
LQR-RRT∗: Optimal Sampling-Based Motion Planning with

Automatically Derived Extension Heuristics

Alejandro Perez, Robert Platt Jr., George Konidaris, Leslie Kaelbling and Tomas Lozano-Perez

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

{aperez, rplatt, gdk, lpk, tlp}@csail.mit.edu

Abstract— The RRT∗ algorithm has recently been proposed
as an optimal extension to the standard RRT algorithm [1].
However, like RRT, RRT∗ is difficult to apply in problems with
complicated or underactuated dynamics because it requires the
design of a two domain-specific extension heuristics: a distance
metric and node extension method. We propose automatically
deriving these two heuristics for RRT∗ by locally linearizing
the domain dynamics and applying linear quadratic regulation
(LQR). The resulting algorithm, LQR-RRT∗, finds optimal
plans in domains with complex or underactuated dynamics
without requiring domain-specific design choices. We demon-
strate its application in domains that are successively torque-
limited, underactuated, and in belief space.

I. INTRODUCTION

The problem of planning dynamically feasible trajectories

from an initial state to a goal state has recently been the

subject of extensive study. Unfortunately, the general motion

planning problem is known to be PSPACE-hard [2], [3].

In an effort to solve problems of practical interest, much

recent research has been devoted to developing sampling-

based planners such as the Rapidly-exploring Randomized

Tree (RRT) [4] and the Probabilistic Road Map (PRM) [5].

These algorithms only achieve probabilistic completeness—

that is, the probability that a solution is found (if one exists)

converges to one as the number of samples approaches

infinity; however, they have good average-case performance

and work well on many problems of practical interest.

One of the key drawbacks of these sampling-based al-

gorithms is that they often produce suboptimal solutions

that “wander” through state space. In fact, Karaman and

Frazzoli have recently shown that RRT almost surely does

not find an optimal solution [1]. They introduced RRT∗,

an algorithm which extends RRT to achieve the asymptotic

optimality property, i.e., almost-sure convergence to the

optimal solution. Compared with the RRT, RRT∗ requires

only a constant factor more computation. Like RRT, RRT∗

requires the user to specify two domain-specific extension

heuristics: a distance metric and a node extension procedure.

These components play a significant role in the algorithm:

naive implementations (e.g., using the Euclidean distance)

may not reflect the dynamics of particular domain, and

therefore result in poor exploration and slow convergence

to the optimal solution. Indeed, it has been shown that the

performance of RRT-based algorithms is sensitive to the

distance metric used [6].

Prior research has characterized the effect of the distance

metric component on the convergence of RRT. Cheng and

LaValle [7] showed that RRTs efficiently explore the state

space only when this metric reflects the true cost-to-go.

LaValle and Kuffner have previously noted that cost-to-go

functions could be based on, among other options, optimal

control for linearized systems [4]. Glassman and Tedrake [8]

derived a cost-to-go pseudometric based on linear quadratic

regulators (LQR), which was used to grow a standard RRT

in domains with constrained and underactuated dynamics.

We propose an LQR-based heuristic to be used with

the RRT∗ algorithm similar to the one proposed by Glass-

man and Tedrake [8] for the RRT. As in Glassman and

Tedrake [8], we linearize the system dynamics about newly

sampled points and use the LQR cost function to select the

vertex in the tree to extend. However, in addition, we use

the infinite horizon LQR policy to perform the extension,

ultimately reaching a state that is potentially different from

the sampled state. Finally, we evaluate the finite horizon

LQR value function about this state and use it to evaluate

distance during the RRT∗ “rewiring” step. The results are

demonstrated on three underactuated robotics problems that

are difficult to solve using naive extension heuristics: the

torque-limited inverted pendulum, the acrobot, and a belief

space planning problem.

II. BACKGROUND

A. Problem Statement

Given a system with known (possibly non-linear) process

dynamics, the optimal motion planning problem is to find

a minimum cost feasible trajectory from an initial con-

figuration to a goal configuration. Let configuration space

be a compact set, X ⊆ X , that describes all possible

configurations of the system. Let U ⊆ U be a compact

control input space. We assume that we are given the non-

linear process dynamics:

ẋ = f(x, u).

