
Learning Parameterized Motor Skills on a Humanoid Robot

Bruno Castro da Silva1, Gianluca Baldassarre2, George Konidaris3 and Andrew Barto1

Abstract— We demonstrate a sample-efficient method for
constructing reusable parameterized skills that can solve fami-
lies of related motor tasks. Our method uses learned policies to
analyze the policy space topology and learn a set of regression
models which, given a novel task, appropriately parameterizes
an underlying low-level controller. By identifying the disjoint
charts that compose the policy manifold, the method can
separately model the qualitatively different sub-skills required
for solving distinct classes of tasks. Such sub-skills are useful
because they can be treated as new discrete, specialized actions
by higher-level planning processes. We also propose a method
for reusing seemingly unsuccessful policies as additional, valid
training samples for synthesizing the skill, thus accelerating
learning. We evaluate our method on a humanoid iCub robot
tasked with learning to accurately throw plastic balls at
parameterized target locations.

I. INTRODUCTION

Flexible skills are one of the fundamental building blocks
of truly autonomous robots. When solving control problems,
single policies can be learned but may fail if the tasks
at hand vary or if the agent has to face novel, unknown
contexts. Furthermore, learning a single policy for each
possible variation of a task or context is infeasible. To
deal with these problems we extend previous research and
demonstrate a new sample-efficient method capable of con-
structing reusable, parameterized skills on a physical robot.
Parameterized skills are flexible behaviors that can be used
to tackle any instance of a family of related control tasks,
given only a parameterized description of the task [1], [2].
Once such a skill is learned it can be applied to novel
variations of a task without having to learn context-specific
policies from scratch. Parameterized skills are also useful for
dealing with high-dimensional control problems since they
can be treated as adjustable primitive actions by higher-level
planning processes, thus abstracting away details of low-level
control.

As an example of the type of parameterized skill we refer
to, consider a robot that has to move different objects in a
warehouse. While executing such a task, the robot may have
to pick up objects of different shapes and weights. For it
to be truly competent it should be able to grasp different
objects, even ones with a particular combination of shape

1B. da Silva and A. Barto are with the School of Com-
puter Science, University of Massachusetts Amherst, 01003, USA.
{bsilva,barto}@cs.umass.edu

2G. Baldassarre is with the Ist. di Scienze e Tecnologie della Cognizione,
CNR, Rome, Italy. gianluca.baldassarre@istc.cnr.it

3G. Konidaris is with the Computer Science and Artificial
Intelligence Lab (CSAIL), MIT, Cambridge, MA 02139, USA.
gdk@csail.mit.edu

This work was partially funded by the EU project IM-CLeVeR, G.A. No.
FP7-ICT-IP-231722.

and weight that has never been experienced before. In this
case, learning a single policy for each possible combination
of object properties is infeasible. The robot might, instead,
wish to learn good policies for a few specific types of objects
and use these to synthesize a single general grasping skill—
parameterized by the characteristics of the target object—that
it can execute on-demand.

Previous research has shown that it is possible to transfer
information between pairs of related tasks [3], [4] and
that behaviors encoded via fixed, pre-defined families of
policies can be learned and used to tackle slight variations
of a task [5], [2]. More general methods for synthesizing
parameterized skills have been recently proposed; Kober et
al. [2] propose learning a mapping from task description to
metaparameters of a motion primitive, but assume that a sin-
gle underlying motion primitive is sufficient to represent the
whole class of tasks of interest. Neumann et al. [6] modify a
policy search algorithm to deal with parameterized tasks, but
require learning a forward-model prior to acquiring the skill.
da Silva et al [1] propose a general framework for learning
parameterized skills that estimates the topology of the policy
space and models the set of disjoint low-dimensional charts
that compose the policy manifold. These models are then
combined to construct a single parameterized skill function
that predicts policy parameters from task parameters.

In this paper we extend the framework proposed by
da Silva et al. [1] so that 1) it is more sample-efficient,
and therefore applicable to robotics problems; 2) it can
reuse seemingly unsuccessful policies as additional, valid
training samples for synthesizing the skill, thus accelerating
learning via a type of off-policy parameterized skill learning.
Furthermore, we demonstrate that 1) our method is capable
of constructing a generalizable whole-body throwing skill, in
a physical humanoid robot, from few training samples; and
that 2) it automatically identifies and separately models the
qualitatively different sub-skills required for solving different
types of tasks. This latter capability is particularly important
when constructing hierarchically structured policies, since
each sub-skill can be labeled as a new discrete, specialized
adjustable action for use by higher-level planning processes.

