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Abstract

Recent years have seen increased interest in non-parametric reinforcement learn-
ing. There are now practical kernel-based algorithms for approximating value
functions; however, kernel regression requires that the underlying function being
approximated be smooth on its domain. Few problems of interest satisfy this re-
quirement in their natural representation. In this paper we define value-consistent
pseudometric (VCPM), the distance function corresponding to a transformation
of the domain into a space where the target function is maximally smooth and thus
well-approximated by kernel regression. We then present DKBRL, an iterative
batch RL algorithm interleaving steps of Kernel-Based Reinforcement Learning
and distance metric adjustment. We evaluate its performance on Acrobot and Pin-
Ball, continuous-space reinforcement learning domains with discontinuous value
functions.

1 Introduction

Kernel-based reinforcement learning (KBRL) methods have recently begun to receive significant
research attention [1, 2, 3, 4, 5]. These algorithms have the virtue of being non-parametric: their
computational complexity scales with the amount of data, rather than with the size of the state
space; consequently, they are a promising means of avoiding the so-called curse of dimensionality,
where the number of parameters in a parametric representation of a general value function scales
exponentially with the dimensionality of the state space.

Key to these algorithms is the use of kernel regression to extrapolate values. Kernel regression is a
smooth-function approximation technique that performs all computation in terms of distance in the
state space.

Kernel regression has difficulty modelling discontinuous functions. This difficulty can be alleviated
by adding more data, but doing so is often undesirable. We show that changing the distance metric
used in the regression can efficiently resolve the difficulties. Existing metric learning algorithms are
not, in general, capable of dealing with discontinuities. We introduce the notion of a value-consistent
pseudometric (VCP) and show that it allows kernel-regression to model discontinuous functions. We
then present a novel iterative algorithm for approximating the VCP, and evaluate its performance on
Acrobot and PinBall, two reinforcement learning domains with discontinuous value functions.

2 Background

Reinforcement learning [6] problems are typically formalized as Markov Decision Processes
(MDPs) [7],which can be described by a tuple 〈S,A, T,R, γ〉, where S is a possibly infinite set
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of states, A is a finite set of actions, T : S ×A× S → [0, 1] is an expression of the probability that
a given action will result in a particular state transition R : S × A× S → R is an expression of the
reward received for each possible state transition, and γ is a discount factor specifying how much
the agent prefers immediate rewards to future ones. The agent starts the process in some start state,
s0, and chooses an action at based on st at every time step t, causing the state to change to state st+1

with probability T (st, at, st+1), and the agent to receive reward rt = R(st, at, st+1). The reward
and transition functions are assumed to be unknown; the agent must learn how to act by observing
sample rewards and transitions. In this paper, we assume that the agent is given a batch of sample
transitions from which to learn.

The agent picks actions by a policy π : S → A. The total reward the agent can expect when
following π starting from state s is denoted V π(s) = E

[∑
i γ

iri|s0 = s, ai = π(si)
]
. The agent’s

objective is to maximize this return, by finding a policy, π∗, such that V π
∗
(s) = maxπ V π(s) for all

states s. It is convenient to think in terms of the value of a state-action pair, Qπ(s, a), the expected
return when taking action, a, in state, s, then following π forever after. V π(s) = maxaQπ(s, a)

When the set of states is small and finite, an MDP can be efficiently solved by value iteration, which
uses dynamic programming to find V and Q satisfying

Q(s, a) =
∑
s′∈S

T (s, a, s′) [R(s, a, s′) + γV (s′)] .

Solving MDPs with continuous state spaces is less straightforward. Popular techniques include
LSTD [8], and Sarsa [9] which try to approximate the value function parametrically. With the right
parametric form, these algorithms can produce high quality solutions from very little data; however,
no amount of data can help them produce a good solutions when they assume the wrong form.

By contrast, non-parametric methods represent the value function directly in terms of the data. This
avoids the need for assumptions about value function form and allows the complexity of the fit
generated to scale naturally with the amount of data. We are interested in improving KBRL, one
particular non-parametric algorithm.

2.1 Kernel-Based Reinforcement Learning

KBRL [1] is a non-parametric value function approximation algorithm for continuous MDPs. It is a
three-step process that solves the MDP using a set of sample transitions. The first step constructs a
finite approximation of the MDP from the samples, the second step solves that finite approximation,
and the third step interpolates that solution to the original state space.

KBRL takes as input a set of sample transitions, Sa = {wai = (sai , r
a
i , ŝ

a
i ) | i = 1, . . . , na},

resulting from each action, a. From these transitions, KBRL constructs a finite MDP, M ′ =
〈S′, A, T ′, R′, γ〉). The new state space, S′, is the set of sample transitions, so |S′| = n =

∑
a na.

The new reward function is R′(wai , a
′, wa

′
j ) = ra

′
j . The new transition function T ′ is defined as

T ′(wai , a
′, wa

′′
j ) =

{
0 if a′ 6= a′′

κa′(ŝai , s
a′′
j ) otherwise,

where κa(·, ·) is some similarity function constrained to be nonnegative, decreasing in the distance
between its two arguments, and satisfying

∑
i κa(s, sai ) = 1 for all s ∈ S. It is convenient to

think of κ as being the normalized version of some underlying mother kernel, k, so that κa(s, sai ) =
k(b−1d(s,sai ))∑
j k(b−1d(s,saj )) where d is a metric and b is a bandwidth. There is a bias-variance trade-off to be

made when choosing b; bias decreases with b while variance increases [1]. Except where stated
otherwise, we use a Gaussian as our mother kernel throughout this paper.

