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Summary
We seek to design reinforcement learning agents that build plannable models of the world

that are abstract in both state and time. We propose a new algorithm to construct a skill graph;
nodes in the skill graph represent abstract states and edges represent skill policies. Previous
works that learn a skill graph use random sampling from the state-space and nearest-neighbor
search—operations that are infeasible in environments with high-dimensional observations (for
example, images). Furthermore, previous algorithms attempt to increase the probability of all
edges (by repeatedly executing the corresponding skills) so that the resulting graph is robust
and reliable everywhere. However, exhaustive coverage is infeasible in large environments,
and agents should prioritize practicing skills that are more likely to result in higher reward. We
propose a method to build skill graphs that aids exploration, without assuming state-sampling,
distance metrics, or demanding exhaustive coverage.

Contribution(s)
1. We provide an algorithm that learns a graph-based, plannable abstraction of the environ-

ment, even when the observations are high-dimensional; for example, images.
Context: Prior work learned graph abstractions by assuming a distance metric over the
state-space (for example, Bagaria et al. (2021b)), and hence cannot be easily applied to en-
vironments with image-based observations.

2. We use ideas from Intrinsic Motivation to design a graph construction algorithm that serves
as a high-level exploration objective without needing to learn an accurate one-step model
of the world—the drive to build the skill graph allows the agent to solve five challenging
exploration problems, directly from pixels.
Context: Most prior work in model-based exploration either operates in non-image based
domains (for example, Sharma et al. (2020b)), or require the agent to learn one-step models
(for example, Hafner et al. (2022); Mendonca et al. (2021)).

3. We provide a method for converting a goal-conditioned value function into a plannable
abstract world model, which allows us to use dynamic programming to determine which
option to execute at each state.
Context: Lo et al. (2024) also study this problem, but they assume that option subgoals
and initiation regions are provided to the agent; furthermore, they use the model for reward-
shaping (Ng et al., 1999) rather than for option selection at decision time.
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Abstract

We seek to design reinforcement learning agents that build plannable models of the
world that are abstract in both state and time. We propose a new algorithm to con-
struct a skill graph; nodes in the skill graph represent abstract states and edges repre-
sent skill policies. Previous works that learn a skill graph use random sampling from
the state-space and nearest-neighbor search: operations that are infeasible in environ-
ments with high-dimensional observations (for example, images). Furthermore, previ-
ous algorithms attempt to increase the probability of all edges (by repeatedly executing
the corresponding skills) so that the resulting graph is robust and reliable everywhere.
However, exhaustive coverage is infeasible in large environments, and agents should
prioritize practicing skills that are more likely to result in higher reward. We show
that our agent can solve 4 challenging image-based exploration problems more rapidly
than vanilla model-free RL and state-of-the-art novelty-based exploration. Then, we
show that the resulting abstract model solves a family of tasks in VISUALPINBALL not
provided during the agent’s exploration phase.

1 Introduction

Hierarchical reinforcement learning (HRL) (Klissarov et al., 2025) augments the agent’s primitive
actions with temporally extended actions called options (Sutton et al., 1999). An agent with tem-
porally extended options can plan more effectively because the accuracy of its predictions do not
degrade as rapidly over time (Sutton et al., 1999; 2011). Furthermore, well-designed options em-
power the agent to explore more efficiently (Machado, 2019). But, where do good options come
from and how can an agent construct them autonomously solely from interaction with the environ-
ment? This problem of option discovery (Mcgovern, 2002) has been studied extensively (Precup,
2001; Mcgovern, 2002; Ravindran, 2004; Konidaris, 2011; Bacon, 2018; Machado, 2019), but most
algorithms do not simultaneously tackle the complementary problem of learning state abstractions
(Konidaris, 2019). An agent that simultaneously learns both can build a simplified version of the
environment (Konidaris et al., 2018), which can then be exploited by off-the-shelf planners to yield
solutions to complex, long-horizon tasks (Machado et al., 2023; Sutton et al., 2022; 2024).

One algorithm that simultaneously discovers options and their corresponding state abstractions is
Deep Skill Graphs (DSG; Bagaria et al., 2021b). DSG learns options that form a graph, where
the nodes are subgoals and the edges are the policies that navigate between them. To construct
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Figure 1: (a) In the original DSG algorithm, a state is sampled uniformly at random (blue star) from
the state-space S and the graph is pulled towards it via its nearest neighbor node (green). (b) In
the new algorithm, IM-DSG, the agent uses intrinsic motivation to identify a node to expand using
an exploration value function Vnovelty. (c) Once the agent reaches the expansion node, it executes
an exploration policy πnovelty, and the most novel state in the resulting trajectory τ is identified as a
target for a new skill.

this graph, DSG first samples a state uniformly at random from the state-space and then selects its
nearest node ne in the graph. Then, it uses planning inside the graph to reach ne, after which it moves
towards the randomly sampled state. This simple combination of random sampling and expanding
the nearest neighbor node is inspired by motion planning (LaValle, 1998) and provably causes the
graph to expand towards large unexplored regions of the state-space (Lindemann & LaValle, 2004).
While effective, DSG makes the following assumptions that limit its applicability: (a) the ability to
sample meaningful states uniformly at random from the state-space (a state-sampler), and (b) the
ability to efficiently compute the nearest neighbor node in the graph (a distance metric).