II. SETTING

We assume an agent which is presented with a set of tasks
drawn from some task distribution. Each task is modeled as
a Markov Decision Process (MDP). Furthermore, we assume
that the MDPs have dynamics and reward functions similar
enough so that they can be considered variations of a same
task. Our objective is to maximize the expected reward over
the distribution of possible MDPs:

∫
P (τ)J

(
πθ, τ

)
dτ, (1)

where πθ is a policy parameterized by θ ∈ RN , τ is a task
parameter vector drawn from a |T |-dimensional continuous
space T , J(π, τ) = E

{∑tf
t=0 rt|π, τ

}
is the expected return

obtained when using policy π to solve task τ during an
episode of length tf , and P (τ) is a probability density
function describing the probability of task τ occurring. Let
a parameterized skill be a function

Θ : T → RN , (2)

mapping task parameters to policy parameters. When using
a parameterized skill to solve a distribution of tasks, the
specific policy parameters to be used depend on the task
currently being solved and are specified by Θ. Our goal is to
construct a parameterized skill function Θ which maximizes:∫

P (τ)J
(
πΘ(τ), τ

)
dτ. (3)

Note that policies for solving tasks in T are points in
an N -dimensional policy space. Because these tasks are
related, it is reasonable to assume that there exists some
structure in the policy space; more specifically, that policies
for solving related tasks lie on a lower-dimensional manifold
embedded in RN . This manifold may be composed of a set of
piecewise-smooth surfaces, or charts, which together span the
space of task policies. Within each chart, policy parameters
vary smoothly as we vary the task parameters. Disjoint charts
may exist in policy space because changes in task parameters
might require abrupt changes in the parameterization of the
policy. Since policies may be distributed over separate charts,
it is important to automatically identify and separately model
each one of the charts. Each disjoint chart typically encodes a
specialized sub-skill required for solving a specific subclass
of tasks. A parameterized skill should be able to identify
and model these specialized strategies and to correctly select
which one is appropriate for a task, thus obtaining a unified
model by which different sub-skills are integrated.

III. LEARNING A PARAMETERIZED SKILL

To learn a parameterized skill we first sample |K| tasks
from P , the task distribution, and use them to construct
K, the set of training task instances and their correspond-
ing learned policy parameters. More specifically, let K ≡
{(τi, θi)}, where τi is the i-th training task drawn from P
and θi = [θi(1), . . . , θi(N)]> ∈ RN are the parameters
of a policy that solves task τi. We wish to use the set of
sample tasks and corresponding policies to train a family
of regression models mapping task parameters to policy
parameters. However, because policies for different subsets
of T might be embedded in different lower-dimensional
charts of the policy manifold, it is necessary to first estimate
the number D of such charts, and only then train a separate
regression model for each one. We use ISOMAP [7] to
analyze different properties of the geometry and topology of
the policy space. ISOMAP is a method for identifying the

underlying global geometry of high-dimensional spaces and
for estimating the intrinsic number of non-linear degrees of
freedom that underlie it. This latter information can be used
to 1) estimate D, the number of disjoint lower-dimensional
charts in the manifold; and 2) in which chart c the policy for
a given task τ is embedded. We organize this information
into a training set of pairs (τ, c), where τ is a training
task and c ∈ {1, . . . , D} is an identifier of the chart in
which that task’s policy is embedded. Let us use this training
set to learn a classifier χ mapping task parameters to the
identifier of the chart in which that task’s policy is embedded:
χ : T → {1, . . . , D}. In this paper, χ is learned using
nonlinear regularized logistic regression and its parameters
are optimized using standard gradient descent methods.

