
Learning Markov State Abstractions for
Deep Reinforcement Learning

Cameron Allen∗
Brown University
csal@cs.brown.edu

Neev Parikh
Brown University

neev_parikh@brown.edu

George Konidaris
Brown University
gdk@cs.brown.edu

Abstract

We introduce a method of learning an abstract state representation for Markov
decision processes (MDPs) with rich observations. We begin by proving that a
combination of three conditions is sufficient for a learned state abstraction to retain
the Markov property. We then describe a practical training procedure that combines
inverse model estimation and temporal contrastive learning to learn an abstraction
that approximately satisfies these conditions. We evaluate our approach with a
proof-of-concept visual gridworld experiment, where the learned representation
captures the underlying structure of the domain and enables substantially improved
learning performance over end-to-end deep RL, matching the performance achieved
with hand-designed compact state information.

1 Introduction

Reinforcement learning (RL) in Markov decision processes with rich observations requires a suitable
state representation. Typically, such representations are learned implicitly as a byproduct of doing
deep RL. However, in domains where compact (non-visual) state information is available, an RL
agent trained on compact states usually outperforms an agent trained on rich observations. Recent
work has sought to close this “representation gap” by incorporating a wide range of representation-
learning objectives, including pixel reconstruction (Finn et al., 2016; Higgins et al., 2017), pixel
prediction (Song et al., 2016; Kaiser et al., 2020), abstract transition model estimation (Gelada
et al., 2019), inverse model estimation (Christiano et al., 2016; Pathak et al., 2017), contrastive
learning (Van den Oord et al., 2018; Anand et al., 2019; Misra et al., 2019; Srinivas et al., 2020;
Stooke et al., 2020), and data augmentation (Laskin et al., 2020), as well as combinations of these
objectives (Agrawal et al., 2016; Zhang et al., 2018; Shelhamer et al., 2016; Ha & Schmidhuber,
2018). Many of these methods improve performance, but most lack a theoretical justification for why
they should be effective.

The fundamental assumption of reinforcement learning in Markov decision processes (MDPs) is
that the MDPs are, in fact, Markov. This assumption calls for state representations that preserve
the Markov property. We describe sufficient conditions for obtaining a Markov abstract state
representation. We next show that these conditions are approximately satisfied using a combination
of two popular representation learning objectives: inverse model estimation and temporal contrastive
learning. Inverse model estimation predicts the action distribution that explains two consecutive
states, and temporal contrastive learning determines whether two states were in fact consecutive. We
evaluate this combined learning objective on a proof-of-concept representation learning problem, and
show that it learns representations that capture the underlying structure of the domain and enable
efficient learning. This work provides theoretical justification for why inverse models and temporal
contrastive learning are each effective individually, and shows that their combination is uniquely
suited to the goal of learning useful state representations for RL.
∗Corresponding Author

Presented at Deep RL Workshop, NeurIPS 2020.

(a) (b)

Figure 1: (a) A 6× 6 visual gridworld domain where an abstraction function φ maps each high-dimensional
observed state x to a lower-dimensional abstract state z (orange circle). (b) A shared encoder φ maps ground
states x, x′ to abstract states z, z′, which are inputs to an inverse dynamics model I and a constrastive model D
that discriminates between real and fake state transitions. The agent’s policy depends only on the abstract state.

2 Background

2.1 Markov Decision Processes

A Markov decision process M consists of sets of states X and actions A, reward function R :
X × A × X → <, transition dynamics T : X × A → Pr(X), and discount factor γ. We use X
as the name for the set of states, rather than S, which is more common, to highlight that X is a
rich observation, perhaps generated by a noisy sensor function σ, but that the behavior of the MDP
is in fact governed by much more compact (but unobserved) set of states S, as in the Block MDP
formulation (Du et al., 2019). We assume that S and σ are unknown to the agent, and that the rich,
observed state space X is itself Markov, which means it is a sufficient statistic for predicting the next
state and expected reward, for any action the agent might select.

Definition 1 (Markov Property). Given an decision process M = (X,A,R, T, γ), the state space
X is Markov if and only if the following holds, for all a ∈ A, x ∈ X , k ≥ 1:

Markov(X) :⇐⇒ T (k)
(
xt+1|{at−i, xt−i}ki=0

)
= T (xt+1|at, xt) (1)

∩ R(k)
(
xt+1, {at−i, xt−i}ki=0

)
= R(xt+1, at, xt).

The superscript (k) denotes that the function is being conditioned on k additional steps of history.
Technically, each x ∈ X must also be sufficient for determining the set of actions available to the
agent in that state, but here we assume, as is common, that this set is equal to A in every state.

The behavior of an RL agent is typically determined by a (Markov) policy π : X → Pr(A), and each
policy induces value function V π : X → < (and action-value function Qπ : X × A→ <), which
estimates the sum of expected future discounted rewards starting from a given state (and action)
and following the policy π thereafter. The agent’s objective is to learn an optimal policy π∗ that
maximizes value at every state. Note that the assumption that the optimal policy is Markov—that it
maps from states to actions—is only appropriate if the decision process itself is Markov; almost all
RL algorithms simply assume this to be the case.

2.2 State Abstraction

To support decision making when X is too high-dimensional for tractable learning, we turn to state
abstraction. Our objective is to find an abstraction function φ : X → Z mapping each ground state
x to an abstract state representation z = φ(x), with the hope that learning is tractable in Z (see
Figure 1a). We refer to X as ground states (and M as the ground MDP), to reflect that they are
grounded in the true environment. We interchangeably refer to z ∈ Z as an abstract state or an
abstract representation.

An abstraction φ : X → Z, when applied to an MDP M , induces a new abstract decision process
Mφ = (Z,A, Tπφ,t, R

π
φ,t, γ), whose dynamics may depend the current timestep t or the agent’s

behavior policy π, and, crucially, which is not guaranteed to be Markov.2

2For an example of a non-Markov abstract decision process, see Appendix C.