A dynamically feasible trajectory is a continuous function,

σ : [0, 1] → X , for which there exists a control function,

u : [0, 1] → U , such that ∀t ∈ [0, 1], σ̇(t) = f(σ(t), u(t)).
The set of all dynamically feasible trajectories is denoted by

Σtraj. Given an initial configuration, xinit, and a goal region

Xgoal, the motion planning problem is to find a dynamically

feasible trajectory, σ, and a control, u, that starts in the initial

configuration and reaches the goal region: σ(0) = xinit and

σ(1) ∈ Xgoal. Let c : Σtraj → R
+ be a cost functional that

maps each feasible trajectory to a non-negative cost. The

optimal motion planning problem is to find a solution to the

motion planning problem that minimizes c(σ).

B. RRT∗

Rapidly exploring random trees (RRTs) are a standard ran-

domized approach to motion planning [4]. RRT∗ [1], shown

in Algorithm 1, is a variant of this algorithm that has the

asymptotic optimality property, i.e., almost-sure convergence

to an optimal solution.

Algorithm 1: RRT∗((V,E), N)

for i = 1, . . . , N do1

xrand ← Sample;2

Xnear ← Near(V, xrand);3

(xmin, σmin)← ChooseParent(Xnear, xrand);4

if CollisionFree(σ) then5

V ← V ∪ {xrand};6

E ← E ∪ {(xmin, xrand) };7

(V,E)← Rewire((V,E), Xnear, xrand);8

return G = (V,E);9

Algorithm 2: ChooseParent(Xnear, xrand)

minCost←∞; xmin ← NULL; σmin ← NULL;1

for xnear ∈ Xnear do2

σ ← Steer(xnear, xrand);3

if Cost(xnear) + Cost(σ) < minCost then4

minCost← Cost(xnear) + Cost(σ);5

xmin ← xnear; σmin ← σ;6

return (xmin, σmin);7

Algorithm 3: Rewire((V,E), Xnear, xrand)

for xnear ∈ Xnear do1

σ ← Steer(xrand, xnear) ;2

if Cost(xrand) + Cost(σ) < Cost(xnear) then3

if CollisionFree(σ) then4

xparent ← Parent(xnear);5

E ← E \ {xparent, xnear};6

E ← E ∪ {xrand, xnear};7

return (V,E);8

The major components of the algorithm are:

• Random sampling: The Sample procedure provides

independent uniformly distributed random samples of

states from the configuration space.

• Near nodes: Given a set V of vertices in the tree and a

state x, the Near(V, x) procedure provides a set of states

in V that are close to x. Here, closeness is measured

with respect to some metric as follows:

Near(V, x) :=

{

x′ ∈ V : ‖x− x′‖ ≤ γ

(

log n

n

)1/d
}

,

Fig. 1. “Near” neighborhood of nodes for xnew (red circle) on an iteration
of the torque-limited pendulum. Nodes found using Euclidean distance as
the cost metric (green circles) are closer to xnew. However, extension is not
feasible from any of the considered states as these did not account for the
dynamics of the system. The LQRNear calculation provides a neighborhood
of nodes (blue circles) that are able to reach xnew with minimum effort.
Policies in the tree are false-colored (red through blue) as cost increases.

where ‖ · ‖ is the distance using the metric, n is the

number of vertices in the tree, d is the dimension of the

space, and γ is a constant.

• Steering: Given two states x, x′, the Steer(x, x′) pro-

cedure returns a path σ that connects x and x′. Most

implementations connect two given states with a straight

path in configuration space.

• Collision checking: Given a path σ, CollisionFree(σ)
returns true if the path lies in the obstacle-free portion

of configuration space.

The algorithm proceeds as follows. Firstly, a state is sam-

pled, denoted as xrand, from the configuration space (Line 2),

and near neighbors are evaluated using the Near function

(Line 3).1 Next, RRT∗ calls ChooseParent (Algorithm 2)

to find a candidate for a parent node to xrand (Line 4).

ChooseParent searches through the nodes in the set Xnear

of near nodes and returns the node, denoted as xmin, that

reaches xrand with minimum cost along with the path σmin

connecting xmin to xrand. After that node is found, the

algorithm checks σmin for collision (Line 5). If the path

is obstacle-free, the algorithm adds xrand to the tree and

connects xmin to xrand, and attempts to “rewire” the nodes

in Xnear using the Rewire procedure (Algorithm 3). The

Rewire procedure attempts to connect xrand with each node

in the set Xnear of near nodes. If the path that connects xrand

with a near node xnear reaches xnear with cost less than that

of its current parent, then the xnear is “rewired” to xrand by

connecting xrand and xnear.