There is work [2] exploring the possibilities for similarity functions (trees, nearest neighbours, and
grid-based approximations), but all of it uses Euclidean distance, dEuc, as the metric. The justifi-
cation is that the value function is assumed smooth—that nearby points have similar values. When
it uses dEuc, KBRL can be seen as using local averaging to approximate the transition, reward, and
Q-value functions. In the next section we show what happens when the smoothness assumption is
not met.
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KBRL solves for V ′, the value function of M ′ using some finite MDP solver then generalizes it to
M using the equation

Q(s, a) =
∑

wai ∈Sa
κa(s, sai ) [rai + γV ′(wai )] .

Note that the size of the finite model, M ′ constructed by KBRL is equal to the number of sam-
ple transitions. This makes solving it computationally intensive, even when using a sparse kernel;
however, an approximate solution to M ′ can be found efficiently if its transition probability matrix
is replaced by a low-rank approximation [5]. Kernel-based stochastic factorization (KBSF) takes
advantage of this property, using a stochastic factorization of the matrix as the low-rank approxima-
tion. KBSF takes time linear in the amount of data and a constant amount of space that depends only
on the desired approximation coarseness. Though we only provide proofs and results for KBRL, the
ideas presented in this paper can also be applied to KBSF.

3 Importance of the Right Metric

Because of its smoothness assumptions, KBRL is not well suited for solving MDPs whose value
functions have cliffs. To see why, consider TWO-ROOM, a simple MDP presented in Figure 1. It
describes a world with two rooms connected by doorway. The agent can freely move through the
open space of the world but cannot go through the wall.1 A region in one room is marked as the
goal. The agent receives a reward of 0 when inside the goal and −1 otherwise.

GOAL 

Figure 1: The state space of TWO-ROOM. There is a sample transition in the top room and state
near the sample in the bottom room

The optimal policy in TWO-ROOM is to navigate directly to the goal. Thus, the value of a state, s,
is decreasing in the length of the shortest path from it to the goal, dTR(s, g) (where dTR denotes
shortest-path metric). States that are physically close together but on opposite sides of the wall have
starkly different values. To solve TWO-ROOM, one must faithfully represent this steep drop in value
across the wall.

For KBRL to represent the value cliff, it must be run with a small bandwidth. Compensating for
the resulting variance requires a large set of sample transitions, making the domain challenging for
KBRL. However, if we use dTR instead of dEuc as the metric in the mother kernel, TWO-ROOM
becomes easily solvable with a large bandwidth and small data set. Since the value function is
smooth with respect to dTR we can use large bandwidths with no risk of averaging across the wall.

We tried solving TWO-ROOM with different combinations of bandwidth and metric, holding the
training set fixed 2. When running KBRL with a large bandwidth and the Euclidean metric, the

1For the purposes of discussion, assume the agent can move in any direction or choose to stay in place
(making for an infinite set of actions).
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Figure 2: Left to right: TWO-ROOM’s value function estimated with dEuc and b = .06; with dEuc
and b = .01; and with dTR and b = .06

value cliff is completely smoothed out. The resulting policy has the agent attempt to walk through
the wall. With a small bandwidth, KBRL finds the correct overall shape for the value function, but
there are some ripples that appear as artefacts of the small bandwidth. The resulting policy has the
agent reach the goal on a path that zigzags around the shortest path. Running KBRL with dTR and a
large bandwidth produces the correct shape for the value function without any ripples. The resulting
policy takes the agent to the goal along the shortest path.

The manifold of the TWO-ROOM state space is a square with a line segment cut out of it. The value
function is smooth on the manifold but discontinuous in Euclidean space. Thus, using distance on
the manifold instead of Euclidean distance makes kernel regression work better. Domains like TWO-
ROOM have been used to motivate representation discovery in parametric reinforcement learning,
most notably by Proto-Value Functions [10] which use the eigenfunctions of the manifold as a basis.

The discontinuity in TWO-ROOM’s value function comes from the local connectivity of the state
space, but local connectivity is not the only factor that affects value function smoothness. Consider,
for instance, a modification to TWO-ROOM where the wall is replaced by a region of low reward.
The agent can freely move through this region, but would get a better return by going around it. This
modification removes the connectivity issues (the state space manifold is Euclidean space) but the
value function still has the same discontinuity. Now consider a modification where the agent can
jump over the wall if it has enough momentum. With this modification, two states that are close to
each other 2 and far from the wall can have very different values depending on whether the agent is
on a trajectory that can hurdle the wall. This modified version of TWO-ROOM has a value function
discontinuity that extends beyond the wall and no local information can help distinguish the states it
separates. Neither dEuc nor dTR do particularly well here.

The cases above show that a good metric must consider more than just local state space topology; it
must also account for global dynamics and the reward structure of the MDP. In some sense, knowing
the right metric requires already knowing the value function. The next section identifies the ideal
metric and provides an algorithm for approximating it.