How can we incrementally build the skill graph so that it retains its expansion property, but does not
require a state-sampler or nearest-neighbor search to do so? Instead of generating a random state
and pulling the graph towards it (see Figure 1(a)), we use ideas from intrinsic motivation (Barto,
2013; Schmidhuber, 2010) to identify an existing node for expansion and push the graph outward
from it (Figure 1(b); Lindemann & LaValle 2004). The agent plans with its existing skills to reach
the expansion node, and then executes a low-level exploration policy trained using RL to maximize
a novelty-based intrinsic reward (Sutton, 1990; Taïga et al., 2019). Since the intrinsic reward is
likely to be higher in states that are outside the graph, executing the exploration policy will result
in a trajectory that will tend to move away from the existing graph, i.e., towards those states where
the agent does not yet have a reliable abstract model (Figure 1(c)). The agent then identifies the
most interesting state (Chentanez et al., 2005) in that trajectory and builds a new skill to target it
(Simsek & Barto, 2004). Over time, the agent refines the skill that reaches this new node in the
graph, and in doing so, converts this once novel region into an area over which it has gained mastery
via its abstract model (Veeriah et al., 2018). We call this algorithm Intrinsically Motivated Deep
Skill Graphs (IM-DSG).

We test IM-DSG in a series of exploration problems with image-based observation spaces, to which
DSG cannot be applied. Our qualitative results show that IM-DSG discovers options that achieve
intuitively meaningful subgoals in the environment and that the acquired skill graph incrementally
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expands outward from the start state. Quantitatively, we show that our method outperforms pure
novelty-maximization techniques (Taïga et al., 2019) as well as baseline model-free RL (Kaptur-
owski et al., 2019) in MINIGRID (Chevalier-Boisvert et al., 2023), VISUAL TAXI (Dietterich, 2000;
Diuk et al., 2008; Allen et al., 2021), and SOKOBAN (Schrader, 2018); finally we show that the
learned abstract model is useful in a multi-task context to achieve held-out goals in a zero-shot
fashion in VISUAL PINBALL (Konidaris & Barto, 2009; Rodriguez-Sanchez & Konidaris, 2024).

2 Background and Related Work

We model the interaction of the agent with its environment as a Markov Decision Process
M = (S,A,R, T, γ) (Sutton & Barto, 2018). To aid in reward maximization, our agent will dis-
cover options o ∈ O = (Io, πo, βo) (Sutton et al., 1999), where Io(s) is the probability that o can
be initiated in state s, πo is a policy which outputs primitive actions and βo : s → {0, 1} denotes the
termination region of the option, which we also call the subgoal of the option. Additionally, each
option has a maximum horizon of H steps and an effect set Eff(o) ⊆ βo, which denotes the set of
states in which the option actually enters its subgoal βo (Konidaris et al., 2018).

Universal Value Function Approximators (UVFAs) (Schaul et al., 2015) provide a scalable way
to learn goal-conditioned value functions Vg : S → R, Qg : S × A → R and their corresponding
goal-conditioned policies πg : S → A (Kaelbling, 1993) using function approximation. We use
UVFAs to parameterize option value functions and policies: instead of representing each option’s
policy separately (Sutton et al., 2011), all options can condition the same function approximator on
its own subgoals (Bagaria et al., 2021a): πo(s) = argmaxa Qg(s, a) := argmaxa Qβo

(s, a).

Exploration in RL. In tabular RL, uncertainty about the transition and reward models can be
captured using visitation counts: if the bonus reward (Sutton, 1990) for action a from state s de-
cays as 1/

√
N [s, a], the agent can rapidly learn the optimal policy π∗ (Lattimore & Szepesvári,

2020; Strehl & Littman, 2008). When the environment is too big to permit tabular counting, counts
can be generalized to pseudocounts N(s) (Bellemare et al., 2016): states that are similar to one
another have similar pseudocounts. Coin Flip Network (CFN) (Lobel et al., 2023) is a simple,
principled, and state-of-the-art technique which uses a neural network ϕ to predict pseudocounts
in high-dimensional state-spaces. Novelty seeking agents exhibit impressive performance (Kaptur-
owski et al., 2022), but they do not learn a model suitable for high-level planning. Our algorithm
combines novelty maximization (which we refer to as “low-level exploration”) with a drive to learn
an abstract, plannable model of the world (“high-level exploration”).

Option discovery methods. A large body of work has sought to discover options from the set
of primitive actions available to the agent. At a high-level, option discovery techniques can be
categorized in the following way:

• Reward-driven methods. Option critic (Bacon et al., 2017) and feudal methods (Dayan & Hin-
ton, 1993; Vezhnevets et al., 2017; Nachum et al., 2018b; Levy et al., 2019) learn skills using the
overall reward maximizing objective of the agent. Since all learning stems from the extrinsic re-
ward function, they struggle in hard exploration problems with sparse rewards; there are some rare
exceptions (McClinton et al., 2021), but they are plagued by the difficulty that the action-space for
the high-level policy is the entire state-space of the environment (Nachum et al., 2018a).

• Empowerment maximizing methods learn a diverse set of options (Eysenbach et al., 2019b;
Zahavy et al., 2021) that increase the agent’s control over its environment (Mohamed &
Jimenez Rezende, 2015; Choi et al., 2021; Gregor et al., 2016). These algorithms have shown
promise in challenging control (Sharma et al., 2020a) and exploration problems (Baumli et al.,
2021; Hansen et al., 2021; Campos Camúñez et al., 2020). Among these, DADS (Sharma et al.,
2020a) combines empowerment with high-level planning, but it decomposes the agent’s life into
separate training and test phases, i.e., they do not provide a way to interleave exploration and
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model learning. Furthermore, methods like DADS require learning one-step transition models,
perhaps explaining why they have not been applied to image-based problems.

• Spectral methods use the graph Laplacian (Chung & Graham, 1997) to find the principal direc-
tions of the state-space (Mahadevan & Maggioni, 2007) for exploration (Machado et al., 2017).
Typically, an option is associated with each eigenvector of the Laplacian; these options demon-
strate strong exploratory properties (Jinnai et al., 2019; 2020; Klissarov & Machado, 2023). Both
empowerment and spectral methods are promising directions for exploration research, but have
not yet been combined with model-based planning, which is our core motivation.