C. LQR

Linear quadratic regulation (LQR) is an approach to

computing optimal control policies for linear systems with

Gaussian process noise. In general, the problem of finding

optimal control policies for arbitrary stochastic systems is has

polynomial computational complexity in the number of value

function parameters. However, when the system dynamics

are linear, it is possible to solve for the optimal value function

efficiently in closed form. Furthermore, it is possible to apply

this approach to non-linear systems by linearizing the non-

linear process dynamics about an operating point.

1Although it is not explicitly noted here, we assume that the algorithm
proceeds to the next iteration if the Near function returns an empty set.

Suppose that we are given a continuous-time non-linear

system,

ẋ = f(x, u),

and we are interested in computing a local policy that approx-

imately optimizes a quadratic cost function defined about a

point, (x0, u0). Taking the first-order Taylor expansion of f
about (x0, u0), we have:

ẋ ≈ f(x0, u0)+
∂f(x0, u0)

∂x
(x−x0)+

∂f(x0, u0)

∂u
(u−u0).

If we notice that ẋ0 = f(x0, u0) and define a change of

variables, x̄ = x− x0 and ū = u− u0, then this becomes:

ẋ ≈ ẋ0 +A(x0, u0)x̄+B(x0, u0)ū,

or simply
˙̄x ≈ A(x0, u0)x̄+B(x0, u0)ū,

where

A(x0, u0) =
∂f(x0, u0)

∂x

and

B(x0, u0) =
∂f(x0, u0)

∂u
.

Given a cost function of the form:

J =

∫

∞

0

x̄TQx̄+ ūTRū,

we can compute the locally optimal policy by solving the

algebraic Riccati equation for the matrix, S:

ATS + SA− SBR−1BTS +Q = 0,

where A = A(x0, u0) and B = B(x0, u0). It is possible to

solve this equation for S efficiently, and many software alge-

bra packages provide standard functions to do so, including

the lqr function provided by Matlab. Given a solution, S,

the optimal value function is:

V (x̄) = x̄TSx̄.

The optimal policy is

π∗(x̄) = −Kx̄, (1)

where

K = R−1B(x0, u0)
TS

is known as the LQR gain matrix. In this paper, it will be

important to recognize that the value function can be used to

compute a cost to go from any point to the goal. Following

Glassman and Tedrake [8], we note that this cost can be

used as a measure of “distance”: states with a high cost to

go are further from the goal than those with a lower cost to

go. Using cost to go as a distance metric results in efficient

exploration of the state space [7]. It is these locally linearized

dynamics that we use in LQR-RRT∗ to estimate distances

and perform extensions. Initially in our algorithm, when the

distances between the new node and the “near” nodes in

the tree are large, this distance measure will be inaccurate.

However, as the tree covers the state space more densely,

the distances shrink and the local LQR policy becomes more

closely optimal. In the following, we will use the notation

[K,S] = LQR(A,B,Q,R),

to denote the function that calculates the LQR gain matrix,

K, and the cost matrix, S.

III. LQR AS AN EXTENSION HEURISTIC FOR RRT∗

We present a variation of the RRT∗ algorithm that incor-

porates LQR for “near” and “nearest” node calculations as

well as for extensions among nodes, given in Algorithm 4.

In each iteration, the algorithm first samples a state, de-

noted as xrand, from the configuration space (Line 2), and

finds its nearest neighbor using the LQRNearest function

(Line 5). Then, the algorithm calls the LQRSteer function

to create a xnew state. This state represents the end of a

trajectory executed with the LQR-policy generated from the

LQRNearest function with a pre-specified step size based on

the cost. The LQRNear procedure is then called on xnew to

search for a neighborhood of nodes around this state. Then,

ChooseParent finds a candidate for a parent node to xnew

(Line 6). The ChooseParent procedure, presented in detail

in Algorithm 5, simply searches through all the nodes in the

set Xnear of near nodes and returns the node, denoted as

xmin, that reaches xnew with minimum LQR S cost along

with the trajectory σmin that connects xmin to xnew. After

that node is found, the algorithm checks σmin for collision.

If the path is obstacle-free, the algorithm adds xnew to the

tree and connects xmin to xnew, and it attempts to “rewire”

the nodes in Xnear using the Rewire procedure, which is

provided in Algorithm 6. The Rewire procedure attempts to

connect xnew with each node in the set Xnear of near nodes.