4 Value-Consistent Pseudometrics

KBRL uses kernel regression to approximate the Q-values of an MDP. It does this using kernels
of the form κa(s, s′) = ca · k(dEuc(s,s′)

b ), where ca is a normalizing constant. We are interested
in finding a new metric d′ to replace dEuc in the regression. To keep things simple, we begin by
removing the reinforcement learning component of the problem and only considering regression.

2Note that here we are measuring distance in phase space. Two states are nearby if they have similar position
and velocity.
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4.1 Transforming to Improve Regression

The problem statement of regression is as follows: given a set of training points, D = {(xi, yi) | i =
1, . . . , n}, of point-value pairs with yi = f(xi) for some f : X → R, produce a function f̃ that
approximates f well, for some measure of approximation quality.3

Regression with a kernel estimator [11] produces the estimate f̃(x) =
∑
i k(b−1dEuc(x−xi))yi∑
i k(b−1dEuc(x−xi)) . In

Section 3, we found that replacing dEuc with a function that varies more closely with f can produce
better results. The function that varies most closely with f is the pseudometric4 d∗f (x, x′) = |f(x)−
f(x′)|. The diameter of X under d∗f depends on f . We can remove this dependence using the scalar

µf = ∆X(dEuc)
fmax−fmin to make df (x, x′) = µfd

∗
f (x, x′), a pseudometric with the same diameter as dEuc.

df is the most natural choice for replacing dEuc in the regression. We call df the value-consistent
pseudometric (VCPM) for f on X .

Unfortunately, to use df in the regression one would need to already know f . Our workaround is an
iterative algorithm that interleaves steps of regression and metric learning to approximate the VCPM
for f on X . We start with an initial metric d0 = dEuc and use the kernel estimator to produce an
estimate f1. We then use f1 and d0 to produce a new metric d1 that corresponds to a representation
of X where f1 is smoother. We then use d1 in our kernel estimator to get a new estimate f2 and
repeat until the approximation stops improving.

The metric di should be a relaxation of di−1 towards dfi , the VCPM for fi on X . One way to
do this would be to choose di(x, x′) = c0

√
di−1(x, x′)2 + α2dfi(x, x′)2, where c0 is a diameter

preserving constant and α > 0 is a relaxation rate. Note that even though dfi is a pseudometric,
each di is guaranteed to be a valid metric on X because of the dependence on di−1.

The effect of varying α is discussed in the Appendix. The diameter preserving c0 satisfies 1√
1+α2 ≤

c0 ≤ 1 and is difficult to calculate exactly, so we assume the lower bound. Calculating dfi requires
knowing the extrema of fi, which are also difficult to compute but known to be bounded by ymax
and ymin; we use these bounds in place of the exact values. With these two heuristics, the metric will
underestimate some distances. Underestimating distances is equivalent to using a larger bandwidth,
which is an acceptable trade-off for the performance improvement.

With these adjustments, our relaxation of the metric becomes

di(x, x′) =
1√

1 + a2

√
di−1(x, x′)2 +

(
α∆(dEuc)

fi(x)− fi(x′)
ymax − ymin

)2

.

This relaxation can be viewed as a transform on X compressing it where fi is flat and stretching it
where fi is steep. This transform warps the m-dimensional X through m + i dimensions in such a
way that fi becomes smoother. For this reason, we call it a Dimension-Adding Wrinkle-Ironing
Transform (DAWIT) [12]. Appendix A discusses the geometric interpretation of the transform in
more detail.

For reasons explained in Appendix A, we refer to “kernel regression augmented to learn a metric by
DAWIT” as FDK. We are able to demonstrate a number of properties of FDK. We have experimental
evidence5 that the best fit does not always occur in the limit. We also have proof that: in the limit
of infinite data and a bandwidth that shrinks at an appropriate rate, the metric learned converges to
the VCPM of f on X; for a fixed bandwidth and dataset, iterating until convergence produces a
piecewise flat approximation of f ; the number of pieces in the piecewise flat approximation varies
inversely with b.

3We assume that X is a compact, connected subset of Rm; and that maxi yi = ymax 6= ymin = mini yi.
From these assumptions it follows that f has distinct extrema on X; we refer to these as fmax and fmin. We
refer to the diameter of X under metric d as ∆X(d)

4d∗f is a pseudometric because it doesn’t satisfy d∗(x, x′) =⇒ x = x′; in the supplementary matrials we
show that it is safe to use d∗f as a metric in kernel regression.

5see Appendix B
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Claim In the limit of infinite data and a bandwidth that shrinks at an admissible rate6, performing
FDK to convergence with any α > 0 will produce the VCPM of the function being approximated.

Proof. (sketch) We show this in two parts: First we show that repeatedly applying DAWIT with
the same function produces a sequence of metrics converging to the VCPM for that function on
its domain. Next, we use the convergence properties of kernel regression to show that FDK also
possesses the property.

Part 1: The metric produced by DAWIT on iteration j satisfies

dj(x1, x2) =

√
dj−1(x1, x2)2 + α2µ2

f · (f(x1)− f(x2))2

1 + α2

=

√√√√d0(x1, x2)2

(1 + α2)j
+ α2µ2

f · (f(x1)− f(x2))2

j∑
i=1

1
(1 + α2)i

.

As j →∞, the term involving d0 goes to zero exponentially quickly and the summation on the right
converges to α−2. It follows that

lim
j→∞

dj(x1, x2) = µf · (f(x1)− f(x2))

which is the VCPM for f on X .