2

Definition 2 (Markov Abstraction). Given an MDP M = (X,A,R, T, γ), initial state distribution
P0, and behavior policy π, a state abstraction φ : X → Z is Markov if and only if it induces an
abstract decision process Mφ = (Z,A,Rπφ,t, T

π
φ,t, γ) such that the following holds, for all a ∈ A,

z ∈ Z, k ≥ 1:

Markov(φ) :⇐⇒ T
π(k)
φ,t

(
zt+1|{at−i, zt−i}ki=0

)
= Tπφ,t(zt+1|at, zt) (2)

∩ R
π(k)
φ,t

(
zt+1, {at−i, zt−i}ki=0

)
= Rπφ,t(zt+1, at, zt).

When φ is Markov, we equivalently say that Mφ is an MDP, or that Z is a Markov state representation.

One common approach to learning an abstract MDP is to use state aggregation (Li et al., 2006) to
group states into abstract states using a fixed weighting scheme w(x), representing how much each
ground state x contributes to its abstract state z. In this formulation, the abstract decision process is
Markov by construction, and Tφ and Rφ no longer depend on the policy or timestep. Unfortunately,
if the agent changes its policy during learning, the abstract MDP may no longer match the behavior
of the original MDP (Abel et al., 2018). Abel et al. show that this discrepancy can have negative
consequences for learning, such as causing algorithms with bounded sample complexity in the ground
MDP to make an arbitrarily large number of mistakes in the abstract MDP.

Rather than choosing an abstraction and hoping its related abstract MDP reflects the behavior of the
ground MDP, we start by defining the abstract decision process to explicitly match that behavior, and
then select a compatible abstraction that causes the abstract decision process to be Markov.

3 Related Work

The immediately obvious approach to learning a Markov state representation is to jointly train an
abstraction φ and a forward model T̂ (φ(x), a) ≈ φ(x′) to predict abstract states. Unfortunately, since
φ is on both sides of the equation, this approach can result in a trivial abstraction like φ(x) 7→ 0 for
all x, which makes learning T̂ easy, but contains no useful information for decision making. This
problem can in theory be mitigated by jointly learning a reward model (Gelada et al., 2019), and in
principle that is sufficient; however, such an approach will fail in practice if rewards are sparse or the
abstraction must be learned without knowledge of the reward function.

Pixel prediction (Kaiser et al., 2020) is one way to avoid learning a trivial abstraction. However,
in stochastic domains, this comes with the challenging task of density estimation over the ground
state space, and as a result, performance is about on-par with end-to-end deep RL (Van Hasselt et al.,
2019). Moreover, both pixel prediction and the related task of pixel reconstruction (Higgins et al.,
2017) are misaligned with the fundamental goal of state abstraction. These approaches train models
to perfectly reproduce the relevant ground state, ergo the abstract state must effectively throw away
no information. By contrast, the objective of state abstraction is to throw away as much information
as possible, while preserving what is necessary for decision making.

As an alternative to (or in addition to) learning a forward model, it is sometimes beneficial learn an
inverse model. An inverse model I(a|x′, x) predicts the action distribution that resulted in a transition
between a pair of abstract states. Christiano et al. (2016) studied using an inverse model to learn
representations that improve transfer from simulation to real-world problems. Agrawal et al. (2016)
jointly estimated forward and inverse dynamics models for robot motion planning, and Pathak et al.
(2017) also combined forward and inverse models to create an intrinsic reward to aid exploration.

Since estimating high-dimensional distributions can be challenging, a compelling alternative is
contrastive learning (Gutmann & Hyvärinen, 2010), which aims to predict whether a particular state,
or sequence of states, came from the distribution in question or some other distribution. Shelhamer
et al. (2016) empirically evaluated inverse model estimation and a form of multi-step contrastive
learning, as well as other objectives such as pixel reconstruction and jointly training with RL. Van
den Oord et al. (2018) applied a temporal version of this technique to learn representations by
distinguishing legitimate state transitions from manufactured ones while concurrently training an
RL agent. Misra et al. (2019) employed a temporal contrastive loss to learn representations while
simultaneously learning to explore the domain efficiently using those representations. Srinivas et al.
(2020) combined data augmentation and non-temporal contrastive learning with single states, and
recently, Stooke et al. (2020) followed up on this work with a temporal version that performed better.

3

While many of these methods learn representations that lead to substantial improvements in learning
performance, none has explicitly addressed the question of how to learn compact abstract state
representations that actually preserve the Markov property (apart from pixel prediction, which is
subject to problems we have already discussed). We are the first, to our knowledge, to show that the
combination of inverse model estimation and temporal contrastive learning, along with constraints on
the agent’s policy, is sufficient to learn a Markov state representation.

4 Markov Abstract State Representations

Recall that for a state representation to be Markov (whether ground or abstract), it must be a sufficient
statistic for predicting the next state and expected reward, for any action the agent might select. The
ground state representation of an MDP is Markov by definition, but abstract states have no such
guarantees. To design a loss function that results in a Markov abstraction, we will leverage Definition
2, which means we must first define the abstract transition model Tπφ,t and reward function Rπφ,t, as
well as their k-step counterparts.

4.1 Constructing the Abstract Decision Process

For the abstract decision process to reflect the behavior of the ground MDP, it must be defined in
terms of ground MDP quantities. We can rewrite the transition probabilities as follows:3

Pr(z′|a, z) =
∑
x′∈z′

∑
x∈z

Pr(x′|a, z, x) Pr(x|a, z) =
∑
x′∈z′

∑
x∈z

Pr(x′|a, z, x) Pr(a|x) Pr(x|z)∑
x̃∈X Pr(a|x̃) Pr(x̃|z) ,

where we use the shorthand x ∈ z to denote x ∈ X : φ(x) = z. Thus, for a given behavior policy π,
the abstract transition probabilities are:

Tπφ,t(z
′|a, z) :=

∑
x′∈z′

∑
x∈z

T (x′|a, x)
πt(a|x)Bπφ,t(x|z)∑
x̃∈X πt(a|x̃)Bπφ,t(x̃|z)

, (3)

where Bπφ,t is a belief distribution representing the likelihood of each ground state in a particular
abstract state (see Appendix A for expanded derivations). We use the same approach to define the
abstract reward function:

Rπφ,t(z
′, a, z) :=

∑
x′∈z′

∑
x∈z

R(x′, a, x)
T (x′|a,x)πt(a|x)Bπφ,t(x|z)

Tπφ,t(z
′|a,z)

