.01 | 6275

SCHUNK SVH  \pp.g 7674 | 78.58 | 82.96
ADD 2381 | 5877 | 6027

Shadow Hand ADD-S 7555 | 7324 | 7935
Al ADD T 2393 | 6629 | 68.90
ADD-S 1 76.87 | 8237 | 86.62

TABLE 1I: Per-gripper comparison of AUC metrics for
ADD and ADD-S. Our dataset contains eight grippers.
We train the model on seven grippers, leaving one gripper
(D’Claw) unseen.

pose estimation approach that operates under different settings.
For ViTa, we provide ground-truth segmentation and train
a separate model for each object, as it is an instance-level
method. In contrast, both FoundationPose and V-HOP handle
novel-object estimation and require training only once. For
fair evaluation, we run both methods for two iterations per
tracking step. For V-HOP, we run one visuo-haptic iteration
and one visual iteration.

In Tab. [l we show the performance for each object. V-

In line with its object performance, V-HOP outperforms its
counterparts on most grippers in terms of ADD and across
all grippers in ADD-S. Moreover, V-HOP demonstrates ro-
bust performance on unseen grippers, further emphasizing the
generalizability of our unified haptic representation.

C. Ablation on Modalities

We conduct an ablation study on the input modalities
to evaluate the effectiveness of the haptic representation.
Specifically, we train two ablated versions of V-HOP: one
without tactile feedback and another without visual input, as
shown in Tab. To exclude tactile input, we remove all “in
contact” point labels (Equation [3). Our results indicate that
visual input significantly contributes to performance, likely
due to the richness of visual information, including texture
and spatial details. This finding aligns with previous studies
on human perception systems, which suggest that vision plays
a dominant role in visuo-haptic integration [24]. Similarly,
tactile feedback is crucial; without it, performance degrades
notably because reasoning about gripper-object contact during
interactions becomes more difficult.

D. Ablation on Fusion Strategies

We perform ablation studies on different modality fusion
strategies: early fusion and late fusion. Early fusion refers
to fusion at the input or feature level, the one we presented
in Fig. 2| Late fusion strategy fuses the visual and tactile
modalities at the result level, where each modality has a
separate branch to estimate its result [59]. As shown in Tab.
the late fusion strategy results in an average ADD score of
47.56 and an ADD-S score of 70.43, which underperforms
our early fusion design by 30.97% in ADD and 18.69% in
ADD-S. The results confirm the necessity to fuse the visual
and haptic modalities at the feature level.
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Fig. 4: Performance under various occlusion ratios. We
use the direct ADD and ADD-S metrics (in meters) in this
experiment.

Method GT Seg | ADD-S | | ADD-S-0.1d T | FPS 1
NeuralFeels [54] v 2.14 98.95 3
V-HOP (Ours) X 1.46 98.45 32

TABLE V: Performance on the FeelSight Dataset. For
consistency with the metric used in NeuralFeels [54], this
experiment reports the direct ADD-S metric [/2] (in mm)
rather than the AUC of ADD-S used in other experiments.

E. Occlusion’s Effect on the Performance

We evaluate the performance of V-HOP and FoundationPose
across varying occlusion ratios (Fig. ). The occlusion ratio
is defined as the proportion of pixels in the segmentation
mask relative to the total pixels in the rendered object image,
generated using the ground-truth pose. Our results show that
V-HOP consistently outperforms FoundationPose in both ADD
and ADD-S metrics under different levels of occlusion. These
results underscore the importance of integrating visual and
haptic information to improve performance in challenging
occlusion scenarios.

F. Pose Tracking on FeelSight

To evaluate the generalizability of V-HOP, we benchmark it
against NeuralFeels [54], a recently introduced optimization-
based visuo-tactile pose tracking approach, using their pro-
posed Feelsight dataset. Specifically, we focus on the occlu-
sion subset of the dataset, FeelSight-Occlusion, which
presents significant challenges due to severe occlusions. This
subset requires robust generalization capabilities as it includes
a novel embodiment (the Allegro hand equipped with DIGIT
fingertips), a novel sensor type (a vision-based tactile sensor),
and a novel object (a Rubik’s cube). For a fair comparison, we
compare against their model-based tracking approach, which
uses almost the same inputs as V-HOP but with the ground-
truth segmentation mask (GT Seg).

The results are presented in Tab. [V} V-HOP achieves a 32%
lower ADD-S error compared to NeuralFeels and has a similar
ADD-S-0.1d score. It is important to note that NeuralFeels
leverages the ground-truth segmentation mask, which helps in
more accurate object localization, whereas V-HOP does not
have such an input, further underscoring its robustness and
adaptability.