Part 2: As the size of the dataset increases and the bandwidth decreases at an admissible rate, the first
estimate, f0, produced by kernel regression converges to f . It follows that the metric d1 produced by
DAWIT converges to a relaxation towards df and subsequent iterations of FDK resemble DAWIT
repeated with the same function which, as we showed above, converges to the VCPM for the function
on its domain.

The proof above shows that in the limit, FDK produces the pseudometric we identified as the ideal.
Next we show the convergence properties of FDK by characterizing the fixed points of FDK. A
pseudometric d is a fixed point of FDK on datasetD if performing a round of DAWIT with di−1 = d

(and f̃i being the result of kernel regression with di−1) produces di = d.

Lemma A pseudometric d is a fixed point of FDK if and only if the function f̃ created by perform-
ing kernel regression using d satisfies d(xi, xj) = µf̃ |f̃(xi)− f̃(xj)| for all xi, xj ∈ D.

The proof of this lemma is some straightforward arithmetic substituting into the equation for
DAWIT; it is omitted in the interest of space. Next, we say a metric d is an attractive fixed
point of FDK if there exists ε > 0 such that starting FDK from any pseudometric d0 satisfying
|d0(x, x′) − d(x, x′)| < ε for all x, x′ ∈ X , produces a sequence of converging to d. The set of
attractive fixed points is the set of pseudometrics to which FDK can converge.

Claim For a metric, d to be an attractive fixed point, the function f̃ resulting from doing kernel
regression with d must be flat at xi for every xi ∈ D.

Proof. (by contradiction) Assume d is an attractive fixed point of FDK for a given dataset D such
that f̃ is not flat at some xi ∈ D. Assume WLOG that i = 1. f̃ being non-flat at x1 means in any
neighbourhood of x1 there is some x such that f̃(x) 6= f̃(x1). Note that this can only happen if
d(x, x1) 6= 0.

Given some ε, Let x∗ be a point such that: (x∗, f(x∗)) /∈ D; d(x∗, x1) < ε; and f̃(x∗) 6= f̃(x1).
Let d′ be the pseudometric satisfying d′(x, x∗) = d(x, x1) for all x and d′(x, x′) = d(x, x′) for all
x, x′ 6= x∗. The approximation f̃ ′ that results from using d′ in kernel regression is identical to f̃
except at x∗, where f̃ ′(x∗) = f̃(x1) (since x∗ is not in D it has no influence over the regression). It
follows that f̃ ′ satisfies the constraints for d′ to be a fixed point. Therefore d does not attract d′ and
cannot be an attractive fixed point.

6An admissible shrinkage rate [1] is one where the bandwidth goes to zero but slowly enough (relative to
the data increase) to avoid creating an undesirable rise in variance.
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An implication of the claim above is that, in the limit, neighborhoods of points in the dataset get
collapsed into singularities. The supplementary materials provide intuition about how this happens.

In practice, we find that approximation error typically goes down then up, and the metric that mini-
mizes it is found after just a handful of iterations. We also find that our augmented kernel regression
is very well suited for modelling discontinuities like the one in TWO-ROOM’s value function. Ap-
pendix B provides empirical data about fit quality.

Claim When performed using a kernel, k, with compact support having bandwidth, b < ∆X

c , for
some integer, c, FDK has an attractive fixed point with c+ 1 singularities.

Proof. (by construction) Consider the dataset D = {(xi, yi) | i = 0 . . . c} with xi = yi = i pro-
duced from a function f : [0, c]→ R. Let d be the pseudometric such that d(xi, xj) = dEuc(xi, xj)
for all i, j ∈ 0, . . . , c and d(x, x0) = 0 for all x /∈ {x0, . . . , xc}.
First, we show that d(x) is a fixed point. Let f̃ be the function produced by kernel regression using
d as the metric. Solving for f̃ gives f̃(x) =

∑
j k(x, xj)yj . Because of the constraints on the

bandwidth, k(xi, xj) = 0 for all i 6= k, thus f̃(xi) = yi = xi for all i and f̃(x) = y0 = x0 for all
x /∈ {x0, . . . , xc}. f̃ is a line though all c+1 points in D. By our lemma, this makes it a fixed point.

To show that d(x) is attractive, we consider a new pseudometric that is a perturbation of d. Let d0

be a pseudometric such that |d(x, x′) − d0(x, x′)| < ∆(X)
c − b for all pairs of points (x, x′) in X .

The f̃0 that results from kernel regression using d0 satisfies f̃0(x) = f̃(x) because the perturbations
were made small enough that kernels centred on each xi still do not overlap. During the metric

learning step, DAWIT produces the metric d1(x, x′) ∝
√
d0(x, x′)2 + α2µ2(f̃(x)− f̃(x′))2 =√

d0(x, x′)2 + (αµd(x, x′))2. Note that d1 is a relaxation towards d. Since d1 satisfies the con-
straints we placed on d0, it follows that d2, d3, . . ., are also relaxations to d and that the sequence
{di} converges to d, making d an attractive fixed point.

The proof above shows that the number of pieces in the piecewise flat approximation generated in
the limit of FDK is inversely proportional to the bandwidth used. The proof can be extended to deal
with kernels with infinite support.