Let Θ be the parameterized skill function we wish to
learn. This function will be defined in terms of a set of
functions Θc : T → RN , each one modeling a distinct chart.
More specifically, each Θc models how policy parameters
change as task parameters change, and is defined over all
tasks whose policies are embedded in chart c. Let Kc be the
set of all tasks which χ assigns to chart c: Kc ≡ {(τ, θ) ∈
K} s.t. χ(τ) = c. We use each Kc as a training set to learn
the corresponding function Θc. Each function Θc is learned
as a `2-regularized linear regression model mapping non-
linear task features to policy parameters. We can now define
the overall parameterized skill as a function

Θ(τ) ≡ Θc(τ) s.t. c = χ(τ) (4)

and

Θc(τ) = [(w1
Kc

)> . . . (wN
Kc

)>]ϕKc
(τ), (5)

where ϕKc
(τ) is an arbitrary V -dimensional vector of non-

linear task features computed over τ , and wj
Kc

, for each
j ∈ {1, . . . , N}, is a V -dimensional vector given by

wj
Kc

= (Φ>Kc
ΦKc

+ λKc
I)−1Φ>Kc

Πj . (6)

Here, ΦKc
is a |Kc| × V design matrix

[ϕKc
(τ1)> . . .ϕK(τKc

)>], λKc
is a regularization term

and Πj is a |Kc|-dimensional vector containing the j-th
policy feature of each one of the |Kc| training policies
θi: Πj = [θ1(j) . . . θKc

(j)]>. Note that Equation 5
corresponds to a multivariate regression model which
implicitly assumes that policy features are approximately
independent conditioned on the task. If this is known not
to be the case, more expressive multivariate regression
models, which directly encode dependencies between task
and policy features, could be used.

Figure 1 depicts the overall process of executing a learned
parameterized skill: first, a task τ is drawn from P ; the
classifier χ identifies the chart c in which that task’s policy
is most likely embedded; finally, the regression model Θc

for that chart is selected and maps the task parameters of τ
to policy parameters θ1, . . . , θN .

Task space
T

c

policy space

c

k
m

�(⌧)
P (⌧)

⌧
...

✓1

✓N

⇥1

⇥c

⇥D

...

...

task parameter 1 task parameter |T|

✓

Fig. 1. Steps involved in executing a learned parameterized skill: a task
is drawn; χ identifies the chart c to which the policy for that task belongs;
the corresponding model Θc maps task parameters to policy parameters.

IV. THE ICUB THROWING DOMAIN

We evaluate the method described in Section III on an
iCub robot tasked with learning to accurately throw plastic
balls at parameterized target locations. The iCub is a hu-
manoid robot with 53 actuated degrees of freedom built to
have dimensions similar to that of a 3.5 year old child [8].
Our goal with these experiments is twofold: 1) to test the
effectiveness of a learned parameterized throwing skill to
accurately hit various targets of interest; and 2) to evaluate
whether the learning process can automatically identify and
separately model the qualitatively different sub-skills that
may be required for solving different classes of tasks1.

We place a 90cm × 90cm target board on the floor in
front of the robot and allow targets (plastic bottles) to be
placed anywhere on that board. The space T of tasks consists
of a 2-dimensional Euclidean space containing all (x, y)
coordinates at which targets can be placed. The performance
of a policy (throw) corresponds to the distance between
where the ball landed and the intended target.

Fig. 2. The iCub preparing for a throw.

Prior to acquiring a parameterized throwing skill we
recorded the parameters of a whole-body overhand throw
from kinesthetic demonstration. This throwing movement
required simultaneously rotating the robot’s shoulder, torso
and forearm, pitching its torso and extending its elbow.
Based on this recorded motion we defined a base policy for
throwing whose parameters can be modified so that it hits
different target positions. This base policy is a function of a
7-dimensional vector [θ1, . . . , θN]> whose elements modify
different aspects of the throw. Concretely, they regulate the
initial and final torso angles, torso rotation speed, torso pitch
at the end of the movement, initial angle of rotation of

1Videos are available at the ICRA website or at http://cs.umass.
edu/˜bsilva.

the shoulder, amount of forearm rotation during the throw
and total elbow extension. A throw initiates when the robot
executes a predefined open-loop grasping motion to hold the
plastic ball; it also involves commanding the iCub’s fingers
to release the ball at a fixed time during the movement. A
sample throw is shown on Figure 3.

Fig. 3. A sample throw executed by the iCub.