∑
x̃∈X πt(a|x̃)Bπφ,t(x̃|z)

. (4)

All that remains is to define the belief distribution Bπφ,t, which we will do step-by-step.4 Starting
from an arbitrary initial state distribution P0(x), the agent’s (possibly non-stationary) behavior policy
π := {π0, π1, . . . } induces a distribution Pπt over ground states at each subsequent time step:

Pπt (x) :=
∑
a∈A

∑
x̃∈X

T (x|a, x̃)πt−1(a|x̃)Pπt−1(x̃), for all t ≥ 1. (5)

We use Pπt (x) to define the belief distribution Bπφ,t(x|z), noting that Pr(x|z) = Pr(z|x) Pr(x)∑
x̃∈X Pr(z|x̃) Pr(x̃) :

Bπφ,t(x|z) :=
1[φ(x)=z] Pπt (x)∑

x̃∈z P
π
t (x̃) , (6)

where 1[·] denotes the indicator function. Note that Pπt and Bπφ,t may be non-stationary, even if π is
a stationary policy.5

If we restrict ourselves to a particular class of policies, the abstract transition and reward can be
written much more simply. In particular, consider the class of policies Πφ where π ∈ Πφ if and only

3This section closely follows Hutter (2016), except here we consider distributions over ground states, rather
than full histories.

4Note that while we use Bπφ,t for our theoretical results, the agent need not estimate or maintain a belief
distribution in order to learn a Markov abstraction.

5This can happen, for example, when the policy induces either a Markov chain that does not have a stationary
distribution, or one whose stationary distribution is different from P0.

4

if π(·|x) = π(·|x̃), for all x, x̃ such that φ(x) = φ(x̃)—in essence, policies defined only in terms of
the abstract state z. Whenever π ∈ Πφ, it is fixed for all x ∈ z, and we have:

Tπφ,t(z
′|a, z) =

∑
x′∈z′

∑
x∈z

T (x′|a, x)Bπφ,t(x|z),

Rπφ,t(z
′|a, z) =

∑
x′∈z′

∑
x∈z

R(x′, a, x)
T (x′|a,x)Bπφ,t(x|z)

Tπφ,t(z
′|a,z) .

In the special case where the belief distribution is stationary and policy-independent (and if we
interpret rewards as being defined over state-action pairs), Bπφ,t(x|z) is equivalent to the fixed
weighting function w(x) of Li et al. (2006).

4.2 Conditioning on Multiple Steps

Definition 2 compares Tπφ,t and Rπφ,t defined above with versions conditioned on k steps of addi-
tional history. We can easily modify (3) and (4) to condition on additional history information by
generalizing Bπφ,t to a k-step belief distribution Bπ(k)φ,t :

B
π(k)
φ,t (xt|zt, {at−i, zt−i}ki=1)

:=
1[φ(xt)=zt]

∑
xt−1∈X

T (xt|at−1,xt−1)B
π(k−1)
φ,t (xt−1|zt−1,{at−i,zt−i}ki=2)∑

x̃t∈zt

∑
x̃t−1∈zt−1

T (x̃t|at−1,x̃t−1)B
π(k−1)
φ,t (x̃t−1|zt−1,{at−i,zt−i}ki=2)

, (7)

for k ≥ 1. When k = 0 we define Bπ(k)φ,t := Bπφ,t. This definition follows from combining (5) and
(6) and conditioning each quantity on the additional history.

Using Bπ(k)φ,t , we define the k-step abstract transition model Tπ(k)φ,t and reward function Rπ(k)φ,t :

T
π(k)
φ,t (zt+1|{at−i, zt−i}ki=0) :=

∑
xt+1∈zt+1

∑
xt∈zt

T (xt+1|at,xt)πt(at|xt)Bπ(k)
φ,t (xt|zt,{at−i,zt−i}ki=1)∑

x̃t∈X
πt(at|x̃t)Bπ(k)

φ,t (x̃t|zt,{at−i,zt−i}ki=1)
,

(8)

R
π(k)
φ,t (zt+1, {at−i, zt−i}ki=0)

:=
∑

xt+1∈zt+1

∑
xt∈zt

R(xt+1,at,xt)T (xt+1|at,xt)πt(at|xt)Bπ(k)
φ,t (xt|zt,{at−i,zt−i}ki=1)

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

∑
x̃t∈X

πt(at|x̃t)Bπ(k)
φ,t (x̃t|zt,{at−i,zt−i}ki=1)

. (9)

Now that we have these extended-history versions of Tπφ,t and Rπφ,t, we are ready to apply Definition
2 and describe sufficient conditions for ensuring (2).

4.3 Sufficient Conditions for a Markov Abstraction

The strictly necessary conditions for ensuring an abstraction φ is Markov, by Definition 2, depend
on T and R, which are typically unknown and hard to estimate due to X’s high-dimensionality.
However, we can still find conditions that imply Definition 2 without explicitly knowing T and R.
To do this, we will require that three quantities are equivalent in M and Mφ: the agent’s policy, the
inverse dynamics model, and a density ratio that we define below.

The inverse dynamics model Iπt (a|x′, x) is related to the transition model T (x′|a, x) and the expected
next-state model Nπ

t (x′|x) via Bayes’ theorem: T (x′|a, x) =
Iπt (a|x

′,x)Nπt (x′|x)
πt(a|x) , where Iπt and Nπ

t

are defined as follows:
Iπt (a|x′, x) := T (x′|a,x)πt(a|x)

Nπt (x′|x) Nπ
t (x′|x) :=

∑
ã∈A T (x′|ã, x)πt(ã|x).

To relate the above quantities to their abstract counterparts in Mφ, we also define the following
expressions:

Pπφ,t(z) :=
∑
x̃∈z P

π
t (x̃) πφ,t(at|zt) :=

∑
x̃∈X πt(at|x̃t)Bπφ,t(x̃t|zt)

Iπφ,t(at|zt+1, zt) :=
Tφ(zt+1|at,zt)πφ,t(at|zt)

Nπφ,t(zt+1|zt) Nπ
φ,t(zt+1|zt) :=

∑
ãt∈A Tφ(zt+1|ãt, zt)πφ,t(ãt|zt).

With these definitions in place, we now describe three conditions in Theorem 1 that together are
sufficient for ensuring Mφ is an MDP.