In terms of computational efficiency, V-HOP is approxi-
mately 10 times faster than NeuralFeels, achieving 32 FPS
compared to NeuralFeels’” 3 FPS on an NVIDIA RTX 4070
GPU. This substantial improvement in speed highlights the
practicality of V-HOP for real-world manipulation applica-
tions, as we will demonstrate in the later sections.

V. SIM-TO-REAL TRANSFER EXPERIMENTS

To validate the real-world effectiveness of our approach,
we perform sim-to-real experiments using our robot platform
(Fig. [I). Our bimanual platform comprises dual Franka Re-
search 3 robotic arms [17] and Barrett Hands BH8-282. Our
Barrett Hand has 4 degrees of freedom (DoF) and 96 taxels: 24
taxels on each fingertip and 24 taxels on the palm. Each taxel
comprises a capacitive cell capable of detecting forces within a
range of 10 N/cm? with a resolution of 0.01 N. For egocentric
visual input, we use a MultiSense SLB RGB-D camera, which
combines a MultiSense S7 stereo camera and a Hokuyo UTM-
30LX-EW laser scanner. We utilize FoundationPose to provide
the initial frame pose estimate and CNOS [47, 25] to provide
the segmentation task.

A. Pose Tracking Experiments

In this experiment (Fig. [3)), the gripper stably grasps the
object while a human operator guides the robot arm along
a random trajectory. This introduces heavy occlusion and
high dynamic motion to emulate challenging real-world ma-
nipulation scenarios. Under these conditions, FoundationPose
often loses tracking due to reliance on visual input alone. In
contrast, V-HOP maintains stable object tracking throughout
the trajectory, demonstrating the robustness of its visuo-haptic
sensing.

B. Bimanual Handover Experiment

In this experiment (Fig. [6), an object is placed on a table
within reach of the robot’s right arm. The task requires the
robot to perform the following sequence of actions:

1) Use the right arm to grasp the object and transport it to

the center.

2) Use the left arm to grasp the object from the right gripper
and place it into a designated bin.

The robot employs model-based grasping, which depends on
real-time object pose estimation. This task presents two key
challenges:

1) If the grasp attempt fails, the robot must detect the
failure based on the real-time object pose and reattempt
the grasp.

2) During transport to the center, the robot must maintain
precise tracking of the object’s pose to ensure that the
left arm can accurately grasp it. Inaccurate tracking
results could lead to collision during the handover.

V-HOP enables the motion planner to handle objects in
random positions and adapt to dynamic scenarios, such as
human perturbations. For instance, a human may move the
object during task execution, remove it from the gripper, or
reposition it on the table (Fig. [7). Due to the integration of



Fig. 5: Qualitative results of pose tracking sequences. We verify the performance in the real world using YCB objects. The
cup and power drill are highlighted in this figure, while the results of more objects are in the appendix.

FP

V-HOP

Time

Fig. 6: Bimanual handover experiment. In this experiment, the robot performs bimanual manipulation to transport the target
object to the box. V-HOP integrates visual and haptic inputs to accurately track the pose of the in-hand object in real-time,
resulting in stable handover performance. Results on more objects can be found in the appendix.

Method | Sugar Box | Power Drill | Tomato Can | Average
FP 60 40 20 40
V-HOP 80 80 80 80

TABLE VI: Success rate on bimanual handover task.

haptic feedback, V-HOP accurately tracks the object’s pose,
allowing the robot to promptly detect and respond to changes,
such as the object leaving the gripper. On the contrary,
FoundationPose loses tracking during handover or grasping

failure (Fig. [6) and leads to collisions. In Tab. [VI, we show
the success rate for each object for five trials. V-HOP has 40%
higher success rate on average compared to FoundationPose.

C. Can-in-Mug Experiment

The Can-in-Mug task (Fig. [8) involves grasping a tomato
can and inserting it into a mug. The bimanual version requires
the robot to also grasp the mug and insert the can in the center.
Successful execution hinges on precise pose estimation for
both objects, as any noise in their poses can lead to failure.



Randomized
Positions

Human
Perturbations

I_J

Fig. 7: Robustness test for the bimanual handover task.
(Left) The object is placed at various randomized positions.
(Right) A human perturbs the object by moving it to a different
position while the robot attempts to grasp it.

Method | Can-in-Mug | Bimanual Can-in-Mug
FP 20 0
V-HOP 60 20

TABLE VII: Success rate on Can-in-Mug task.

(b) Bimanual Can-in-Mug task.

Fig. 8: Can-in-Mug tasks. (top) The robot grasps the can and
inserts it into the mug. (bottom) The robot uses bimanual to
grasp the can and the mug and insert the can into the mug in
the center.

Our results (Tab. [VII) demonstrate that V-HOP, by integrating
visual and haptic inputs, delivers more stable tracking and a
higher overall success rate.