Before we can apply the parameterized skill framework
to this problem we need to make two domain-dependent
design decisions: 1) what policy search algorithm to use
when constructing the training set K; and 2) what expanded
set of task features ϕKc

(τ) to use when modeling the surface
of each individual chart. The former decision influences the
time to construct the skill training set while the latter affects
the expressiveness of each chart model Θc. We used the PI2

algorithm [9] to learn individual policies. PI2 is policy search
method derived from first principles of stochastic optimal
control; we chose it because it often outperforms standard
gradient methods [10] and also due to its simplicity and low
dependence on parameter-tuning. The stopping criteria for
the search executed by PI2 corresponds to when it finds
a policy capable of hitting a target 4 out of 5 times. This
requirement is needed to rule out noisy policy candidates.
Finally, we constructed the expanded set of non-linear task
features ϕKc

(τ) as a set of polynomial features over the
original task representation. Since τ corresponds to the
cartesian coordinates (x, y) of a given target, we define

ϕKc
(τ) ≡ ϕKc

(
(x, y)

)
= [xe1ye2re3αe4]>, (7)

where (r, α) ≡
(
(x2 + y2)

1
2 , atan2(y, x)

)
is the polar-

coordinate representation of (x, y) and each exponent
e1, . . . , e4 varies in the range {0, . . . , P}, where P is the
desired degree of the polynomial expansion. We determined
by cross-validation that an effective heuristic for choosing
P is a logarithmic function of the number of training
examples: P = blog2(|Kc|)c. Similarly, we determined that
the regularization parameter, λKc , can be effectively set
by a linear function of the number of training examples:
λKc

= 0.1|Kc|. This adaptive setting of metaparameters is
important to regulate the complexity of each chart model as
a function of the number of samples available.

A. Sample Reuse

While practicing tasks to construct K the robot may
execute several suboptimal policies. Even though these fail
to solve the task at hand they might nonetheless correspond
to valid solutions to a different task. This is clearly true in
the throwing domain: a policy πθ for hitting some target
position τ is suboptimal if it hits a different target τ ′; even
if not useful for solving τ , the pair (τ ′, θ) may nonetheless be

http://cs.umass.edu/~bsilva
http://cs.umass.edu/~bsilva

incorporated into K without requiring the agent to explicitly
train for τ ′. The use of seemingly unsuccessful policies as
additional training samples accelerates the construction of K,
the most time-intensive step in learning a parameterized skill.
In general, reusing samples requires access to a mapping
from observed effects of a policy (e.g., its trajectories) to
parameters describing the tasks in which the policy could be
successfully applied. This mapping can be seen as an inverse
model of the parameterized skill; since it allows unsuccessful
policies to be reused as sample solutions for different tasks,
it constitutes a type of off-policy skill learning.

It is important to understand when the reuse of unsuccess-
ful policies is safe; that is, in which situations the reused
policies are guaranteed not to be outliers with respect to a
given chart. Some policy search methods, such as those based
on gradients, generate candidate policies that, by definition,
lie on the manifold of interest. This suggests that using them
as additional training samples for the skill is safe. However,
some policy representations may be redundant and allow
different parameterizations, embedded in distinct charts, to
solve a same task. In this case, reusing samples could
cause models Θc to be trained with incompatible samples
originating from different regions of the manifold. We used
a simple rejection sampling strategy to ensure that a training
set Kc does not mix samples from different charts. Let τ ′ be
the task unintentionally solved by some policy πθ while in
search for a solution for τ . We add the tuple (τ ′, θ) to Kc,
c = χ(τ ′), iff ||θ −PKc

(θ)|| < ε diam(Kc). Here, PS(p) is
the projection operator of p onto set S and diam(S) denotes
the diameter of S, both of which are defined with respect to
the `2-norm, and ε ∈ [0, 1] is a tunable parameter regulating
how strict the rejection sampling strategy is. Intuitively, this
condition tries to ensure that reused samples added to Kc

are never too far away from the surface of a given chart.