5

Theorem 1. Let φ : X → Z be an abstraction of MDP M = (X,A, T,R, γ), with arbitrary initial
ground-state distribution P0, and let π be the agent’s behavior policy. Construct the abstract decision
process Mφ = (Z,A, Tπφ,t, R

π
φ,t, γ), where Tπφ,t is defined via (3) and Rπφ,t via (4).

If all of the following conditions hold at every timestep t:

1. Matching Policies. The ground-state policy is piecewise-constant with respect to φ:

φ(x) = φ(x̃) =⇒ πt(·|x) = πt(·|x̃) ∀ x, x̃ ∈ X
≡ πφ,t(·|z) = πt(·|x) ∀ z ∈ Z, x ∈ X : φ(x) = z.

(10a)

2. Matching Inverse Models. The ground- and abstract-state inverse models are equal:

Iπφ,t(·|z′, z) = Iπt (·|x′, x) ∀ z′, z ∈ Z, ∀ x′, x ∈ X : φ(x′) = z′ ∩ φ(x) = z. (10b)

3. Matching Next-State Density Ratios. The next-abstract-state density ratio is equal to the
expectation with respect to the belief distribution of the next-ground-state density ratio:

Nπφ,t(z
′|z)

Pπφ,t(z
′) =

∑
x̃∈X

Nπt (x′|x̃)
Pπt (x′) B

π
φ,t(x̃|z) ∀ z′, z ∈ Z, ∀ x′ ∈ X : φ(x′) = z′. (10c)

Then, Mφ is Markov as defined in Definition 2.

The proof makes use of two lemmas: Lemma 4.1, that equal k-step and (k−1)-step belief distributions
imply equal k-step and (k−1)-step transition models and reward functions, and Lemma 4.2, that equal
k-step and (k − 1)-step belief distributions imply equal (k + 1)-step and k-step belief distributions.

We provide a sketch of each proof below, and defer the full proofs to Appendix B.

Lemma 4.1. Given an MDP M , abstraction φ, policy π, initial state distribution P0, and any k ≥ 1,
if it holds that Bπ(k)φ,t (xt|zt, {at−i, zt−i}ki=1) = B

π(k−1)
φ,t (xt|zt, {at−i, zt−i}k−1i=1),

Then for all at ∈ A and zt+1 ∈ Z,

T
π(k)
φ,t (zt+1|{at−i, zt−i}ki=0) = T

π(k−1)
φ,t (zt+1|{at−i, zt−i}k−1i=0)

∩ R
π(k)
φ,t (zt+1, {at−i, zt−i}ki=0) = R

π(k−1)
φ,t (zt+1, {at−i, zt−i}k−1i=0).

Proof sketch: Starting withBπ(k)φ,t = B
π(k−1)
φ,t , repeatedly multiply and divide both sides by the same

quantities, or take the same summations of both sides, to obtain Tπ(k)φ,t = T
π(k−1)
φ,t . Then apply the

same process again, making use of the fact that Tπ(k)φ,t = T
π(k−1)
φ,t , to obtain Rπ(k)φ,t = R

π(k−1)
φ,t .

Lemma 4.2. Given an MDP M , abstraction φ, policy π, and initial state distribution P0, if
for all t ≥ k, zt ∈ Z, xt ∈ X : φ(xt) = zt, we have that Bπ(k)φ,t (xt|zt, {at−i, zt−i}ki=1) =

B
π(k−1)
φ,t (xt|zt, {at−i, zt−i}k−1i=1), then for all zt+1 ∈ Z, xt+1 ∈ X : φ(xt+1) = zt+1,

B
Pπt
φ,k+1

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= B

π(k)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}k−1i=0)

Proof sketch: Let Tπ(k)φ,t be defined via (8). Then by Lemma 4.1, Tπ(k)φ,t = T
π(k−1)
φ,t . Use this fact

while following the same approach as in Lemma 4.1.

Now we summarize the proof of the main theorem.

Proof of Theorem 1 (sketch): The structure of the proof is as follows. We begin by showing that
the belief distributions Bπ(k)φ,t and Bπ(k−1)φ,t must be equal for k = 1, and use Lemma 4.1 to prove the
base case of the theorem. Then we use Lemmas 4.2 and 4.1 together, along with induction on k to
prove that the theorem holds in general.

Theorem 1 describes a set of sufficient conditions under which φ results in a Markov state representa-
tion. Of course, we have no way during learning of directly ensuring these conditions are true. In the
next section we define a representation learning objective based on approximately satisfying these
conditions that is differentiable and suitable for learning φ using deep neural networks.

6

5 Training a Markov Abstraction

Matching policies. To ensure that the policies match, we restrict the policy class to Πφ by defining
π as a mapping from Z → Pr(A), rather than from X → Pr(A).

Matching inverse models. To ensure the ground-state and abstract-state inverse models match, we
consider a batch of experiences (xi, ai, x

′
i), encode ground states with φ, and jointly train a model

f(a|φ(x′), φ(x); θ) to predict a distribution over actions, with ai as the label. This can be achieved
by minimizing cross-entropy, whether the action space is discrete or continuous:6

Linverse := − 1

N

∑
i=1

log f(a = ai|φ(x′i), φ(xi); θ)

Matching next-state density ratios. The third objective, that
Nπφ,t(z

′|z)
Pπφ,t(z

′) = EBπφ,t(x|z)
[
Nπt (x′|x)
Pπt (x′)

]
,

says we can distinguish conditional samples from marginal samples equally well for abstract states or
ground states. We can encode this objective as a type of contrastive loss.

Suppose we have a dataset consisting of samples Xc = {x′c
(i)}nci=1 drawn from the conditional

distribution Pr(x′|x), and samples Xm = {x′m
(j)}nmj=1 drawn from the marginal Pr(x′). We assign

label y = 1 to samples from Xc and y = 0 to samples from Xm. We can define alternative names for
the two distributions p(x′|y = 1) := Pr(x′|x) and p(x′|y = 0) := Pr(x′). We are concerned with
the density ratio δ(x′) := Pr(x′|x)

Pr(x′) , which we rewrite according to the derivation of Tiao (2017):

δ(x′) = p(x′|y=1)
p(x′|y=0) = p(y=1|x′)p(x′)

p(y=1)
p(y=0)

p(y=0|x′)p(x′) = nm
(nm+nc)

(nm+nc)
nc

p(y=1|x′)
p(y=0|x′) = nm

nc

p(y=1|x′)
1−p(y=1|x′) .

