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I. INTRODUCTION

Most multi-robot systems are controlled by hand-built
special-purpose algorithms that are difficult to design, imple-
ment and verify. For single robots, automatic planning systems
provide a flexible general-purpose strategy for constructing
plans given high-level declarative domain specifications, even
in the presence of substantial stochasticity and partial observ-
ability [[10]. We show that this strategy can be effectively
extended to multi-robot systems. Our methods allow automatic
off-line construction of robust multi-robot policies that support
coordinated actions. As a natural consequence of the approach,
they can even generate communication strategies that exploit
the domain dynamics to share critical information in service
of achieving the group’s overall objective.

Specifically, we are interested in problems where robots
share the same objective function and each individual robot
can only make noisy, partial observations of the environment.
The decentralized partially observable Markov decision pro-
cess (Dec-POMDP) is a general framework for representing
multi-agent coordination problems. Dec-POMDPs have been
widely studied in artificial intelligence as a way to address the
fundamental differences in decision-making in decentralized
settings [1} 15 [8]]. Like the POMDP [7] model that it extends,
Dec-POMDPs consider general dynamics, cost and sensor
models. Any problem where multiple robots share a single
overall reward or cost function can be formalized as a Dec-
POMDP. As such, Dec-POMDP solvers could automatically
generate control policies (including policies over when and
what to communicate) for decentralized control problems, in
the presence of uncertainty in outcomes, sensors and infor-
mation about the other robots. Unfortunately, this generality
comes at a cost: Dec-POMDPs are typically infeasible to solve
except for small problems [5 2].

One reason for the intractability of solving large Dec-
POMDPs is that current approaches model problems at a low
level of granularity, where each robot’s actions are primitive
operations lasting exactly one time step. Recent research has
addressed the more realistic MacDec-POMDP case where
each robot has macro-actions: temporally extended actions
which may require different amounts of time to execute [2]. An
alternative formulation is the Dec-POSMDP, which operates
directly in belief space [9]. These models allow coordination
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Fig. 1. Illustration of the Dec-POMDP model (a) and policies represented
by trees or finite-state controllers (b).

decisions to only occur at the level of deciding which macro-
actions to execute. Macro-actions are a natural model for the
modular controllers (e.g., navigating to a waypoint or grasping
an object) often sequenced to obtain robot behavior, bridging
the gap between robotics research and Dec-POMDPs. This
approach has the potential to produce high-quality general so-
lutions for real-world heterogeneous multi-robot coordination
problems by automatically generating control and communi-
cation policies, given a model.

II. MACDEC-POMDPs AND DEC-POSMDPs

In Dec-POMDPs (as depicted in Fig. [I(a)), multiple robots
operate based on partial and local views of the world. At each
step, every robot chooses an action based purely on locally
observable information, resulting in an observation for each
individual robot. The robots also share a single reward or cost
function, making the problem cooperative, but their local views
mean that execution is decentralized.

MacDec-POMDPs incorporate macro-actions into the Dec-
POMDP framework, where macro-actions have defined initial
conditions where they can be executed and this execution
continues until some terminal condition is reached. In the
MacDec-POMDP framework, it is assumed that either a low-
level (Dec-POMDP) model or a simulator is available in
order to evaluate solutions. As a result, MacDec-POMDPs do
not explicitly model the time until completion. In contrast,
Dec-POSMDPs explicitly model the distribution of time until
completion. Solutions in this semi-Markov model can then be
evaluated using a higher-level model (that also includes time
until completion) or (again) in a simulator.

Two Dec-POMDP algorithms have been extended to the
MacDec-POMDP case [2], but other extensions are possible.
The resulting solution is a policy for each agent which can



(a) The bartender and waiters domain
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be represented as a set of trees (see Figure [I(b)). In the Dec-
POSMDP, we represent the policy as a finite-state controller
for each agent (Fig. [I[(D)). Discrete space search techniques
can be applied to find the optimal joint policy. Greedy and
probabilistic search algorithms have been successfully used
for solving Dec-POSMDP finite-state controllers [9].

The MacDec-POMDP framework is a natural way to repre-
sent and generate behavior for general multi-robot systems. We
assume an abstract model of the system is given in the form
of macro-action representations, which include the associated
policies as well as initiation and terminal conditions. These
macro-actions are controllers operating in (possibly) contin-
uous time with continuous actions and feedback, but their
operation is discretized for use with the planner. Given the
macro-actions and simulator, the planner then automatically
generates a solution which optimizes the value function with
respect to the uncertainty over outcomes, sensor information
and other robots. This solution comes in the form of SMACH
controllers [6] which are hierarchical state machines for use
in a ROS environment.

III. EXPERIMENTS

We performed comparisons with previous work on existing
benchmark domains and demonstrated its effectiveness in
different scenarios (Warehouse [4], Bartender and waiters [3]],
and Package delivery [9]). In the warehouse problem (Figure
2®)), a team of robots is tasked with finding a set of large
and small boxes in the environment and returning them to
a shipping location. Here, coordination is needed not just
for assigning robots to push specific boxes, but also requires
that two robots push the larger box at the same time. In
the bartender and waiters problem (Figure 2(a)), the waiters
(Turtlebots) must find and deliver orders as quickly as possible,
retrieving drinks from a bartender (PR2). In the package
delivery problem (Figure [2(c)), the robots retrieve and deliver
packages from base locations to delivery locations. In all
problems there is stochasticity in the movements of robots and
partial observability with respect to the location of the other
robots and the other objects (boxes, orders and packages).

These problems are very large (consisting of over a billion
discrete states or having a continuous state space), causing
them to be unsolvable by previous Dec-POMDP-based ap-
proaches. We also consider cases where the robots can send
communication signals to each other, but we do not define
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the meaning of the messages. Therefore, our planner must
determine where the robots should navigate, what boxes they
should push and what communication messages should be
sent (if at all) at each step of the problem to optimize the
solution for the team. The robots must make these decisions
based solely on the information they individually receive
during execution (e.g., each robot’s location estimate as well
as where and when boxes and other robots have been seen).
Our methods outperform naive methods that do not consider
uncertainty and generate optimized solutions for each problem
based on the high-level domain description.
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