Deep Model-based RL methods like Dreamer (Hafner et al., 2018) and MuZero (Schrittwieser
et al., 2021) learn a one-step model of the environment for planning. These algorithms have demon-
strated impressive results in a variety of domains (Hafner et al., 2023). However, all learning (even
in LEXA (Mendonca et al., 2021) and Director (Hafner et al., 2022), which learn temporal ab-
stractions) is predicated on accurately approximating one-step transition and reward models in the
agent’s native state-action space. One-step models suffer from the “curse of horizon” (Sutton et al.,
1999): model prediction errors compound over time (Talvitie, 2017). Our work seeks to bypass the
challenges of model-learning in the raw state-action space: model-free policies are learned in the
low-level and temporally-extended models are learned and used in the high-level.

Go-Explore shares a similar motivation to our algorithm: exploration is more effective when ini-
tiated from the frontiers of the agent’s experience (Ecoffet et al., 2021). But, they require a pre-
specified “cell” representation and exploit the near-determinism of Atari domains (Machado et al.,
2018) to return to the frontier (Oh et al., 2018). Crucially, Go-Explore does not learn a plannable
model while doing exploration, which is the focus of our work.

Existing graph-based HRL methods like deep skill graphs (DSG) (Bagaria et al., 2021b; Lee
et al., 2022; Lo et al., 2024) do not generalize to image-based observation spaces. Others do
(Konidaris et al., 2018; Mann et al., 2015; Sutton et al., 2024; Rodriguez-Sanchez & Konidaris,
2024), but assume that options are given. Eysenbach et al. (2019a); Huang et al. (2019); Cam-
pos Camúñez et al. (2020); Nasiriany et al. (2019); Sharma et al. (2020a) decompose the agent’s
training into a pre-training stage and a planning phase: skills are learned over the entire domain and
then planning is done to improve learned skills. These methods typically perform uniform resets:
the agent is randomly reset to a new location at the beginning of every episode (Eysenbach et al.,
2019a; Huang et al., 2019; Zhang et al., 2021); this bypasses the exploration problem, which is a
key motivation for our work.

3 Intrinsically Motivated Deep Skill Graphs

Exploration and planning are deeply intertwined. Exploration aids planning by preferentially seek-
ing out data from regions where the model is currently too weak to support effective planning. But,
planning also supports effective exploration: the agent can plan with its abstract model so that it can
reach interesting areas reliably, and then conduct local exploration in a more targeted fashion. The
Intrinsically Motivated Deep Skill Graphs (IM-DSG) agent interleaves exploration and planning in
this way. To support planning, it builds a graph-based model of the environment. Exploration pro-
ceeds both inside the graph (to strengthen the existing model) and outside it (to increase the region
over which the agent can plan). Inside the graph, the agent refines skills that are currently weak and
could lead to high reward; outside the graph, the agent uses a novelty and reward maximizing policy
to search for new salient regions that can be reached reliably in the future using its model.

3.1 Semantics of the Skill Graph

Before discussing our algorithm for discovering options and planning with them, we first outline the
major components of the skill graph:
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Nodes and Edges. The skill graph is a weighted and directed graph G = (N , E,W ). Each node
n ∈ N represents the terminating states of an option on—i.e., its subgoal—determined by the
termination condition βon : s → {0, 1}. Each node n maintains an empirical distribution over
states where its option on terminated. We denote this as n(s), which assigns probability 1/|Eff(on)|
to each s ∈ Eff(on) and 0 otherwise. Moving forward, we abuse notation by taking expectations
with respect to the states of a node, Es∼n[·] to mean expectations taken with respect to the effect
distribution Es∼Eff(on)[·], which is done simply by sampling from the effect set.

An edge eni→nj
∈ E exists between nodes ni and nj if executing the option policy πonj

from
states in node ni is likely to reach node nj (Konidaris et al., 2018). The weight of an edge is
the probability of successfully traversing it in a single option execution, which is equivalent to the
initiation probability of option oj from states inside node ni: wni→nj = Es∼ni

[
Ionj

(s)
]

(Bagaria
et al., 2023).

Mapping from states to nodes and back. Given a state s, N (s) denotes the set of nodes that s
maps to:

N (s) = {n ∈ N | βon(s) = 1}. (1)

Of course, it is possible that a state does not satisfy any option’s termination condition; so, we aug-
ment the nodes in the graph with a null vertex φ such that N (s) = {φ} for such states; informally,
φ represents “falling off the graph”.

The descendants D(n) of a node n is the set of nodes that can be reached from n with nonzero
probability, while staying inside the graph:

D(n) = {n′ ∈ N | G.has-path(n, n′)}, (2)

where G.has-path(n, n′) is a sub-routine implemented using breadth-first search on the adjacency
matrix representation of the graph G. By combining Equations 1 and 2, we can enumerate the nodes
reachable from the current state st as D(st) = ∪n∈N (st)D(n).

3.2 Graph Construction Algorithm

At a high-level, the graph construction algorithm proceeds as follows: the IM-DSG agent first iden-
tifies which node in the graph to expand (Section 3.2.1), then it constructs (Section 3.2.4) and solves
an abstract MDP (Section 3.2.5), which yields a policy over options that guides the agent to the
expansion node. After following this abstract policy and reaching the expansion node, the agent
executes a low-level exploration policy (Section 3.2.6), and finally extracts a new node from the
resulting trajectory to add it to the skill graph (Section 3.2.7).