(11)
Similarly, for abstract states z′ = φ(x′), we have δφ(z′) := Pr(z′|z)

Pr(z′) = nm
nc

q(y=1|z′)
1−q(y=1|z′) , where q is

our renamed distribution.

We train a function approximator g(x′, x;ψ) to estimate p(y = 1|x′). If we wanted to estimate δ(x′),
we could then substitute g for p(y = 1|x′) in (11); however, to satisfy condition (10c), we only need
to ensure δ(x′) = δφ(z′). We achieve this by modifying our estimator so it is trained jointly with the
abstraction function φ, minimizing the cross-entropy between the predictions g(y|φ(x′i), φ(xi);ψ)
and labels yi:

Lcontrastive := − 1

nc + nm

nc+nm∑
i=1

log g(y = yi|φ(x′i), φ(xi);ψ).

In doing so, we ensure that g approaches q and p simultaneously, which drives δφ(z′)→ δ(x′).

Markov abstraction loss. We generate a batch of experiences using a uniform random policy, which
is a member of Πφ, then minimize a weighted combination of the inverse model and contrastive
losses above, while training φ end-to-end:

arg min
φ,θ,ψ

LMarkov := αLinverse + βLcontrastive.

The inverse and contrastive losses avoid the common pitfall of learning a trivial abstraction like
φ(x) 7→ 0, without requiring any reward information. While such an abstraction would technically
satisfy the ratio condition (10c), it does not minimize LMarkov, since φ(x) contains no useful
information for predicting actions or distinguishing x′ ∼ Pr(x′|x) from x′ ∼ Pr(x′). This partially
explains why inverse models and temporal contrastive losses are so effective for representation
learning (Shelhamer et al., 2016; Pathak et al., 2017; Van den Oord et al., 2018; Anand et al., 2019;
Misra et al., 2019; Stooke et al., 2020). Note that when the policy matching condition (10a) holds,
and the policy is stationary and deterministic, then Iπφ,t(a|z′, z) = πφ(z) = π(x) = Iπt (a|x′, x) and
the inverse matching condition is satisfied trivially. Thus we expect Linverse to be most useful for
representation learning when the policy has high entropy or is rapidly changing.

6For continuous actions, we can alternatively assume deterministic policies and train via regression.

7

(a) (b)

Figure 3: (a) Visualization of the learning progress at selected times (left to right) of a 2-D Markov state
abstraction for the 6× 6 visual gridworld domain. (Top row) LMarkov; (second row) Linverse only; (third row)
Lcontrastive only; (last row) autoencoder. Color denotes ground-truth (x, y) position, which is not shown to the
agent. (b) Mean episode reward for the visual gridworld navigation task (300 seeds; 5-point moving average;
shaded regions denote 95% confidence intervals).

6 Proof-of-Concept Experiment

We test our approach on a visual gridworld domain.7 Each discrete (x, y) position in the 6 × 6
gridworld is mapped to a noisy image like the one in Figure 1a. We emphasize that agent only sees
these images; it does not have access to the ground-truth (x, y) position.

First we gather a batch of experiences using a uniform random exploration policy in a version of
the gridworld with no rewards or terminal states. We train an abstraction function φMarkov by
minimizing LMarkov (with α = β = 1), and we visualize the latent space in Figure 2a (top row). We
compare against ablations that train with only Linverse or Lcontrastive, as well as against a baseline
autoencoder that we train via pixel reconstruction.

We see that φMarkov and φinverse cluster the noisy observations and recover the 6× 6 grid structure,
whereas the other two losses do not generally have an obvious interpretation. We found that φinverse
usually converged to a representation that separated the edges and corner states from the central states,
since the self-loop transitions at edge and corner states led to different action distributions. We also
observed that φcontrastive and φautoencoder frequently failed to converge at all (see Appendix F for
more visualizations).

Next we froze the representation and trained a DQN (Mnih et al., 2015), using φMarkov to map
images to abstract states. We compared performance against φinverse, φcontrastive, and φautoencoder,
as well as end-to-end DQN with no pretraining. We also compared against a uniform random policy
and DQN trained on ground-truth (x, y) position (with no abstraction). We plot learning curves in Fig.
2b for 300 random seeds each. Markov abstractions match the performance of ground-truth position,
and beat every other learned representation except φinverse, which performs similarly, although, by
itself, Linverse does not always produce Markov abstractions (see counterexample in Appendix C).

7 Conclusion

We have demonstrated a principled approach to learning abstract state representations that provably
results in Markov abstract states. Prior work on representation learning showed promising results,
but lacked this important theoretical consideration. We defined what it means for an abstract state
representation to be Markov while ensuring that the abstract MDP faithfully reflects the dynamics
of its ground MDP. We then described a set of sufficient conditions for achieving such an abstract
MDP. We adapted these conditions into a practical training objective that combines inverse model
estimation and temporal contrastive learning, along with policy constraints. Our approach learns a
state representation that captures the underlying structure of the domain and closes the performance
gap between learning with visual features and using ground-truth non-visual state. In future work, we
plan to leverage this technique to learn representations for more challenging domains.

7Code and videos are available at https://github.com/camall3n/markov-state-abstractions

8

https://github.com/camall3n/markov-state-abstractions

Acknowledgments and Disclosure of Funding

We thank Ben Abbatematteo, David Abel, Barrett Ames, Kavosh Asadi, Akhil Bagaria, Alexander
Ivanov, Michael Littman, Sam Lobel, and our other colleagues at Brown for their thoughtful advice
and countless helpful discussions. This research was supported by the ONR under the PERISCOPE
MURI Contract N00014-17-1-2699.

References
Abel, D., Arumugam, D., Lehnert, L., and Littman, M. L. State abstractions for lifelong reinforcement

learning. In Proceedings of the International Conference on Machine Learning, 2018.

Agrawal, P., Nair, A., Abbeel, P., Malik, J., and Levine, S. Learning to poke by poking: Experiential
learning of intuitive physics. In Advances in Neural Information Processing Systems, pp. 5074–
5082, 2016.

Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-A., and Hjelm, R. D. Unsupervised state
representation learning in Atari. In Advances in Neural Information Processing Systems, pp.
8769–8782, 2019.

Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Blackwell, T., Tobin, J., Abbeel, P., and Zaremba,
W. Transfer from simulation to real world through learning deep inverse dynamics model. arXiv,
preprint 1610.03518, 2016.

Du, S. S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudík, M., and Langford, J. Provably efficient
RL with rich observations via latent state decoding. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pp. 1665–1674, 2019.

Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., and Abbeel, P. Deep spatial autoencoders for
visuomotor learning. In IEEE International Conference on Robotics and Automation, pp. 512–519,
2016.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Bellemare, M. G. DeepMDP: Learning
continuous latent space models for representation learning. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pp. 2170–2179, 2019.

Gutmann, M. and Hyvärinen, A. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297–304, 2010.

Ha, D. and Schmidhuber, J. World models. arXiv, preprint 1803.10122, 2018.

Van Hasselt, H., Hessel, M., and Aslanides, J. When to use parametric models in reinforcement
learning? In Advances in Neural Information Processing Systems, pp. 14322–14333, 2019.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M., Blundell, C., and
Lerchner, A. DARLA: Improving zero-shot transfer in reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning, volume 70, pp. 1480–1490, 2017.

Hutter, M. Extreme state aggregation beyond Markov decision processes. Theoretical Computer
Science, 650:73–91, 2016.

Kaiser, Ł., Babaeizadeh, M., Miłos, P., Osiński, B., Campbell, R. H., Czechowski, K., Erhan, D., Finn,
C., Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R., Tucker, G., and Michalewski, H. Model
based reinforcement learning for Atari. In International Conference on Learning Representations,
2020.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas, A. Reinforcement learning with
augmented data. arXiv, preprint 2004.14990, 2020.

Li, L., Walsh, T. J., and Littman, M. L. Towards a unified theory of state abstraction for MDPs. In
Proceedings of the Ninth International Symposium on Artificial Intelligence and Mathematics, pp.
531–539, 2006.

9

Misra, D., Henaff, M., Krishnamurthy, A., and Langford, J. Kinematic state abstraction and provably
efficient rich-observation reinforcement learning. arXiv, preprint 1911.05815, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Van den Oord, A., Li, Y., and Vinyals, O. Representation learning with contrastive predictive coding.
arXiv, preprint 1807.03748, 2018.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. Curiosity-driven exploration by self-supervised
prediction. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
488–489, 2017.

Shelhamer, E., Mahmoudieh, P., Argus, M., and Darrell, T. Loss is its own reward: Self-supervision
for reinforcement learning. arXiv, preprint 1612.07307, 2016.

Song, Z., Parr, R., Liao, X., and Carin, L. Linear feature encoding for reinforcement learning. In
Advances in Neural Information Processing Systems, volume 29, pp. 4224–4232, 2016.

Srinivas, A., Laskin, M., and Abbeel, P. CURL: Contrastive unsupervised representations for
reinforcement learning. arXiv, preprint 2004.04136, 2020.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling representation learning from reinforce-
ment learning. arXiv, preprint 2009.08319, 2020.

Tiao, L. A simple illustration of density ratio estimation and KL divergence estimation by probabilistic
classification. http://louistiao.me/notes/a-simple-illustration-of-density-ratio-estimation-and-kl-
divergence-estimation-by-probabilistic-classification, 2017. [Online; accessed 16-March-2020].

Zhang, A., Satija, H., and Pineau, J. Decoupling dynamics and reward for transfer learning. arXiv,
preprint 1804.10689, 2018.

10

http://louistiao.me/notes/a-simple-illustration-of-density-ratio-estimation-and-kl-divergence-estimation-by-probabilistic-classification
http://louistiao.me/notes/a-simple-illustration-of-density-ratio-estimation-and-kl-divergence-estimation-by-probabilistic-classification

A Expanded Derivations

A.1 Abstract transition probabilities

Pr(z′|a, z)

=
∑
x′∈X

Pr(z′|x′, a, z) Pr(x′|a, z)

=
∑

x′∈X:φ(x′)=z′

Pr(x′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

Pr(x′|a, x, z) Pr(x|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

Pr(x′|a, x, z) Pr(a|x, z) Pr(x|z)∑
x̃∈X Pr(a|x̃, z) Pr(x̃t|zt)

Tπφ,t(z
′|a, z) :=

∑
x′∈X:φ(x′)=z′

∑
x∈X:φ(x)=z

T (x′|a, x)
πt(a|x)Bπφ,t(x|z)∑
x̃∈X πt(a|x̃)Bπφ,t(x̃|z)

A.2 Abstract rewards∑
r∈R

rPr(r|z′, a, z)

=
∑
x′∈X

∑
x∈X

∑
r∈R

rPr(r, x′, x|z′, a, z)

=
∑
x′∈X

∑
x∈X

∑
r∈R

rPr(r|x′, z′, a, x, z) Pr(x′, x|z′, a, z)

=
∑
x′∈X

∑
x∈X

R(x′, a, x)
Pr(z′|x′, a, x, z) Pr(x′, x|a, z)

Pr(z′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

R(x′, a, x)
Pr(x′|a, x, z) Pr(x|a, z)

Pr(z′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

R(x′, a, x)
Pr(x′|a, x)

Pr(z′|a, z)
Pr(a|x) Pr(x|z)∑
x̃∈X Pr(a|x̃) Pr(x̃|z)

Rπφ,t(z
′, a, z) :=

∑
x′∈X:φ(x′)=z′

∑
x∈X:φ(x)=z

R(x′, a, x)
T (x′|a, x)πt(a|x)Bπφ,t(x|z)

Tπφ,t(z
′|a, z)

∑
x̃∈X πt(a|x̃)Bπφ,t(x̃|z)

11

B Proofs

Proof of Lemma 4.1:

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= B

π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
Let at ∈ A be any action.