4.2 Transforming to Improve Reinforcement Learning

Now that we have an extension of kernel regression capable of modelling a wider class of functions,
we are ready to apply it to reinforcement learning.

It is tempting to think that dV π∗ , the VCPM for V π
∗
, is the ideal pseudometric. This is not the case;

dV π∗ corresponds to an abstraction where all states with the same value are mapped to the same
abstract state. Such an abstraction discards information about the optimal action. What we need is
an abstraction where only states with the same Q-values are mapped to the same abstract state.

We can produce such an abstraction by using the VCPMs for the Q-values.7 For each action a we
want κa(s, sai ) = k(b−1dQa (s,sai ))∑

j k(b−1dQa (s,saj )) . Note that we are using a different pseudometric in the kernel
for each action. Using the VCPMs for the Q-values corresponds to a Q∗-irrelevance abstraction;
it satisfies Φ(s) = Φ(s′) =⇒ Qπ

∗
(s, a) = Qπ

∗
(s′, a) ∀a since ‖Φ(s) − Φ(s′)‖ = 0 ⇐⇒

dQaQ(s, s′) = 0 ∀a ⇐⇒ Qπ
∗
(s, a) = Qπ

∗
(s′, a) ∀a. Acting optimally with respect to Q-values

in a Q∗-irrelevance abstraction results in optimal behaviour in the ground MDP [13].

Now that we have identified the desired abstraction, we can construct an algorithm to approximate
it. As we did for regression, we start from the Euclidean metric and iteratively estimate the Q-values
(with KBRL) and update our metrics (with DAWIT). Algorithm 1 describes the process.

In practice we found that it was rarely worth doing more than five iterations of DKBRL. There is one
important detail that is worth mentioning; the algorithm reuses the same dataset on each iteration

7We use Qa to refer to the function Qa(s) = Qπ
∗
(s, a).
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Algorithm 1 DAWIT-KBRL
1: procedure DKBRL(S′, b)
2: da0 ← dEuc ∀a
3: i← 0
4: repeat
5: Qi ← KBRL(S′, b, di)
6: for a ∈ A do
7: dai+1 ← DAWIT(dai , Q

a
i )

8: end for
9: i← i+ 1

10: until Policy stops improving.
11: return Qi−1

12: end procedure

because the problem formulation is to learn from a batch of sample transitions. Were we free to
collect fresh data between iterations, we would want the sampled points to be uniformly distributed
with respect to the latest metric. Doing so is necessary for KBRL’s correctness guarantees. Uniform
coverage with the learned metric is equivalent to concentrating samples in the regions of state space
where the Q-values are steep, which is sensible because that is where the Q-values tend to be poorly
approximated. In TWO-ROOM, sampling uniformly from the transformed space corresponds to
choosing more samples along the wall.

We ran DKBRL on TWO-ROOM with a large bandwidth (b = .06) to see if it could identify the wall.
The results were successful; DKBRL was able to learn a metric that separated states on opposite
sides of the wall. To visualize the metric, we sampled some points in the state space, calculated all-
pairs-shortest-paths, and performed multidimensional scaling [14] to get a 2D projection. Figure 4.2
shows the projection resulting from the metric for one action; the projections for the other actions
were similar.
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Figure 3: DKBRL opening the wall in TWO-ROOM over three iterations. Points are colored by
ground truth value (red=high, blue=low). After the first iteration (left) a rift has started to form, by
the third iteration points are completely separated by value.

5 Results

We start by demonstrating our approach work on Mountain-Car, a simple reinforcement learning
domain that allows us to easily visualize the value function and gain insight about how DKBRL
works. We then present our main results: performance improvements on the more challenging
Acrobot and PinBall domains.

5.1 Mountain-Car (proof-of-concept)

Mountain-Car is a two dimensional MDP [6] modelling a car with a weak motor attempting to
drive out of a valley.8 The car is not powerful enough to escape directly and must build up energy
by rolling back and forth. Mountain-Car’s value function has a discontinuity that goes in a spiral

8 The code for Mountain-Car and Acrobot used for this paper was adapted from RL-Glue [15].
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through the state space, separating states where the car has enough energy to make it up the hill on
its current roll from states that require an additional back and forth.
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Figure 4: (Left to right) Mountain-Car’s value function; the value function as approximated by
KBRL with dEuc and b = .09; and the approximation after four iterations of DKBRL with α = 1.

Our representation discovery algorithm allows KBRL to capture the discontinuity remarkably well.
It is also able to find the correct value for the bottom of the hill (note the axes). Nonetheless, because
Mountain-Car is such an easy problem, there is little difference in the policies induced by KBRL’s
and DKBRL’s value function approximations. What matters for solution quality is not the value
function approximation error, but that the best action gets assigned the highest Q-Value.

5.2 Acrobot

Acrobot is a four-dimensional MDP [6] modelling a two-link robot resembling a gymnast on a high
bar. The gymnast can actuate at the waist and must raise its feet above some height by swinging back
and forth. The acrobot domain has a value function discontinuity that resembles that of Mountain-
Car.

For our experiments, we collected 15000 sample transitions per action, with start points selected
to uniformly cover the reachable state space. We generated a solution from the transitions using
KBRL then performed two iterations of DKBRL. We conducted three sets of experiments, one for
each bandwidth: .03, .06, and .09. To account for the effects of random sampling we repeated each
experiment 6 times and averaged the results. For each run, we chose α = .5 because that worked
well in our regression experiments in the supplementary materials.
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Figure 5: (Top to bottom) The average solution qualities for the three experiments. The plots show
the cumulative distributions of steps-to-goal. The standard errors are drawn on the graph.