3.2.1 Identifying the Expansion Node

To select an expansion node, we need to quantify how much each node would contribute to graph
expansion: nodes that cause the graph to extend further should have a higher probability of being
selected for expansion. To capture this idea, we first construct an intrinsic reward function that is
higher the further away a state is from the graph. But rather than relying on distance functions, which
are usually unavailable in high-dimensional observation spaces, we use pseudocounts (Bellemare
et al., 2016): the further away a state is from the graph, the fewer times it has likely been visited.
We use Coin Flip Networks (CFN) (Lobel et al., 2023) to estimate pseudocounts and use it as our
intrinsic reward:

rnovelty(s) =
1√

Nϕ(s)
,

where Nϕ(s) is the pseudocount of state s as approximated using CFN parameters ϕ.

We now have an intrinsic reward function rnovelty that is higher along the frontiers of the graph,
where the agent has less experience. To turn this into an expansion probability, we ask: if the agent
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executes a novelty-maximizing policy πnovelty starting from each graph node, how much intrinsic
reward can it expect to accumulate? Fortunately, this concept is well captured by the exploration
value function Vnovelty. But, solely using novelty will result in graph expansion in all possible di-
rections; to forego exhaustive coverage and prioritize high reward regions, we add the intrinsic and
extrinsic rewards together while learning Vnovelty. Concretely, we define the utility of expanding a

node n as U(n) = Es∼n

[
Vnovelty(s)

]
= Es∼n

[∑∞
t=0 γ

t{R(st, at) + b · rnovelty(st)} | s0 = s
]
; we

use b = 0.011.

Finally, we restrict the choice of expansion node to the set of nodes that are reachable from the
current state, i.e, the descendants of the nodes that map to the current state of the agent st. Therefore,
we define the probability of expanding a node n as follows:

nexpansion ∼ Pn =
U(n)∑

n′∈D(st)
U(n′)

=
Es∼n

[
Vnovelty(s)

]
∑

n′∈D(st)
Es′∼n′

[
Vnovelty(s′)

] ,∀n ∈ D(st). (3)

3.2.2 Estimating Edge Probabilities

Every edge in the skill graph has a weight wni→nj
, which represents the probability with which an

option onj initiating from states in node ni will successfully terminate in node nj . As pointed out
earlier, this is equivalent to the expected initiation probability of option onj , where the expectation
is taken with respect to states inside the node ni. Following Bagaria et al. (2023), we interpret the
agent’s goal-conditioned value function (UVFA) (Schaul et al., 2015) as an initiation probability:

wni→nj = Es∼ni

[
Ioj (s)

]
≈ Es∼ni

[
Vnj (s)

]
:= vni→nj . (4)

It is possible to infer the edge probabilities from the UVFA because the goal-conditioned reward
function that is used to train it is Ro(s) = βo(s), i.e., it is +1 for states inside the option’s subgoal
region and 0 otherwise. However, naively using the UVFA prediction as edge probability can hinder
learning because:

1. vni→nj
for an edge can be low if traversing it is actually unlikely in a single option execution

(even under an optimal policy) or because the agent does not yet have enough data, and,

2. when we add new nodes to the graph, the probability of reaching them will initially be low. To
increase these edge probabilities, the agent must continually practice the options that target them,
but this is unlikely to happen owing to their low starting probabilities.

Therefore, to address these issues, we are optimistic about the value of the edge probabilities:

w+
ni→nj

:= vni→nj
+ U(ni, nj) ≈ vni→nj

+
c√

N [ni, nj ] + 1
, (5)

where U(ni, nj) represents the uncertainty about our value prediction vni→nj , which we obtain
using N [ni, nj ] (Brafman & Tennenholtz, 2002; Strehl & Littman, 2008), the number of times the
agent has executed option onj

starting from states in node ni (c ∈ [0, 1] is a hyperparameter).2 When
N [ni, nj ] is low, the agent is optimistic about traversing that edge, and so it is encouraged to practice
the corresponding option policy. But, as the agent attempts to traverse edge eni→nj

, the count
N [ni, nj ] increases, and the optimistic bias decays; eventually, the edge probability approaches the
goal-conditioned value, which we expect to become more accurate with more data. By incorporating
an optimistic bias via the edge probabilities, we ensure that the policies computed by the planner
achieve a form of exploration within the graph, which prioritizes paths that reach the expansion
node while improving newly added skills.

1We chose b = 0.01 to make the corresponding intrinsic return, 0.01/(1−γ) = 1, the same scale as the extrinsic reward.
2Since the counts are over discrete states of the AMDP, we simply maintain tabular counts in a |S̄| × |S̄| matrix.
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3.2.3 Deciding when there is an edge between two nodes

Using Equation 5, we can determine the probability of traversing an edge in a single option exe-
cution. Naïvely, this would result in a dense, fully-connected graph, which would be problematic:
suppose there is an existing node n1 and we just added a new node n2 that is far away (even un-
der an optimal policy) from n1. The agent’s initial desire to connect them would be high (because
N [n1, n2] will be low). As a result, the agent will spend a lot of time realizing that n1 and n2 should
actually have a low probability of being directly connected to one another. Not only is this sample-
inefficient, it also results in graph construction slowing down over time: for every new node added
to the graph, the agent must determine how the new node relates to every other existing node. To
mitigate this issue, we use the following heuristics to determine when two nodes n1 and n2 should
have an edge connecting them:

• Observed multi-step transition. When we observe a transition between two nodes n1 → n2

within H steps (the maximum horizon of an option), we connect them with an edge.