⇒ πt(at|xt)Bπ(k)φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= πt(at|xt)Bπ(k−1)φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
⇒ πt(at|xt)Bπ(k)

φ,t (xt|zt,{at−i,zt−i}ki=1)∑
x̃t∈X

πt(at|x̃t)Bπ(k)
φ,t (x̃t|zt,{at−i,zt−i}ki=1)

=
πt(at|xt)Bπ(k−1)

φ,t (xt|zt,{at−i,zt−i}k−1
i=1)∑

x̃t∈X
πt(at|x̃t)Bπ(k−1)

φ,t (x̃t|zt,{at−i,zt−i}k−1
i=1)

(12)

Let

C
π(k)
φ,t :=

πt(at|xt)Bπ(k)
φ,t (xt|zt,{at−i,zt−i}ki=1)∑

x̃t∈X
πt(at|x̃t)Bπ(k)

φ,t (x̃t|zt,{at−i,zt−i}ki=1)
(13)

Combining (12) and (13), we obtain:

C
π(k)
φ,t = C

π(k−1)
φ,t (14)

⇒
∑
xt∈zt

∑
xt+1∈zt+1

T (xt+1 | at, xt)Cπ(k)φ,t =
∑
xt∈zt

∑
xt+1∈zt+1

T (xt+1 | at, xt)Cπ(k−1)φ,t

⇔ T
π(k)
φ,t

(
zt+1 | {at−i, zt−i}ki=0

)
= T

π(k−1)
φ,t

(
zt+1 | {at−i, zt−i}k−1i=0

)
(15)

Additionally, we can combine (14) and (15) and apply the same approach for rewards:

C
π(k)
φ,t = C

π(k−1)
φ,t

⇒ C
π(k)
φ,t

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
C
π(k−1)
φ,t

T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0)

⇒ T (xt+1|at,zt)Cπ(k)
φ,t

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
T (xt+1|at,zt)Cπ(k−1)

φ,t

T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0)

⇒ R
π(k)
φ,t

(
zt+1, {at, zt}ki=0

)
= R

π(k−1)
φ,t

(
zt+1, {at, zt}k−1i=0

)
(16)

Proof of Lemma 4.2:

Let Tπ(k)φ,t be defined via (8). Then applying Lemma 4.1 to the premise gives:

T
π(k)
φ,t (zt+1|{at−i, zt−i}ki=0) = T

π(k−1)
φ,t (zt+1|{at−i, zt−i}k−1i=0)

Returning to the premise, we have:

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= B

π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
⇒

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
T
π(k)
φ,t

(
zt+1

∣∣{at−i, zt−i}ki=0

) =
B
π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
T
π(k−1)
φ,t

(
zt+1

∣∣{at−i, zt−i}k−1i=0

)
⇒

∑
xt∈X:
φ(xt)=zt

T (xt+1|at,xt)Bπ(k)
φ,t (xt|zt,{at−i,zt−i}ki=1)

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
∑
xt∈X:
φ(xt)=zt

T (xt+1|at,xt)Bπ(k−1)
φ,t (xt|zt,{at−i,zt−i}k−1

i=1)
T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0)

⇒ B
π(k+1)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= B

π(k)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}k−1i=0

)

12

Proof of Theorem 1:

Base case. Let Bπφ,t be defined via (6). Then for any zt+1, zt ∈ Z, and xt+1 ∈ X such
that φ(xt+1) = zt+1, and any action at−1 ∈ A:

Nπ
φ,t(zt|zt−1)

Pπφ,t(zt)
=

∑
xt−1∈X

Nπ
t (xt|xt−1)

Pπt (xt)
Bπφ,t(xt−1|zt−1)

⇒ Pπt (xt)

Pπφ,t(zt)
=

∑
xt−1∈X

Nπt (xt|xt−1)B
π
φ,t(xt−1|zt−1)

Nπφ,t(zt|zt−1)
· I

π
t (at−1|xt,xt−1)πφ,t(at−1|zt−1)
Iπφ,t(at−1|zt,zt−1)πt(at−1|xt−1)

⇒ 1[φ(xt) = zt] P
π
t (xt)∑

x̃t∈X P
π
t (x̃t)

= 1[φ(xt) = zt]
∑

xt−1∈X

T (xt|at−1, xt−1)Bπφ,t(xt−1|zt−1)

Tπφ,t(zt|at−1, zt−1)

⇒ Bπφ,t(xt|zt) =
1[φ(xt) = zt]

∑
xt−1∈X T (xt|at−1, xt−1)Bπφ,t(xt−1|zt−1)∑∑

x̃t∈zt
x̃t−1∈zt−1

T (x̃t|at−1, x̃t−1)
πt(at−1|x̃t−1)Bπφ,t(x̃t−1|zt−1)∑

˜̃xt−1∈X
πt(at−1|˜̃xt−1)Bπφ,t(

˜̃xt−1|zt−1)

⇒ Bπφ,t(xt|zt) =
1[φ(xt) = zt]

∑
xt−1∈X Tφ(xt|at−1, xt−1)Bπφ,t(xt−1|zt−1)∑∑

x̃t∈zt
x̃t−1∈zt−1

Tφ(x̃t|at−1, x̃t−1)Bπφ,t(x̃t−1|zt−1)

⇒ B
π(0)
φ,t (xt|zt) = B

π(1)
φ,t (xt|zt, at−1, zt−1) (17)

Here (17) satisfies the conditions of Lemma 4.1 (with k = 1), therefore, for all at ∈ A:

T
π(0)
φ,t (zt+1|at, zt) = T

π(1)
φ,t (zt+1|at, zt, at−1, zt−1)

∩ R
π(0)
φ,t (zt+1, at, zt) = R

π(1)
φ,t (zt+1, at, zt, at−1, zt−1)

This proves the theorem for k = 1.

Induction on k. Here we note that (17) also satisfies the conditions of Lemma 4.2 (again with k = 1),
and that Lemma 4.2 holds for arbitrary k. Therefore, by induction on k:

B
π(k+1)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= Bπφ,t(xt+1|zt+1) ∀ k ≥ 1 (18)

When (18) holds, we informally say that the belief distribution is Markov. Finally, applying Lemma
4.1 for each subsequent value of k ≥ 1, we obtain:

T
π(k)
φ,t

(
zt+1|{at−i, zt−i}ki=0

)
= Tπφ,t(zt+1|at, zt)

∩ R
π(k)
φ,t

(
zt+1, {at−i, zt−i}ki=0

)
= Rπφ,t(zt+1, at, zt)

Therefore, by Definition 2, Mφ is Markov.