V. EXPERIMENTS

We start our experiments by measuring properties of the
policy manifold learned while acquiring the parameterized
throwing skill. We sampled 30 tasks (target positions) uni-
formly at random and learned policies for solving them.
Based on these, we used ISOMAP to analyze the topological
characteristics of the induced policy manifold generated as
we vary tasks. Our first important observation is that the
residual variance of the quasi-isometric embedding produced
by ISOMAP indicates that the intrinsic dimensionality of
the skill manifold is two. This is expected since we are
essentially parameterizing a 7-dimensional policy space by
task parameters, which are drawn from a 2-dimensional space
T . This means that even though policies are 7-dimensional
vectors, because there are just two degrees-of-freedom with
which we can vary tasks, the policies themselves remain
confined to a set of 2-dimensional charts. ISOMAP also
detects that policies for different tasks are distributed among
two disjoint charts. Figure 4 depicts the target board used
in this domain and, overlaid on it, colors indicating which
regions of the task space are assigned by χ to which chart.
As can be seen, policies for targets to the left of the

robot are embedded in one of the charts, while policies
for targets to the right of the robot lie on a second chart.
The learned nonlinear boundary separating these indicates
the existence of two disjoint classes of policies, each of
which encoding a qualitatively distinct parameterized sub-
skill (throwing to the left; throwing to the right) needed
for solving a specific type of task. The identification of
these two classes of policy parameterizations is a demon-
stration of skill specialization: from a single root policy,
learned from demonstration, two parameterized sub-skills are
automatically identified and modeled. The need for these
differentiated sub-skills partially reflects the dynamics of the
robot, as well as physical constraints of its body and motor
capabilities. For instance, the requirement that throws be
overhand and right-handed implies that qualitatively different
torso movements are needed to hit targets on the extreme left
field of the robot.

robot
orientation

target
board

Saturday, September 14, 13

Fig. 4. Target board positioned in front of the robot (not to scale). Different
target positions require distinct sub-skills whose policies are embedded in
disjoint charts.

Next, we analyze how a chart model allows us to represent
the way in which policies vary as we smoothly vary a task.
Figure 5 shows a representative subset of policy dimensions
varying within a given chart. The vertical axis on each inset
figure corresponds to the value of a selected policy feature
and the two other axes correspond to task parameters. The
first important observation to be made is that as we smoothly
vary tasks, the corresponding policy parameters also vary
smoothly. Secondly, that even though the relation between
task and policy parameters is nonlinear and arguably difficult
to be known a priori, there exists a clear pattern to be
learned—specifically, how policies for related tasks tend to
be grouped on a same smooth chart.

We now discuss the performance of the skill learning
method. Figure 6 presents the predicted policy parameter
error, averaged over 35 novel validation tasks sampled uni-
formly at random, as a function of the number of examples
used to train the skill. This error is a measure of the average
distance between the policy parameters predicted by Θ and
the parameters of a known good solution for the task;
the lower the error, the closer the predicted policy is (in
norm) to a correct solution. After approximately 8 samples

Target Position (X)

Po
lic

y
Fe

at
ur

e

Target Position (Y)

Po
lic

y
Fe

at
ur

e

Target Position (X
) Target Position (Y)

Po
lic

y
Fe

at
ur

e
Po

lic
y

Fe
at

ur
e

Target Position (X) Target Positio
n (Y

)

Target Position (X) Target Position (Y)

Fig. 5. Examples of lower-dimensional projections of a learned chart Θc.

are presented to the parameterized skill the average policy
parameter error stabilizes around (but not at) zero. Obtaining
this accuracy with few samples is only possible because
the policy space is well-structured; specifically, because
solutions to similar tasks lie on lower-dimensional charts
whose regular topology can be exploited when generalizing
known tasks to novel tasks.

2 4 6 8 10 12 140

5

10

15

20

Sampled training task instances

A
ve

ra
ge

 fe
at

ur
e

er
ro

r

Average feature error

Fig. 6. Average predicted policy parameter error as a function of the
number of sampled training tasks.

Note that since policy representations may be sensitive
to noise, feature accuracy does not necessarily imply good
performance. For this reason we additionally measured the
actual performance of predicted policies when applied to a
set of novel tasks. We first define a quantity called minimum
performance threshold, which is the minimum acceptable
performance of a predicted policy so that it is considered
sufficiently accurate. For this domain we set the performance
threshold as the diameter of the plastic bottles used as targets:
6cm. This threshold was selected because throws that miss
the intended target position by that amount are still capable,
on average, of knocking down the plastic bottle. Figure 7
shows the average distance between where the ball hit and
the intended target position as a function of the number of
training samples. This distance was measured by directly
executing the predicted policy and before any further policy
improvement took place. Figure 7 also depicts the expected
performance of throws if using a nearest-neighbors baseline
approach, which corresponds to selecting and executing the
policy of the nearest known task. The generalization power

of the parameterized skill allows its performance to strictly
dominate that of the baseline. It can also be seen that the
performance threshold is reached after around 8 samples;
at this point, the robot is already capable of hitting target
regions of 6cm × 6cm within the 90cm × 90cm target board.
Policies predicted by the skill can be further improved via
standard policy search methods if more accuracy is needed.