• High goal-conditioned value. We connect nodes n1 → n2 with an edge when the goal-
conditioned value between them, Es∼n1

[
Vn2

(s)
]
, is high enough. To ensure that the resulting

model is amenable to planning, we add edges only when we are highly confident that execution
of one option will allow for the execution of another (Konidaris et al., 2018). We instantiate this
principle via an adaptive threshold that is high to begin with, and tapers to a fixed hyperparameter
τ ∈ [0, 1] when more experience is gained:

en1→n2
= I

[
Es∼n1

[
Vn2

(s)
]
− c√

min {N [n1], N [n2]}
> τ

]
, (6)

where I is the indicator function and N [n] is the number of times the agent has visited node n. The
inverse square root term acts as an uncertainty penalty that diminishes as more data is collected.
We use a different form of the count in the denominator than in Equation 5 because the pairwise
counts are likely 0 before edge creation.

3.2.4 Constructing the Abstract MDP

After the agent identifies the expansion node nexpansion, it needs to compute a plan that will guide it
from its current state st to nexpansion. Our graph has two properties that will inform an appropriate
choice of planning algorithm:

1. Probabilistic transitions. The skill graph has probabilistic edges because (a) the environment’s
transition function and the agent’s option policies are stochastic, and (b) the option policies are
being learned online, causing the abstract transition function to also appear stochastic and non-
stationary (Nachum et al., 2018b; Levy et al., 2019; Bagaria et al., 2021a). We represent these
dynamics with a transition matrix, T̄ , where each entry T̄ij is the probability that executing the
option targeting node nj from node ni successfully leads to node nj . When option execution is
unsuccessful, we assume the agent “falls off” the graph, modeling it by assigning the remaining
probability (1− T̄ij) to an absorbing failure abstract state φ.

2. Incorporating extrinsic reward. Given two paths from st that both reach nexpansion, we would
prefer one that collects extrinsic rewards along the way. This allows us to form a reward-
respecting abstract model (Sutton et al., 2024), and prioritizes skill refinement in parts of the
graph that are likely to result in higher reward. To incorporate this, we define a reward matrix, R̄,
where each entry R̄ij is the sum of extrinsic rewards collected during the execution of the option
and an intrinsic reward that is high at the expansion node. Formally, we write: R̄ij = κR̄ext

ij +R̄int
j ,

where κ ∈ R scales the extrinsic reward, and R̄int
j equals 1 if node nj is the expansion node, and

0 otherwise.

We also define an abstract discount factor, γ̄, which reflects the probability of staying within the
graph during an option execution. Putting these elements together, our AMDP is defined as: M̄ =
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(S̄, Ā, R̄, T̄ , γ̄), where S̄ and Ā represent the set of nodes in the skill graph. Planning on this
abstract MDP is a Stochastic Shortest Path (SSP) problem (Bertsekas & Tsitsiklis, 1991). We solve
this SSP using value iteration (Bellman, 1966), which yields a deterministic abstract policy π̄. This
abstract policy maps each node (abstract state) to an option, guiding the agent toward the expansion
node while balancing the collection of extrinsic rewards and exploration of uncertain edges. An
illustrative example of this AMDP construction is provided in Figure 7 in Appendix C.

3.2.5 Navigating to the Expansion Node

The abstract policy π̄ tells the agent which options to execute to reach the expansion node. While
following π̄, if the agent finds itself in a state that is not in the graph (st ∈ φ), it targets the
closest node in the graph: ot = argmaxo Vβo

(st),∀o ∈ O. Each option execution corresponds to
rolling out the corresponding option policy πo(s), which is trained using recurrent deep Q-learning
(Kapturowski et al., 2019) to maximize the pseudo reward function Ro(s) = βo(s). In practice,
all option policies are parameterized using the same goal-conditioned policy π(s|g; θ) (Schaul et al.,
2015) and each option conditions the policy with goal states sampled from its own termination region
(Bagaria et al., 2021a). To improve the sample-efficiency of learning effective option policies, we
use hindsight experience replay (Andrychowicz et al., 2017).

3.2.6 Generating Behavior Outside the Graph

After reaching the expansion node, the IM-DSG agent attempts to extend the graph. It does so by
executing the low-level exploration policy πCFN, which is trained to maximize the weighted sum of
intrinsic and extrinsic rewards:

RCFN(s, a) = R(s, a) + b · rnovelty(s),

where rnovelty(s) = 1/
√
Nϕ(s), b ∈ [0, 1] controls the exploration-exploitation trade-off (we use

b = 0.01) and Nϕ(s) is the CFN visitation count prediction for state s. We use recurrent deep Q-
learning (Kapturowski et al., 2019) to learn Vnovelty and πnovelty. The result of this policy execution
is a trajectory τnovelty, which is likely to move outward, toward regions where the agent’s abstract
model is more uncertain; this is a way of doing exploration outside the graph.

3.2.7 Adding a New Node to the Graph

Having generated a low-level exploration trajectory τnovelty in the frontier of the graph, the agent must
now identify a new node to add to the graph. Again, we take inspiration from intrinsic motivation
methods (Simsek & Barto, 2004): the agent identifies the state in τnovelty with the highest predicted
novelty; if the novelty of that state is higher than the running mean of the novelty-based rewards,
then we flag it as a new target and add it to the skill graph:

starget = argmax
s∈τnovelty

[
rnovelty(s)

]
if max

s

[
rnovelty(s)

]
> µt + kσt, else φ, (7)

where µt is the running mean and σt is the running standard deviation of rnovelty, computed incre-
mentally over the lifetime of the agent (Welford, 1962); k ∈ R+ is a hyperpameter (we use k = 1).
Equation 7 identifies a target state, which we need to convert to a termination classifier so that it
can serve as a node in the skill graph. We could use domain knowledge (for example, the “cell”
representations of Ecoffet et al. (2021)), pixel-wise equality (Veeriah et al., 2018), or a temporal dis-
tance based classifier (Savinov et al., 2018); we opt for simplicity and use an off-the-shelf template
matching algorithm, which is a simple call to OpenCV’s matchTemplate(s, g) (Bradski, 2000):

nnew = βonew(s) = I
[
matchTemplate(s, starget) > τtemplate

]
, (8)

where I is the indicator function, matchTemplate computes the normalized correlation coeffi-
cient between image s and template starget, and τtemplate = 0.5 is the similarity threshold.
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Algorithm 1 Intrinsic Motivation Directed Skill Graph (IM-DSG)