D. Contribution of each modality

In this study, we examine the contribution of visual and
haptic inputs to the final prediction. We adapt Grad-CAM [51]],
utilizing the final normalization layer of the Transformer
encoder as the target layer. Figure [J] illustrates the weight
distribution across the visual and haptic modalities. Our find-
ings suggest that when the gripper is not in contact with
an object, the model predominantly relies on visual inputs.
However, as the gripper establishes contact and occlusion

Fig. 9: Weights of visual and haptic modalities to the final
prediction. We overlay the modality weights calculated using
GradCAM [51] in the top-right corner.

becomes more severe, the model increasingly shifts its reliance
toward haptic inputs. This finding confirms the choice of self-
attention mechanism to emulate human’s “optimal integration”

principle.
VI. RELATED WORKS

In this work, we consider the problem of 6D object pose
tracking problem, which has been widely studied as a visual
problem [66} 3570, 7]]. In particular, we focus on model-based
tracking approaches, which assume access to the object’s CAD
model. While model-free approaches [65, (69, |54]] exist, they
fall outside the scope of this work. Visual pose tracking has
achieved significant progress on established benchmarks, such
as BOP [22]. Despite these successes, deploying such sys-
tems in real-world robotic applications remains challenging,
especially under scenarios with high occlusion and dynamic
interactions, such as in-hand manipulation tasks.

To address these challenges, prior research has explored
combining visual and tactile information to improve pose
tracking robustness [32, 54, [8 61} 150, 59, [14, [33]]. These
approaches leverage learning-based techniques to estimate
object poses by fusing visuo-tactile inputs. However, these
methods estimate poses on a per-frame basis, which lacks
temporal coherence. Additionally, cross-embodiment and do-
main generalization remain significant hurdles, limiting their
scalability and practicality for broad deployment.

More recent works aim to overcome some of these limita-
tions. For example, Liu et al. [41] proposes an optimization-
based approach that integrates tactile data with visual pose
tracking using an ad-hoc slippage detector and velocity pre-
dictor. Suresh et al. [54] extend the model-free tracking frame-
works BundleTrack [65] and BundleSDF [69] by combining
visual and tactile point clouds within a pose graph optimization
framework. However, these approaches are only validated on a
single embodiment and suffer from computational inefficien-
cies [54], which present challenges for real-time deployment
in dynamic manipulation tasks.

VII. LIMITATION

We follow the model-based object pose tracking setting,
which assumes that a CAD model is available for the object.



While assuming a CAD model may limit generalization in in-
the-wild applications, it is a well-established assumption in
industrial settings, such as warehouses or assembly lines [3}
54]]. One potential direction to overcome this limitation is
to simultaneously reconstruct the object and perform pose
tracking, as demonstrated in methods like BundleSDF [69]]
and NeuralFeels [54], which offer promising and compatible
ways to supply a model to our approach.

VIII. CONCLUSION

We introduced V-HOP, a visuo-haptic 6D object pose tracker
that integrates a unified haptic representation and a visuo-
haptic transformer. Our experiments demonstrate that V-HOP
generalizes effectively to novel sensor types, embodiments,
and objects, outperforming state-of-the-art visual and visuo-
tactile approaches. Ablation studies highlight the critical role
of both visual and haptic modalities in the framework. In
the sim-to-real transfer experiments, V-HOP proved robust,
delivering stable tracking under high occlusion and dynamic
conditions. Furthermore, integrating V-HOP’s real-time pose
tracking into motion planning enabled accurate manipulation
tasks, such as bimanual handover and insertion, showcasing
its practical effectiveness.
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Fig. 10: Distributions of embodiments and objects. The novel gripper and object have fewer samples as they are only used
for evaluation and not during training.
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Fig. 11: Dataset distributions. We view the occlusion rate, position, and rotation distribution of our data samples.

APPENDIX A
DATASET

In Fig. [T} we provide a visualization of the dataset’s distribution. The dataset focuses on in-hand object pose tracking and
addresses challenges such as heavy occlusion during in-hand manipulation. Our visualization reveals that the positions and
rotations of the data samples are well-distributed, following either normal or uniform distributions, ensuring a comprehensive
evaluation of pose tracking performance.

APPENDIX B
EXPERIMENTS
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Fig. 12: Accuracy-threshold curve [72] on our dataset. V-HOP consistently demonstrates stronger or similar performance
as FoundationPose (FP) under various thresholds.
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Fig. 13: Qualitative results of pose tracking sequences. We perform qualitative comparisons on more objects. Our results
demonstrate that V-HOP consistently outperforms FP by a large margin.
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Fig. 14: Bimanual handover experiments. We perform bimanual handover experiments on more objects.
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