Figure 5 shows the average solution qualities for the three sets of experiments. Each plot shows
cumulative distribution of the number of steps it took to reach the goal state from 230 start states
selected to uniformly cover the reachable state space. Note that the plots are the averages of the 6
experiments performed at each bandwidth and that the standard-errors are drawn on the graph but
are hard to see because they are so small.

We now point out the salient features of the graphs. In roughly 30% of states, the agent is near the
end of a trajectory that reachs the goal (i.e. < 50 steps from the goal). In these easy states all the
solutions perform the same. The solution quality in the remaining 70% of states is what matters.

For the size of our dataset, b = .03 is too small; KBRL undersmooths and produces a bad initial
policy that doesn’t reach the goal for 5% of states. Performing DAWIT starting from this solution
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amplifies the noise and produces even worse policies. When we chose the more reasonable b = .06,
KBRL produces a good policy. One round of DKBRL is able to improve on this, slightly shortening
the steps-to-goal for 65% of all states. The next round of DKBRL, however, is counter-productive,
failing to reach the goal from 10% of states. When b = .09 the effects of oversmoothing the
discontinuities starts to show for KBRL. The graph is much slower to rise than when b = .06. A
round of DKBRL offers a sizeable improvement for 60% of states. The second round of DKBRL
offers no additional improvement.

Since DAWIT is designed to solve the problem of oversmoothing at discontinuities, we would expect
DKBRL to improve over KBRL when the bandwidth is large. This is what appears to be happening
here, but it is difficult to say for sure because the graphs are so similar. Because the discontinuity in
Acrobot’s value function is not along a decision boundary, improving the fit there does not do much
for solution quality. In the next subsection, we consider a domain where discontinuities correspond
to decision boundaries.

5.3 PinBall

PinBall is a four-dimensional MDP that models a ball navigating through a maze towards a goal
[16]. The ball is dynamic, and bounces off obstacles; the five actions allow the ball to either stay in
place or accelerate slightly along one of the compass directions. PinBall is particularly challenging
because it is easy to get stuck on a wall while rounding a corner. Furthermore, some of the obstacles
are so thin that they are hard to detect from the sample transitions.

We conducted our tests on one of the maps that came with the open source code.9 We had to make
two modifications to the domain: first, we fixed a bug that allowed the ball to pass through walls
under some circumstances and second, we increased the time discretization threefold so as to reduce
the amount of data needed to solve the problem.

For this set of experiments, we collected 20000 sample transitions per action uniformly from the
reachable state space. We then passed the samples through KBRL followed by two iterations of
DKBRL. We did this four times each at bandwidths .04, .07 and .09 keeping the relaxation rate
fixed at α = .5. The resulting steps-to-goal cumulative distributions are showin in Figure 6.
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Figure 6: The average solution qualities for PinBall for b = .04, .07, and .09 respectively.

For our chosen sample size, b = .04 is near the optimal value for KBRL. KBRL produces its best
solution there and performing iterations of DKBRL makes the performance worse. We suspect that
this happens because the value function approximation produced by KBRL has large ripples10 which
then get amplified by DAWIT making the fit worse.

When we raise the bandwidth to b = .07, the effects of oversmoothing kick in and the performance
of KBRL plummets. Here DKBRL is able to counteract the bias resulting from oversmoothing and
produce a solution comparable to the one produced by KBRL at b = .04. The resulting average
for the second iteration of DKBRL with b = .07 is similar to that of KBRL with b = .04, but the
variance is smaller.

Finally, when we raise the bandwidth to .09, the oversmoothing of KBRL is too much for DAWIT
to undo. DKBRL manages to improve upon the initial solution, but not by much.

9 The code is available at http://www-all.cs.umass.edu/˜gdk/pinball/. We used the map
pinball-easy.cfg

10In our discussion of TWO-ROOM we note that performing KBRL with small bandwidths produces value
functions with the right overall shape but with ripples
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These experiments suggest that the key merit of DKBRL is that it can reduce the need for bandwidth
tuning by allowing for near optimal solutions to be found over a wider interval of bandwidths.

6 Related Work

The method closest to ours for non-parametric regression is Metric Learning for Kernel Regression
(MLKR) [17], which finds the Mahalanobis metric best suited for performing kernel regression.
Using Mahalanobis distance is equivalent to applying a linear transform to the input space. Linear
transforms are not powerful enough to smooth out discontinuities and would offer little help ap-
proximating TWO-ROOM’s value function. Predictive Projections [18] uses an approach similar to
MLKR for dimensionality reduction in parametric reinforcement learning.

Other related algorithms are ST-ISOMAP [19] and Action Respecting Embedding [20], which use
modified nearest-neighbors algorithms to discover and unroll the manifold containing the data.
These algorithms have not been applied to RL. They would be well suited for learning a repre-
sentation for problems where value function discontinuity arises from local state space topology.