1: Initialize:
2: Initialize CFN to learn psuedocounts Nϕ, value function Vnovelty, and policy πnovelty.
3: Initialize goal-conditioned R2D2 to learn value function Vg and policy πg .
4: Initialize graph G with null node {φ} and no edges.
5: while True do
6: Sample expansion node using Equation 3.
7: Construct AMDP using procedure described in Section 3.2.4.
8: Solve AMDP using value iteration to get abstract policy π̄.
9: Follow abstract policy until agent reaches expansion node or episode terminates.

10: if agent reached expansion node then
11: Roll out exploration policy πnovelty to get trajectory τnovelty.
12: end if
13: Potentially add a new node from τnovelty to the graph using Equation 7.
14: Update Vg and πg using Hindsight Experience Replay (HER).
15: Update πnovelty to maximize the sum of intrinsic and extrinsic rewards: R(s, a)+b·rnovelty(s).
16: Update the edge traversal N [i, j] and node visitation counts N [i] using the full trajectory.
17: Update the edge probabilities in the skill graph G using Vg (Sections 3.2.2 and 3.2.3).
18: end while

3.2.8 Summary of Graph Discovery Algorithm

Algorithm 1 summarizes IM-DSG. The agent maintains two value functions Vg, Vnovelty and two
policies πg, πnovelty; R2D2 (Kapturowski et al., 2019) is used to learn both sets of policies and value
functions. The agent first chooses an expansion node using Equation 3. Which option is executed is
then determined by solving the resulting Abstract MDP using value iteration. New nodes are added
to the graph by executing πnovelty from the expansion node. Finally, graph edges are updated based
on Vg and edge traversal counts N [i, j]. The choice of expansion node and subsequent low-level
exploration encourage the skill graph to expand along directions that jointly maximize novelty and
extrinsic reward.

4 Experiments

We evaluate the IM-DSG agent on five challenging exploration problems, all of which have
image-based observations and discrete actions (details in Appendix A). We chose the MINIGRID
(Chevalier-Boisvert et al., 2023) environments because they were identified as being challenging
for existing RL algorithms by the survey of Colas et al. (2022). We chose SOKOBAN (Schrader,
2018) because the survey of Hamrick et al. (2020) identified it as being a problem in which both
learning and planning are important for good performance. Finally, we chose VISUALTAXI and
VISUALPINBALL because non-image versions of these domains have been used extensively to eval-
uate state abstraction and option discovery algorithms in isolation (for example, Lo et al., 2024;
Konidaris & Barto, 2009; Dietterich, 2000).

4.1 Qualitative Evaluation

To build intuition, we first qualitatively evaluate the IM-DSG agent. Specifically, we want to under-
stand what the skill-graph looks like, what parts of it the agent uses most frequently, and whether
the skill graph aids more effective exploration.

4.1.1 Visualizing the Skill Graph in MINIGRID

Figure 2 is a visualization of the skill graph at the end of training in MINIGRID-KEYCORRIDOR.
To visualize each node in the graph, we randomly sample a state in which that termination condition
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Figure 2: Discovered skill graph in MINIGRID-KEYCORRIDOR. The domain is shown in the
bottom-right inset: it involves picking up a key in the bottom-left room, opening a locked door and
then picking up a ball in the top-right room. The left subplot shows the subgraph where the agent
does not have a key in its possession (other state variables are not shown for simplicity). The nodes
and edges of the graph are shaded based on their expected abstract value E[V̄ (n)]. Although we
visualize the location and inventory, the agent itself only observes images. The graphs show that,
when the agent lacks the key, it aims to explore down the corridor and in the rooms at the bottom of
the maze, but when it does have the key, interesting options are on the path to the goal.

was triggered; only the location and inventory is visualized here for simplicity. Each node is colored
based on its probability of serving as the expansion node. Furthermore, the transparency αn of a
node is its average abstract value:

αn = max
{
Ene

[
V̄ne(n)

]
, 0.05

}
,

where the expectation is over the node expansion probability distribution Pn (Equation 3), V̄g(n)
is the abstract value of node n when targeting node g (obtained via Value Iteration on the AMDP;
Section 3.2.4). The transparency of an edge is the average transparency of the nodes that it connects.

Understanding Figure 2. Nodes in the top-right room have a higher expansion probability. This
is because (a) navigating to the top-right room is novel as it requires unlocking the red door with
the red key, and (b) once the agent enters the top-right room, it can solve the remainder of the
task easily. These two facts result in high Vnovelty and hence high expansion probabilities, which is
why the graph in the bottom-left and top-right rooms have high abstract value. Nodes in the central
corridor also have high abstract value because the agent must navigate through them for the majority
of its target expansion nodes. This demonstrates that the agent focuses on parts of the graph that are
either important for expansion by themselves, or those subgraphs that serve as hubs, i.e., they lead
to other sub-graphs that are important for expansion (Şimşek et al., 2005; Shah & Srivastava, 2024).