Corollary 1.1. Let φ, M , P0, π, Mφ, Bπφ,t, and Bπ(k)φ,t be defined as above. If Bπ(k)φ,t = Bπφ,t for all
k ≥ 1, then φ is Markov by Definition 2.

Proof: The proof follows directly from Lemma 4.1.

Corollary 1.2. If there exists some n ≥ 1 such that Bπ(n)φ,t 6= Bπφ,t, then Bπ(1)φ,t 6= Bπφ,t.

Proof: Suppose such an n exists, and assume for the sake of contradiction that Bπ(1)φ,t = Bπφ,t. Then

by Lemma 4.2, Bπ(k)φ,t = Bπφ,t for all k ≥ 1. However this is impossible, since we know there exists

some n ≥ 1 such that Bπ(n)φ,t 6= Bπφ,t. Therefore Bπ(1)φ,t 6= Bπφ,t.

13

C Counterexample: Inverse Loss not Sufficient for Markov Abstraction

(Linverse = 0) 6=⇒ Markov(φ)

We provide a counterexample demonstrating that inverse model estimation alone is insufficient to
produce a Markov abstraction. In the MDP of Figure 4, there are four numbered states and two
actions: “right” and “left”. The abstraction φ maps ground states 1 and 3 to abstract state A, and
ground states 2 and 4 to abstract states B and C, respectively.

Any valid transition between two ground states uniquely identifies the selected action as either “right”
or “left”. The same is true for their corresponding abstract states. Therefore, the abstraction satisfies
the inverse-model matching condition (10b), namely that Iπφ,t(a|z′, z) = Iπt (a|x′, x) for every x ∈ z
and x′ ∈ z′.
However, conditioning the abstract transition model on additional history changes the transition
probabilities. For example, suppose P0 is uniform over ground states 2 and 4, and consider the
action sequence [“left”, “right”]. When taking action “right” at time t = 1, the 1-step probability of
transitioning from abstract state A to abstract state B is 0.5. However, given the additional history of
having started in B, the probability of transitioning back to B is 1.0, since the extra history collapses
the belief distribution at time t = 1 to only ground state 1. Since conditioning on additional history
changes the abstract transition probabilities, the abstraction is not Markov, by Definition 2.

Figure 4: A four-state, two-action MDP and an abstraction function, where ground states are denoted by circles,
abstract states are denoted by colored boxes, and actions are denoted by arrows.

14

D Hyperparameters

Hyperparameter Value

Number of seeds 300
Optimizer Adam
Learning rate 0.003
Batch size 2048
Gradient updates 3000
Latent dimensions 2
Number of conditional samples, nc 1
Number of marginal samples, nm 1
Loss coefficient, α 1.0
Loss coefficient, β 1.0

Table 1: Hyperparameters for pretraining

Hyperparameter Value

Number of seeds 300
Number of episodes 100
Maximum steps per episode 100
Optimizer Adam
Learning rate 0.003
Batch size 16
Discount factor, γ 0.9
Starting exploration probability, ε0 1.0
Final exploration probability, ε 0.05
Epsilon decay period 2500
Replay buffer size 10000
Initialization steps 500
Target network copy period 50

Table 2: Hyperparameters for DQN

15

E Network Architecture

FeatureNet(
(phi): Encoder(
(phi): Sequential(
(0): Reshape(-1, 252)
(1): Linear(in_features=252, out_features=32, bias=True)
(2): Tanh()
(3): Linear(in_features=32, out_features=2, bias=True)
(4): Tanh()

)
)
(inv_model): InverseNet(
(inv_model): Sequential(
(0): Linear(in_features=4, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=4, bias=True)

)
)
(discriminator): ContrastiveNet(
(model): Sequential(
(0): Linear(in_features=4, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=1, bias=True)
(3): Sigmoid()

)
)
(cross_entropy): CrossEntropyLoss()
(bce_loss): BCELoss()

)

AutoEncoder(
(phi): Encoder(
(phi): Sequential(
(0): Reshape(-1, 252)
(1): Linear(in_features=252, out_features=32, bias=True)
(2): Tanh()
(3): Linear(in_features=32, out_features=2, bias=True)
(4): Tanh()

)
)
(reverse_phi): Decoder(
(phi): Sequential(
(0): Linear(in_features=2, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=252, bias=True)
(3): Tanh()
(4): Reshape(-1, 21, 12)

)
)
(mse): MSELoss()

)

16

F Additional Representation Visualizations

Here we visualize abstraction learning progress for the 6 × 6 visual gridworld domain across six
random seeds. Each figure below displays selected frames (progressing from left to right) of a
different abstraction learning method (top to bottom): LMarkov; Linverse only; Lcontrastive only;
and autoencoder. Color denotes ground-truth (x, y) position, which is not shown to the agent. These
visualizations span 30,000 training steps. The third column from the right shows the representations
after 3000 steps, which we use for the results in the main text. We show additional learning curves
for the final representations in Appendix G.

Seed 1 Seed 2

Seed 3 Seed 4

Seed 5 Seed 6

17

G Increased Pretraining Time

Increasing the number of pretraining steps from 3000 to 30,000 improves the learning performance of
φcontrastive and φautoencoder, though not enough to dramatically change the results (see Figure 6).

Figure 6: Mean episode reward for the visual gridworld navigation task, using representations that were pretrained
for 30,000 steps (300 seeds; 5-point moving average; shaded regions denote 95% confidence intervals).

18

	Introduction
	Background
	Markov Decision Processes
	State Abstraction

	Related Work
	Markov Abstract State Representations
	Constructing the Abstract Decision Process
	Conditioning on Multiple Steps
	Sufficient Conditions for a Markov Abstraction

	Training a Markov Abstraction
	Proof-of-Concept Experiment
	Conclusion
	Expanded Derivations
	Abstract transition probabilities
	Abstract rewards

	Proofs
	Counterexample: Inverse Loss not Sufficient for Markov Abstraction
	Hyperparameters
	Network Architecture
	Additional Representation Visualizations
	Increased Pretraining Time