2 4 6 8 10 12 14 16

5

10

15

20

Sampled training task instances

A
ve

ra
ge

 d
is

ta
nc

e
to

 ta
rg

et
 (c

m
)

Nearest Neighbor
Parameterized Skill
Performance Threshold

Fig. 7. Average distance to target (before any policy improvement) as a
function of the number of sampled training tasks.

The experiments presented in this Section allow us to draw
a few important conclusions: 1) our method can exploit the
policy manifold structure to automatically identify and model
distinct sub-skills needed to solve different classes of tasks;
2) even though policy features cannot be perfectly predicted,
the skill is nonetheless capable of predicting effective poli-
cies with relatively few samples; this is possible because our
method explicitly models different charts, which allows for
simpler separate regression models; and 3) a parameterized
skill is capable of producing, on-demand and without any
further learning, reasonable solutions even when trained with
few examples—the reason being that it can quickly identify
the overall region in policy space where the solution to a
task most likely is.

VI. RELATED WORK

Two baseline approaches are possible for learning a set
of related control tasks. The first is to include τ , the task
parameter vector, as part of a state descriptor and treat
the entire class of tasks as a single MDP. If tasks are
related, though, it may be more advantageous to learn them
separately and to generalize from the sample experiences
[1]. A second approach is to keep a library of sample task
solutions and to select and execute the policy of the nearest
known task. This does not scale well since the number of
samples needed to uniformly cover a task space T grows
exponentially with its dimensionality.

Other methods have been proposed that directly learn flex-
ible skills. Soni et al. [11] construct skills whose termination
criteria can be adapted on-the-fly to deal with changing
aspects of a task. They do not, however, predict a complete
parameterization of the policy for novel tasks. Liu et al.
[4] propose transferring a value function between pairs of
related tasks but, similarly, do not construct a parameterized

solution. Taylor et al. [3] transfer high-level policies between
tasks but assume that a mapping between features and actions
of a source and target tasks is known a priori. Hausknecht
and Stone [12] present a method for learning a kicking
skill parameterized by desired force. They exhaustively test
the effect of different policy parameters on the distance
traveled by the ball and learn a closed-form, albeit domain-
dependent, expression for predicting policy parameters for a
given desired force.

Flexible policy representation have been proposed to
tackle families of related problems. Schaal et al. [5] intro-
duced Dynamic Movement Primitives (DMPs), a compact
policy representation that allows the parameterization of the
desired duration and initial and goal states of a trajectory or
movement. Even though DMPs allow the parameterization of
some aspects of a movement, they are not general enough to
encode arbitrary parameterized skills since the number and
nature of their tunable metaparameters are fixed and pre-
determined. Furthermore, in some cases it might be unclear
how to set the metaparameters of a DMP to solve a given
task. To deal with these limitations, Kober et al. [2] propose
learning a mapping from task description to DMP meta-
parameters. They assume that a single underlying motion
primitive is sufficient to represent the whole class of tasks
of interest and do not model qualitatively different strategies
required for solving distinct classes of tasks. Neumann et
al. [6] present a similar idea but require learning a forward-
model prior to training the skill. Their method also does
not identify or model the distinct parameterized sub-skills
needed for solving a distribution of tasks. Finally, Stulp et
al. [13] propose further extensions to the DMP framework
by allowing additional tunable parameters to be learned, but
focus on the learning-from-demonstration setting.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new sample-efficient method for
constructing reusable parameterized skills. Our method ex-
ploits the structure of the policy manifold and separately
models the disjoint, low-dimensional charts in which task
solutions are embedded. Each chart encodes a qualitatively
different sub-skill required for solving a given class of tasks.
Such sub-skills are useful because they can be treated as
new discrete, specialized actions by higher-level planning
processes. We demonstrate that our method, starting from
a single root policy, is capable of identifying and modeling
semantically meaningful sub-skills needed to solve a distri-
bution of related tasks. We also introduced a sample reuse
scheme which allows seemingly unsuccessful policies to be
used as additional, valid training samples for synthesizing a
skill. This constitutes a type of off-policy skill learning which
can reduce the number of samples needed to acquire the
skill. We demonstrate the efficacy of our method by learning
a complex whole-body parameterized throwing skill on an
iCub with only a small number of samples.