If the trajectory that connects xnew with a near node xnear

reaches xnear with cost less than that of its current parent,

then the xnear is “rewired” to xnew by connecting xnew and

xnear.

The algorithm primitives are outlined in detail below:

• Nearest Vertex: Given a set of vertices in the tree, V ,

and a state x, the LQRNearest(V, x) function returns

the nearest node in the tree in terms of the LQR cost-

to-go function. We locally linearize the system about x
and the zero action, u = 0, and evaluate the LQR gain

matrix, K(x), and cost matrix, S(x):

[K(x), S(x)] = LQR(A(x, 0), B(x, 0), Q,R).

We use the cost matrix to evaluate the distance between

vertices in the tree and the sample point:

xnearest = argmin
v∈V

(v − x)TS(v − x).

• Near Vertices: This function returns the set of vertices

that are within a certain distance of a state, x, calculated

by evaluating the LQR cost function about that state:

LQRNear(V, x)

=

{

v ∈ V : (v − x)TS(v − x) ≤ γ

(

log n

n

)
1

d

}

where n is the number of vertices in the tree, d is the

dimension of the space, and γ is a constant.

• Steering: Given two states, x, x′, the LQRSteer(x, x′)
function “connects” state x with x′ using the local LQR

policy calculated by linearizing about x.

Algorithm 4: LQR− RRT∗((V,E), N)

for i = 1, . . . , N do1

xrand ← Sample;2

xnearest ← LQRNearest(V, xrand);3

xnew ← LQRSteer(xnearest, xrand);4

Xnear ← LQRNear(V, xnew);5

(xmin, σmin)← ChooseParent(Xnear, xnew);6

if CollisionFree(σ) then7

X ← X ∪ {xnew};8

E ← E ∪ {(xmin, xnew)};9

(V,E)← Rewire((V,E), Xnear, xnew);10

return G = (V,E);11

Algorithm 5: ChooseParent(Xnear, xnew)

minCost←∞; xmin ← NULL; σmin ← NULL;1

for xnear ∈ Xnear do2

σ ← LQRSteer(xnear, xnew);3

if Cost(xnear) + Cost(σ) < minCost then4

minCost← Cost(xnear) + Cost(σ);5

xmin ← xnear; σmin ← σ;6

return (xmin, σmin);7

Algorithm 6: Rewire((V,E), Xnear, xnew)

for xnear ∈ Xnear do1

σ ← LQRSteer(xnew, xnear) ;2

if Cost(xnew) + Cost(σ) < Cost(xnear) then3

if CollisionFree(σ) then4

xparent ← Parent(xnear);5

E ← E \ {xparent, xnear};6

E ← E ∪ {xnew, xnear};7

return (V,E);8

Although not explicitly noted in the algorithm descrip-

tions, we also employ a branch-and-bound technique. In

Karaman et al. [9], branch-and-bound is implemented to

prune parts of the tree that are evaluated with a cost-to-go

function and found to result in a higher cost than that of

current solutions available in the tree. In this paper, a cost-

to-go function is not implemented. Instead, the cost of the

current best solution in the tree is used as a lower bound,

and all nodes with a total cost above this value are removed.

The branch and bound method concentrates the search on

finding a trajectory that reaches the goal optimally.

IV. RESULTS

In this section we evaluate LQR-RRT∗ in three domains

with complex dynamics: one which is torque-limited, one

which is underactuated, and one which requires planning in

belief-space.

A. Torque-limited Pendulum

Our first domain is a torque-limited pendulum. The ob-

jective is to swing up the pendulum from rest to a vertically

balanced position. This domain has a two-dimensional state

space, (θ, θ̇), where θ denotes the orientation of the pendu-

lum. The equation of motion for this system is: θ̈ = u−bθ̇−
g cos(θ), where gravity is g = 9.81, the constant of viscous

friction is b = 0.1, torque is constrained to u ∈ [−3, 3],
and we have assumed unit mass and unit length. Since this

problem is low dimensional, we are able to compare the

solution found using our approach with the solution found

using dynamic programming (which is optimal for a given

discretization) using a state-space grid of 100× 100 and 10
discrete actions.