4.1.2 Exploration in SOKOBAN

Figure 3 shows IM-DSG’s high-level policy when it encounters the task-goal for the first time: the
expansion node is chosen to be a state that corresponds to placing two out of the three boxes in
their correct locations. The agent plans with its learned options to reach this state. Subsequent
novelty-driven exploration is more targeted as it only seeks to explore those states in which most of
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Figure 3: Example of hierarchical policy execution in SOKOBAN: (left) start state in which no box
(boxes shown in yellow) is in its desired location (target locations are shown in red). (Middle)
selected expansion node which has 2 out of 3 boxes placed in their desired locations; the agent
uses planning to get to this state. (Right) After reaching the expansion node, the agent does local
exploration using πnovelty, which reaches the task goal.

Figure 4: Comparing the performance of our proposed algorithm, IM-DSG (blue), novelty-based
CFN (orange) and vanilla model-free R2D2 (green). Each curve represents the mean reward and the
shaded area represents the standard deviation over 5 random seeds.

the task has already been solved, increasing the probability that random exploration would find the
proverbial “needle in a haystack”.

4.2 Quantitative Evaluation

First, we seek to understand whether the IM-DSG agent can solve challenging exploration problems
in a more sample-efficient manner than our baselines. Second, even though the graph construction
is prioritized along directions where the agent expects to gather extrinsic reward, we want to under-
stand whether the graph can still be used in a multi-task context to solve goal-reaching problems
that were not encountered during training.

4.2.1 Sample Efficient Exploration in Single Task MDPs

We compare the IM-DSG agent to the following baselines:

• Flat model-free RL. R2D2 is a distributed variant of DQN that uses a recurrent neural network
to represent the value function (Kapturowski et al., 2019). Since the IM-DSG agent uses R2D2 to
learn policies, we include it as our model-free baseline.

• Novelty driven exploration. We use CFN to explore outside the graph, and it is a state-of-the-art
technique for novelty-driven RL; so, we include it as our exploration baseline.

Figure 4 shows our quantitative results: we find that the IM-DSG agent consistently outperforms
R2D2 and CFN in our domains. This suggests that although novelty-maximizing exploration is in
principle sufficient to solve these problems, the discovery and use of the model for planning leads
to a more sample-efficient agent in these domains.
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Figure 5: Ablation and graph usefulness in a multi-task context. (left) Ablating the use of plan-
ning in IM-DSG in MINIGRID-KEYCORRIDOR: bars represent the average per-episode reward
during training. (middle) Evaluation performance in VISUALPINBALL on 10k randomly sampled
goal states not used during training: comparison against HER in terms of test-time rewards, train-
time rewards, and coverage, which is the fraction of the maze explored during training. All error
bars represent standard deviation over 5 random seeds. (right) Solution trajectories found by the
IM-DSG agent for 4 randomly sampled test-time goals (shown using black stars); the blue dot in the
top-left of the maze is the start state, the big red ball in the bottom is the train-time goal. Note that,
unlike in the original, this version of pinball uses images as observations.

Model-based planning ablation. Figure 5 (left) shows that when we disable planning, the IM-
DSG agent is unable to solve the MINIGRID-KEYCORRIDOR problem. This indicates that high-
level planning with the learned skill graph is essential—simply combining CFN with HER is not
enough to solve this task in the allotted training budget. This ablation also serves a rough comparison
to algorithms like Skew-Fit (Pong et al., 2019) and Omega (Pitis et al., 2020) that combine HER with
novelty-based exploration, but do not do model-based planning.

4.2.2 Generalization to New Goals in VISUALPINBALL

In this section, we test whether the skill graph discovered during exploration can be used to solve
other, unseen tasks at test-time. In particular, we train our agent to solve the VISUALPINBALL
problem, which requires guiding the ball to the big red circle at the bottom of the maze. After
training, we present the agent with 10k randomly sampled held-out goals and test its ability to reach
these goals. We compare our agent against Hindsight Experience Replay (HER; Andrychowicz
et al., 2017), which in principle can also generalize to unseen goals at test-time. We follow the
experimental setup of Sharma et al. (2020a); more details can be found in Appendix B.

Figure 5 shows that IM-DSG outperforms HER at test-time. To understand why, we compare their
train-time performances and find that HER is unable to explore the maze as extensively as IM-DSG,
as a result of which, it is unable to reach goals that are far away from the start-state at test-time.

5 Discussion and Conclusion

We introduced an algorithm that builds a graph abstraction of large MDPs with image-based ob-
servations. Nodes of this graph correspond to option termination regions, edges represent option
policies, and edge probabilities are determined using option initiation functions. The skill graph ex-
pands towards the frontier of the agent’s experience without assuming access to state-sampling or a
distance metric; the acquired graph enables planning in increasingly large portions of the state-space.

Our method suffers from at least the following limitations:

• Each option drives the value of all state variables to a certain range of values. In more complex
environments, it may be unnecessary, or even impossible, to control all state variables at once.
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• After reaching the expansion node, the IM-DSG agent executes the low-level exploration policy
(CFN) until the end of the episode; more fine-grained control over when to enter and exit low-level
exploration (Pislar et al., 2022) would generalize our algorithm to continuing problems.

Despite these shortcomings, IM-DSG takes a small step towards the eventual goal of building RL
agents that continually discover their own state and action abstractions (Gershman, 2017; Konidaris,
2019), and use them for effective exploration (Gopnik, 2020) and planning (Sutton et al., 2024).
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A Domain Descriptions

Figure 6: Domains used to test the IM-DSG agent. From top-left in left to right order: MINIGRID-
DOORKEY, MINIGRID-KEYCORRIDOR, SOKOBAN, VISUALTAXI, and VISUALPINBALL.

1. MINIGRID-DOORKEY: To reach the goal, the agent must first pick up a key and then use that
key to unlock a door. There is no intermediate reward for picking up the key, only a sparse
terminating reward for reaching the goal. Each episode lasts a maximum of 200 steps.