An important question not addressed in our work is
that of how to select training tasks. Naı̈ve strategies draw
tasks uniformly at random or directly from the target task

distribution P . These sampling strategies, however, implicitly
assume that all tasks are similarly difficult and that the pol-
icy manifold has approximately uniform curvature. Actively
choosing training tasks, on the other hand, may allow the
robot to more quickly uncover unknown parts of the policy
manifold, thus improving the overall readiness of the skill
with fewer samples. This is particularly important in robotics
domains, since exploration is expensive.

Finally, note that reusing samples requires a mapping from
observed effects of a policy (e.g., trajectories) to parameters
of the tasks in which it could be applied. In some domains,
such as the iCub throwing one, identifying these tasks is
trivial. In general, though, an inverse parameterized skill
model is needed—a mapping from policy parameters to tasks
where they are applicable. This mapping allows parameter-
ized skills to be efficiently acquired even in domains where
the correspondence between policy and tasks spaces is non-
trivial. Learning it from data is a challenging problem with
possible connections to Inverse Reinforcement Learning [14].

REFERENCES

[1] B. da Silva, G. Konidaris, and A. Barto, “Learning parameterized
skills,” in Proceedings of the Twenty Ninth International Conference
on Machine Learning, June 2012, pp. 1679–1686.

[2] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement
learning to adjust parametrized motor primitives to new situations,”
Autonomous Robots, pp. 1–19, 4 2012.

[3] M. Taylor, G. Kuhlmann, and P. Stone, “Autonomous transfer for
reinforcement learning,” in Proceedings of the Seventh International
Joint Conference on Autonomous Agents and Multiagent Systems,
2008.

[4] Y. Liu and P. Stone, “Value-function-based transfer for reinforcement
learning using structure mapping,” in Proceedings to the Twenty-First
National Conference on Artificial Intelligence, 2006, pp. 415–420.

[5] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” in Proceedings of the Eleventh International Symposium
on Robotics Research. Springer, 2004.

[6] G. Neumann, C. Daniel, A. Kupcsik, M. Deisenroth, and J. Peters,
“Information-theoretic motor skill learning,” in Proceedings of the
AAAI Workshop on Intelligent Robotic Systems, 2013.

[7] J. Tenenbaum, V. de Silva, and J. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[8] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von
Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and
L. Montesano, “The iCub humanoid robot: An open-systems platform
for research in cognitive development,” Neural Networks, vol. 23, no.
8-9, pp. 1125–1134, 2010.

[9] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, vol. 11, pp. 3137–3181, 2010.

[10] F. Stulp and O. Sigaud, “Path integral policy improvement with
covariance matrix adaptation,” in Proceedings of the Twenty-Ninth
International Conference on Machine Learning, 2012.

[11] V. Soni and S. Singh, “Reinforcement learning of hierarchical skills
on the Sony Aibo robot,” in Proceedings of the Fifth International
Conference on Development and Learning, 2006.

[12] M. Hausknecht and P. Stone, “Learning powerful kicks on the Aibo
ERS-7: The quest for a striker,” in RoboCup-2010: Robot Soccer World
Cup XIV, ser. Lecture Notes in Artificial Intelligence. Springer Verlag,
2011, vol. 6556, pp. 254–65.

[13] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in Proceedings
of the IEEE-RAS International Conference on Humanoid Robots, 2013,
pp. 1–7.

[14] A. Ng and S. Russell, “Algorithms for inverse reinforcement learn-
ing,” in Proceedings of the Seventeenth International Conference on
Machine Learning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000, pp. 663–670.

	Introduction
	Setting
	Learning a Parameterized Skill
	The iCub Throwing Domain
	Sample Reuse

	Experiments
	Related Work
	Conclusions and Future Work
	References