Existing representation discovery algorithms for parametric RL have largely focused on modifying
the parametric representation of the value function itself. One early approach was Proto-value func-
tions (or PVFs) [10], which uses nearest neighbors on the sample transitions to discover the manifold
of the state space and uses the eigenfunctions of the graph Laplacian as a basis for representing the
value function. PVFs, along with the related diffusion wavelet approach [21], focus on the topol-
ogy on the state space and offer little additional leverage when discontinuities arise from the MDPs
reward structure. Another parametric approach is the use of Bellman-error basis functions (BEBF)
[22], which are learned basis functions that represent the Bellman error in previous approximations.
BEBFs are similar in spirit to the technique we present in this paper; however, they are used as basis
functions in a linear value function approximation architecture.

We do not attempt to produce experimental results comparing our algorithm to any of the techniques
presented above. They attempt to address problems that are related to, but distinct from, what
DAWIT is designed for and there is no meaningful comparison that can be made.

7 Conclusion and Future Work

Representation discovery, which has so far been investigated primarily in parametric approaches to
reinforcement learning, is a promising area in the context of nonparametric approaches. A partic-
ularly interesting next step would be to explore an online version of DKBRL to that samples new
points for coverage in the transformed space. The correctness guarantees of KBRL require sampling
points uniformly from the domain. Sampling uniformly from our transformed domain is equivalent
to concentrating samples near value function discontinuities in the state space, which is desirable
since that is where the value function is hardest to represent.
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[5] André MS Barreto, Doina Precup, and Joelle Pineau. Practical kernel-based reinforcement learning.
Technical report, Laboratrio Nacional de Computao Cientfica, May 2014.

[6] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.

[7] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming, volume
414. John Wiley & Sons, 2009.

[8] Justin A Boyan. Least-squares temporal difference learning. In Proceedings of the 16th International
Conference on Machine Learning, pages 49–56, 1999.

[9] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems. University
of Cambridge, Department of Engineering, 1994.

[10] Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A Laplacian framework for learning
representation and control in Markov decision processes. Journal of Machine Learning Research, 8(10),
2007.

[11] Jacqueline K Benedetti. On the nonparametric estimation of regression functions. Journal of the Royal
Statistical Society, pages 39:248–253, 1977.

[12] Dawit Zewdie. Representation discovery in non-parametric reinforcement learning. Master’s thesis, MIT,
Cambridge MA, 2014.

[13] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for
MDPs. In International Symposium on Artificial Intelligence and Mathematics, 2006.

[14] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964.

[15] Brian Tanner and Adam White. RL-Glue : Language-independent software for reinforcement-learning
experiments. Journal of Machine Learning Research, 10:2133–2136, September 2009.

[16] George Konidaris and Andrew G Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In Advances in Neural Information Processing Systems 22, pages 1015–1023, 2009.

[17] Kilian Q. Weinberger and Gerald Tesauro. Metric learning for kernel regression. In 11th International
Conference on Artificial Intelligence and Statistics, 2007.

[18] Nathan Sprague. Predictive projections. In International Joint Conference on Artificial Intelligence, pages
1223–1229, 2009.
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A Transforming For Improved Fit

This section provides a different interpretation of DAWIT, the metric learning algorithm presented in Section
4.1. We start by introducing Fit-Improving Iterative Representation Adjustment (FIIRA), a function approxi-
mation framework under which DAWIT falls. We then present an intuitive explanation of the rational behind
DAWIT.

A.1 Fit-Improving Iterative Representation Adjustment

The problem statement of curve-fitting is as follows: given a set of training points, D = {(xi, yi) | i =

1, . . . , n}, of point-value pairs with yi = f(xi) for some function f : X → R, produce a function f̃ to
approximate f well, for some measure of approximation quality.

A regressor, r, is a procedure for creating fits from some space of functions, Fr . If f is not well approximated
by any function in Fr , the fit generated by r is guaranteed to be poor. One way to fix to this problem is to
transform the domain of f and work in a space where f is well approximated. Choosing such a transform
requires prior knowledge or assumptions about f .

Since we are not in a position to make assumptions about f , we wish to infer a transform directly from the data.
Our idea for doing so, is to pass D to the regressor, then use the approximation produced to infer a transform
Φ of the domain X such that f on Φ(X) is better approximated by Fr . Algorithm 1 describes the framework
for doing this. The procedure takes as input a dataset, D; a regressor, REGR; and a transform generator, TF .

Algorithm 2 Fit-Improving Iterative Representation Adjustment
1: procedure FIIRA(D, REGR, TF )
2: Φ0 ← x 7→ x . Identity transform
3: D0 ← D
4: i← 0
5: repeat
6: f̃i+1 ← REGR(Di) . Perform regression
7: Φi+1 ← TF (f̃i+1, Di) . Produce transform
8: Di+1 ← {(Φi+1(x), y) | (x, y) ∈ Di} . Update the dataset
9: i← i+ 1

10: until f̃i ≈ f̃i−1 . Or until best fit attained
11: return x 7→ f̃i(Φi−1(x))
12: end procedure

A formal analysis of the properties of FIIRA for a general regression scheme and transform generator is outside
the scope of this paper and is left for future work. What follows is a discussion of FIIRA for the special case
where the regressor is a local-averaging kernel smoother and the transform generator is DAWIT.

A.2 Dimension-Adding Wrinkle-Ironing Transform

In the paper we claim that the metric created by DAWIT corresponds to a transform that warps the state space
through a higher dimension. We now elaborate on that.