2. MINIGRID-KEYCORRIDOR: This domain also has a key and a locked door, but additionally has
other doors that can be open and closed. The goal is to pick up the purple ball that is placed in
locked room (center-right room in Figure 6(c)). Each episode lasts a maximum of 1000 steps.

3. SOKOBAN: In this classic puzzle, the agent must place 3 boxes into their target locations (red
border squares in Figure 6). The environment provides intermediate rewards for putting each box
into its place and a terminating reward for correctly placing the final box. Each episode lasts a
maximum of 200 steps.

4. VISUALTAXI: this is an image-based version of the classic Taxi problem (Dietterich, 2000). A
passenger awaits in one of four depots and must be dropped off at a destination depot. Success-
ful completion of the full task yeilds a sparse terminating reward of +1. Each episode lasts a
maximum of 50 steps.

5. VISUALPINBALL: image-based version of the under-actuated Pinball domain (Konidaris &
Barto, 2009; Bacon et al., 2017) in which the agent provides acceleration to the ball in one
of 4 directions (or no-op), causing the velocity of the ball to change over time. We pick the
hardest configuration from Konidaris & Barto (2009) during training, and sample goal locations
at random during testing. Test-time goals are communicated to the agent as images of the pinball
in the desired location. Each episode lasts a maximum of 1000 steps.
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Figure 7: Summary illustration of a toy abstract MDP (AMDP) with 3 nodes. i and j are two
ordinary nodes, ne is the expansion node and the skull node shows a fictitious node that represents
“falling off the graph”. The transition probabilities T̄i→j are obtained using the UVFA Vθ and
edge-traversal counts N [i, j]; the reward R̄i→j and discount models γ̄ are obtained via monte carlo
estimation from option executions.

B VISUALPINBALL Experiment Details

Both the IM-DSG agent and the Hindsight Experience Replay (HER) agent get the same training
budget of 50M frames. During evaluation, both algorithms are tested on the same set of 10k goals
and are given a budget of 10M frames to achieve them. Each episode lasts for at most for 1k steps.
Error bars are computed over 5 training runs of the respective agents.

To compute the coverage metric shown in Figure 5 (right), we first need to compute the maximum
possible coverage in the maze. This is done by first discretizing the (x, y) plane into 100 × 100
squares, and then subtracting the approximate area occupied by the obstacles in the maze. To com-
pute the coverage achieved by the two agents, we consider what fraction of the free space is occupied
by all the states visited by the two agents.

Test-time modifications for VISUALPINBALL. During training, IM-DSG picks the expansion
node based on Vnovelty. At test-time, this would not be a good strategy because there is no reason that
Vnovelty would guide the agent to the test-time goal. So instead, we pick the expansion node to be the
one that is closest to the test-time goal gtest:

ntest
expansion = argmax

n
Es∼n

[
Vgtest(s)

]
(9)

Once the agent reaches ntest
expansion, it then executes its goal-conditioned policy π(s, gtest) to reach the

test-time goal gtest.

C AMDP Construction

Figure 7 illustrates a 3 node toy AMDP: ne is the expansion node, i and j are intermediate nodes and
the skull represents the null node φ. Nodes of the graph are abstract states and outgoing edges from
a node are available options. The abstract model, which is a combination of T̄ , R̄, γ̄, is estimated
using the agent’s goal-conditioned value function Vg and Monte Carlo estimation respectively.
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Hyperparameter Value Tuned

Learning rate 0.0001, 0.00001 Yes
Trace length 40 No

Sequence period 20 No
Batch size 32 No

Burn-in length 0 No
Max replay size 500000 No

Target update period 600, 1200 Yes
Discount factor 0.997 No

Number of actors 32 No

Table 1: R2D2 Hyperparameters.

Hyperparameter Value Tuned

τ from Eq 6 0.7, 0.8, 0.9 Yes
c from Eq 5 0.1, 0.2 Yes
k in Eq 7 1, 2 Yes

τtemplate in Eq 8 0.5 No

Table 2: IM-DSG Specific Hyperparameters.

D UVFA Training

We represent the agent’s goal-conditioned value function using the following neural network archi-
tecture: a convolutional neural network (CNN; Goodfellow et al., 2016) torso encodes the image
representing the current state s into Φ1(s); another CNN encodes the goal g into Φ2(g), where g is
sampled from an option’s effect set. Φ1(s) is input into an LSTM (Goodfellow et al., 2016); the out-
put of the LSTM, yt is concatenated with Φ2(g) and then passed through a multi-layered perceptron
(MLP), which outputs the Q-value for each action in the MDP’s action space. The goal encoder is
identical to the state encoder, whose exact architecture, along with that of the LSTM and MLP, are
taken without modification from Kapturowski et al. (2019). We follow Bagaria & Schaul (2023) and
use novelty to pick which 5 achieved goals in a trajectory should be replayed in hindsight.

E Hyperparameters

Table 1 lists the hyperparameters for R2D2, Table 2 lists those hyperparameter settings that are
specific to IM-DSG, and finally, Table 3 lists those IM-DSG hyperparameters that were environment
specific. For non-IM-DSG hyperparameters, we first tune them based on the performance of the CFN
agent on the MINIGRID-KEYCORRIDOR problem. Then, the same CFN and R2D2 hyperparameters
are used in the IM-DSG algorithm, and other domains, without modification.

The descendant threshold for VISUALTAXI is higher than 0 because the passenger’s destination is
part of the state description. The threshold filters the descendant set D(st) to only include nodes that
match the current passenger destination, ensuring expansion candidates are contextually relevant to
the current task.
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Hyperparameter DoorKey KeyCorridor VisualTaxi VisualPinball Sokoban

Option Horizon H 200 400 50 200 50
Descendant threshold 0 0 0.3 0 0

Table 3: IM-DSG Hyperparameter settings for different domains