−4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

8

θ

θ
d

o
t

Iteration: 5000 Nodes: 2976 Radius: 0.51842 Lower Bound: 302.8823

(a) R = 1

−4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

8

θ

θ
d
o
t

Iteration: 1200 Nodes: 2191 Radius: 5.9252 Lower Bound: 2305.2161

(b) R = 50

Fig. 2. The search tree and solution trajectories (thick red lines) found
by our approach after 5000 iterations. (a) shows the solution found by the
algorithm when torque is cheap. (b) shows the solution found when the
action costs are high. Policies in the tree are false-colored (yellow through
magenta) as cost increases.

We tested our algorithm in two scenarios where differ-

ent cost functions were used in LQRNearest, Near, and

LQRSteer. In the first, we set Q equal to identity and R = 1.

In the second, we set Q equal to identity and R = 50.

Figure 2 illustrates the results. In Figure 2(a), we see that

the solution trajectory found by LQR-RRT∗ when action

cost is small involves only three swings to reach the upright

position. Figure 2(b) shows that the resulting trajectory for a

higher action cost involves many more swings. The algorithm

finds a trajectory that takes longer to reach the upright

position, but expends less action cost in the process. All

solutions were simulated and we observed that the goal was

reached without violating the torque constraint during all

runs. Figure 3 shows the solution cost over time for both

problem instances. We also show the average solution cost

found by RRT (which is cost-insensitive) using the same

extension heuristics and the solution cost found by dynamic

programming. These graphs show that the solution cost found

by our approach decreases rapidly over time, improving

significantly on the solution cost found by the RRT and

converging to the approximately optimal solution cost as

obtained by dynamic programming.

(a) Torque-limited Pendulum R = 1

(b) Torque-limited Pendulum R = 50

Fig. 3. Solution cost over time for LQR-RRT (blue) and LQR-RRT∗

(red) for the torque-limited simple pendulum with R = 1 (a) and R =

50 (b). Averages are over 100 runs, and error bars are standard error. An
approximately optimal solution cost, obtained by dynamic programming, is
shown in black. Average times to initial solutions for LQR-RRT and our
approach were 4.8 and 22.2 seconds, respectively.

Although pendulum is a low-dimensional domain, solving

it using RRT∗ requires good extension heuristics: our attempt

to solve it using extensions based on Euclidean distance

failed, running out of memory before a solution was found.

B. Acrobot

In the second domain, the planner must bring an acrobot

(a double inverted pendulum actuated only at the middle

joint) from its initial rest configuration to a balanced vertical

pose. The two joints are denoted q1 and q2. The state space

is four-dimensional: (q1, q2, q̇1, q̇2). Since the first joint is

completely un-actuated, the acrobot is a mechanically un-

deractuated system. The equations of motion for the acrobot

are described in detail in Murray and Hauser [10].

Figure 4 shows the solution found using our approach,

and Figure 5 shows the solution cost over time. Again,

average cost rapidly improves, starting from a cost similar to

that of RRT (with the same extension heuristic) and rapidly

improving. The Acrobot is a difficult domain for which

to design extension heuristics because it is dynamic and

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4. A solution found after 5000 iterations of LQR-RRT∗ on the acrobot.
Earlier state configurations are shown in lighter gray. Torque is presented
as a false-colored arc where red represents higher values.

underactuated. Attempts to use standard Euclidean distance-

based heuristics ran out of memory before a solution could

be found.

Fig. 5. Acrobot solution cost over time for LQR-RRT (blue) and our
approach (red). Error bars indicated standard error over an average of 50
runs. Average times to initial solutions for LQR-RRT and our approach were
109 and 136 seconds respectively.

C. Light-Dark Domain

The Light-Dark domain (adapted from Platt et al. [11]) is

a partially observable problem where the agent must move

into a goal region with high confidence. Initially, the agent

is uncertain of its true position. On each time step, the

agent makes noisy state measurements. The covariance of

these measurements is a quadratic function of the minimum

distance to each of two light sources located at (5, 2) and

(5,−2) (see Figure 6): w(x) = min((x− b1)
2, (x− b2)

2),
where b1 and b2 are the locations of the first and second

light sources, respectively.

x

y

−1 0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4

Fig. 6. The Light-Dark domain, where the noise in the agent’s location
sensing depends upon the amount of light present at its location. Here the
agent moves from its start location (marked by a black circle) to its goal
(a black X), first passing through a well-lit area to reduce its localization
uncertainty (variance shown using gray circles).