Consider a transform generator that, given a function f with domain X , returns a transform Φ which maps
every x ∈ X to 〈x|f(x)〉 (the bar represents concatenation). Φ stretchesX into d+ 1 dimensions in a way that
pulls apart points that differ in value (See Figure 6).

After the transformation, the distance between two points a and b in the domain of f becomes

‖Φ(a)− Φ(b)‖ =
√
‖a− b‖2 + (f(a)− f(b))2.

Note that ‖Φ(a)− Φ(b)‖ varies more closely with |f(a)− f(b)| than does ‖a− b‖.
The transform Φ does what we want, but it has two problems; it is sensitive to the scale of f , and it can change
the diameter of X . We fix these problems by normalizing f by αµf and Φ(X) by c0 (as defined in the main
body of the paper).

With these two changes, Φ maps the m-dimensional vector, x = (x1, . . . , xm) to the m + 1-dimensional
x′ = (c0x1, . . . , c0xm, c0αµf · f(x)). The distance metric that corresponds to the final form of this transform
is

‖Φ(a)− Φ(b)‖ = c0
√
‖a− b‖2 + α2µ2

f · (f(a)− f(b))2.
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Figure 7: The figure on the left is a heatmap of some function with a two-dimensional domain. The
areas in red are where it attains a high value and the ones in blue are where it attains a low value. The
figure on the right shows the two-dimensional domain stretched through three dimensional space in
such a way that separates points that differ in value. The red areas are pulled up and out of the
page while the blue ones are pushed down and into the page. Distances in this transformed space
correspond to the metric produced by DAWIT.

When we substitute for µf and c0, this equals the metric produced by DAWIT; hence the name “dimension-
adding” VCPM relaxation. We refer to kernel regression augmented to use DAWIT as FDK because it is a
FIIRA approach combining DAWIT and Kernel-regression.

A.3 How DAWIT works

Kernel-regression produces function estimates using local averaging. As a result, the approximation is good
where the target function, f, is linear and bad where it has high curvature. It follows that the curvature of the
estimate, h(x), is correlated with the approximation error. Thus, we can infer where the approximation likely
to be poor just by looking at the approximation.

We use this insight to construct a transform of the input domain, X , into a space where h (and thus also f )
are smoother. Our transform warps the m dimensional X into the m + 1 dimensional X ′ in such a way that
its diameter is preserved but some neighborhoods grow or shrink depending on the slope of h. The metric
produced by DAWIT corresponds to distances in X ′.

Let f be the unit step function and let X = [−1, 1]. One iteration of kernel regression produces h resembling
a sigmoid. h attains its maximum slope near x = 0. Performing DAWIT with h produces a metric, d, that
stretches the area around x = 0 (i.e. d(−ε, ε) > 2 ∗ ε, for small |ε|) and squashes the regions near x = 1
and x = −1. The point x = 0 itself may get moved closer to x = 1 or x = −1, but that does not matter.
What matters is that on the next round of regression the region around x = 0 is magnified, making it easier to
pinpoint where the discontinuity lies. This magnification is analogous to using a smaller bandwidth at x = 0.

One can see now why we call the transform ”wrinkle-ironing”. The discontinuity in the step function resembles
a crease on an article of clothing. Repeated application of the transform smooths this and similar value cliffs
much like a hot iron passing over a wrinkly shirt.

A.4 Value Consistent Pseudometric

In the main body of the paper, we claimed that using the VCPM as a valid metric in kernel regression was
theoretically sound. We now justify that claim.

When viewed under the lens of a FIIRA approach, the VCPM can be seen as coming from a transform Φ∗ that
satisfies ‖Φ∗(x)−Φ∗(x′)‖ = µf |f(x)− f(x′)|. A transform that satisfies this property is Φ∗(x) = µff(x).
Under this interpretation, we are mapping each point to its scaled value and performing kernel regression to fit
a line. Only points with identical values get mapped to the same point by the transform. Since Φ∗ is a safe to
use before doing regression, performing kernel regression with the VCMP for the function being approximated
cannot cause problems.
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B Graphs

This section contains graphical demonstrations of the convergence properties of FDK. It starts by showing how
FDK converges to a piecewise flat approximation when modelling a line. It goes on to show the FDK fits
generated for some datasets.
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Figure 8: How FDK converges to a piecewise flat approximation when attempting to fit a line. The
figure on the left shows the first fit f̃0 in blue. Note how the fit is biased at the boundaries. This bias
gets amplified over the next several iterations of FDK (middle). The end result is the piecewise flat
approximation on the right. If we had used a smaller bandwidth there would have been more pieces
in the piecewise flat approximation.

When fitting a line, the approximation error increases with every iteration. For most functions, however, the
error goes down for a few iterations before going up. The following figures show the result fitting some select
functions with different combinations of parameters.

Below we have included plots that show approximation quality of FDK for some select datasets. The plots
on the left show the dataset (scatter plot), the kernel regression fit (dotted blue line), the best FDK fit obtained
(solid red line), and the piecewise flat function to which FDK converges for the value of α that produced the best
fit (green pluses). The plots on the right show how the approximation error changes as a function of iteration
number for different values of α. Approximation error is measured as the sum of squared errors, normalized so
that the fit produced by the vanilla kernel regression has unit error. Note how low the error dips and how few
iterations it takes to get there.
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