A key concept in solving partially observable problems

is that of belief state, a probability distribution over the

underlying state of the system. Since the agent is unable

to sense state directly, it is instead necessary to plan in the

space of beliefs regarding the underlying state of the system

rather than the underlying state itself. In this example, it

is assumed that belief state is always an isotropic Gaussian

such that belief state is three-dimensional: two dimensions

describe the mean, x, and one dimension describes variance,

v. The dynamics of the belief system are derived from the

Kalman filter equations and describe how belief state is

expected to change as the system gains more information:

ṡ = (u1, u2, v̇)
T , where v̇ = −v2/(v + w(x)).

The goal of planning is to move from an initial high-

variance belief state to a low-variance belief state where

the mean of the distribution is at the goal. This objective

corresponds to a situation where the agent is highly confident

that the true state is in the goal region. In order to achieve

this, the agent must move toward one of the lights in order

to obtain a good estimate of its position before proceedings

to the goal. The domain, along with a sample solution

trajectory, is depicted in Figure 6.

Fig. 7. Light-Dark solution cost over time for LQR-RRT (blue) and our
approach (red). Error bars indicated standard error over an average of 100
runs. Average times to initial solutions for LQR-RRT and our approach
were 0.2 and 2.1 seconds respectively. All algorithms were implemented in
MATLAB and tested on a Intel Core 2 Duo (2.26 GHz) computer.

Figure 7 shows the solution cost for the Light-Dark

domain over time. As in the other examples, our approach

finds a solution quickly and rapidly improves. Figure 8 shows

an example tree. Notice that it would be difficult to create

heuristics by hand that would be effective in this domain: it is

unclear how much weight should be attached to differences

in variance against differences in real-world coordinates. Our

approach avoids this question because it obtains its extension

heuristics directly from the dynamics of the problem.

V. SUMMARY AND CONCLUSION

This paper has proposed an approach to using LQR with

RRT∗ in the context of domains that have underactuated, or

complex dynamics. Although RRT∗ is guaranteed to find the

optimal solutions asymptotically, in practice its performance

is crucially dependent on the careful design of appropriate

extension heuristics. By contrast, LQR-RRT∗ solved all three

problems using the same automatically derived extension

heuristics—without the need for significant design effort.

The use of such automatically derived heuristics eliminates a

−2 0 2 4 6 8
−5

0

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration: 5000 Nodes: 1578 Radius: 16.7508 Lower Bound: 3006.4426

Fig. 8. The search tree for Light-Dark after 5000 iterations of planning.
The belief space is represented in 3-dimensions, where the mean of the
agent’s location estimate is the “floor”, and the vertical axis represents
the variance of the agent’s belief distribution; lower points represent less
location uncertainty. The algorithm builds a search tree to find a trajectory
through belief-space. The optimized solution is shown as a thick yellow
line, where the agent moves towards the goal while lowering the variance
of its location distribution (descending the vertical axis). Policies in the tree
are false-colored (green through magenta) as cost increases.

major obstacle to the application of sampling-based planners

to problems with complex or underactuated dynamics.

ACKNOWLEDGEMENTS

We would like to thank Gustavo Goretkin and Elena

Glassman for valuable technical discussions. This work was

supported in part by the NSF under Grant No. 019868, ONR

MURI grant N00014-09-1-1051, AFOSR grant AOARD-

104135, and the Singapore Ministry of Education under a

grant to the Singapore-MIT International Design Center.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research (to

appear), June 2011.
[2] J. T. Schwartz and M. Sharir, “On the ‘piano movers’ problem:

II. General techniques for computing topological properties of real
algebraic manifolds,” Advances in Applied Mathematics, vol. 4, pp.
298–351, 1983.

[3] S. Lavalle, Planning Algorithms. Cambridge University Press, 2006.
[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[5] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[6] S. M. Lavalle, “From dynamic programming to RRTs: Algorithmic
design of feasible trajectories,” in Control Problems in Robotics.
Springer-Verlag, 2002.

[7] P. Cheng and S. M. Lavalle, “Reducing metric sensitivity in ran-
domized trajectory design,” in In IEEE International Conference on

Intelligent Robots and Systems, 2001, pp. 43–48.
[8] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic

for rapidly exploring state space,” in Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, May 2010.
[9] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime

motion planning using the RRT*,” in IEEE International Conference

on Robotics and Automation, 2011.
[10] R. Murray and J. Hauser, “A case study in approximate linearization:

The acrobot example,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M91/46, 1991.

[11] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observations,” in Proceedings

of Robotics: Science and Systems, June 2010.

