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Abstract

Autonomously discovering temporally extended actions, or skills, is a longstanding
goal of hierarchical reinforcement learning. We propose a new algorithm that
combines skill chaining with deep neural networks to autonomously discover skills
in high-dimensional, continuous domains. The resulting algorithm, deep skill
chaining, constructs skills with the property that executing one enables the agent to
execute another. We demonstrate that deep skill chaining significantly outperforms
both non-hierarchical agents and other state-of-the-art skill discovery techniques in
challenging continuous control tasks.1 2

1 Introduction

Hierarchical reinforcement learning [1] is a promising approach for solving long-horizon sequential
decision making problems. Hierarchical methods lower the decision making burden on the agent
through the use of problem specific action abstractions [2]. While the use of temporally extended
actions, or options [3], has been shown to accelerate learning [4], there remains the question of skill
discovery: how can agents autonomously construct useful skills via interaction with the environment?
While a large body of work has sought to answer this question in small discrete domains, skill
discovery in high-dimensional continuous spaces remains an open problem.

An early approach to skill discovery in continuous-state environments was skill chaining [5], where
an agent constructs a sequence of options that target a salient event in the MDP (for example, the goal
state). The skills are constructed so that successful execution of each option in the chain allows the
agent to execute another option, which brings it closer still to its eventual goal. While skill chaining
was capable of discovering skills in continuous state spaces, it could only be applied to relatively
low-dimensional state-spaces with discrete actions.

We introduce a new algorithm that combines the core insights of skill chaining with recent advances
in using non-linear function approximation in reinforcement learning. The new algorithm, deep skill
chaining, scales to high-dimensional problems with continuous state and action spaces. Through a
series of experiments on five challenging domains in the MuJoCo physics simulator [6], we show
that deep skill chaining can solve tasks that otherwise cannot be solved by non-hierarchical agents in
a reasonable amount of time. Furthermore, the new algorithm outperforms state-of-the-art deep skill
discovery algorithms [7, 8] in these tasks.

1Video of learned policies: https://youtu.be/MGvvPmm6JQg
2Our software implementation: https://github.com/deep-skill-chaining/deep-skill-chaining
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2 Background and Related Work

Sequential decision making problems can be formalized as Markov Decision Processes (MDPs). We
consider goal-oriented episodic MDPs, where S denotes the state space, A is the action space, R is
the reward function, T is the transition function, γ is the discount factor and g ∈ S is the terminating
goal state [9]. Unlike goal-conditioned algorithms [10, 11], we do not require that g be known;
instead we assume access to an indicator function 1g : s ∈ S −→ {0, 1} which the agent can query to
determine if it has reached the MDP’s goal.

One way to learn a policy in an MDP is to first learn an action-value function. The action-value func-
tion Qπ(st, at) is defined as the expected sum of discounted future rewards if the agent takes action
at from st and then follows policy π thereafter: Qπ(st, at) = Eπ[rt + γmaxat+1 Q

π(st+1, at+1)].

Q-learning [12] is a commonly used off-policy algorithm that uses the action-value function for
control through a greedy policy π(st) = argmaxat Q(st, at). Inspired by recent success in scal-
ing Q-learning to high-dimensional spaces [13, 14, 15, 16], we learn the action-value function
Qπφ(st, at) using non-linear function approximators parameterized by φ, by minimizing the loss
L(φ) = Eπ[(Qφ(st, at)− yt)2] where the target yt is given by the following equation [14]:

yt = rt + γQφ′(st+1, argmax
at+1

Qφ(st+1, at+1)). (1)

Deep Q-Learning (DQN) [13] casts minimizing L(φ) as a standard regression problem by using
target networks (parameterized by φ′) and experience replay [17].

2.1 The Options Framework

The options framework [3] models skills as options. An option o consists of three components: (a) its
initiation condition, Io(s), which determines whether o can be executed in state s, (b) its termination
condition, βo(s), which determines whether option execution must terminate in state s and (c) its
closed-loop control policy, πo(s), which maps state s to a low level action a ∈ A. Augmenting the
set of available actions with options results in a Semi-Markov Decision Process (SMDP) [3] where
the next state depends on the current state, action and time.

2.2 Skill Discovery Algorithms

Skill discovery has been studied extensively in small discrete domains [4, 18, 19, 20, 21, 22, 23].
Recently however, there has been a significant body of work aimed at discovering skills in large
continuous spaces.

Option-critic methods: Option-Critic [7] uses an end-to-end gradient based algorithm to learn
options in high-dimensional continuous spaces. Option-Critic was a substantial step forward in skill
discovery and led to a family of related methods [24, 25, 26, 27, 28]. Proximal Policy Option Critic
(PPOC) [24] extends Option-Critic to continuous action spaces and is the version of Option-Critic
that we compare against in this paper. Our method bypasses two fundamental shortcomings of the
Option-Critic framework: (a) unlike Option-Critic, we explicitly learn initiation sets of options and
thus do not assume that all options are executable from everywhere, and (b) we do not treat the
number of skills required to solve a task as a fixed and costly hyperparameter. Instead, our algorithm
flexibly discovers as many skills as it needs to solve the given problem.

Feudal methods: An alternative to the options framework is Feudal RL [29], which creates a
hierarchy in which managers learn to assign subgoals to workers; workers take a subgoal state as
input and learn to reach it. Feudal Networks (FuN) [30] used neural networks to scale the Feudal-RL
framework to high-dimensional continuous spaces; it was extended and outperformed by HIRO [31]
in a series of control tasks in the MuJoCo simulator. More recently, Hierarchical Actor-Critic (HAC)
[8] outperformed HIRO in a similar suite of continuous control problems. While HIRO relies on
having a dense “distance-to-goal” based reward function to train both levels of their feudal hierarchy,
HAC’s use of Hindsight Experience Replay [32] allows it to work in the more general sparse-reward
setting. Given its strong performance in continuous control problems and its ability to learn effectively
in sparse-reward settings, we compare against HAC as a representative feudal method.
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Learning backward from the goal: The idea of sequencing locally applicable controllers is well
established in robotics and control theory in the form of pre-image backchaining [33] and LQR-Trees
[34]. Such methods either require individually engineered control loops or a model of the system
dynamics. Our work fits in the model-free RL setting and thus requires neither. More recently, reverse
curriculum learning [35] also learns backward from the goal. However, they define a curriculum of
start states to learn a single policy, rather than learning skills. Relay Networks [36] segment the value
function backward from the goal using a thresholding scheme, which makes their method reliant on
the accurate estimation of the value function. By contrast, our algorithm is agnostic to errors in value
estimation, which are unavoidable when using function approximation in high-dimensional spaces.

Planning with learned skills: Options have been shown to empirically speed up planning in several
domains [37, 38, 39, 40, 41, 42]. However, Konidaris et al [43] show that for resulting plans to be
provably feasible, skills must be executable sequentially. While they assume that such skills are given,
we show that they can be autonomously discovered in high-dimensional spaces.

3 Deep Skill Chaining

Deep skill chaining (DSC) is based on the intuition that it is easier to solve a long-horizon task from
states in the local neighborhood of the goal. This intuition informs the first step of the algorithm:
create an option that initiates near the goal and reliably takes the agent to the goal. Once such an
option is learned, we create another option whose goal is to take the agent to a state from which it can
successfully execute the first option. Skills are chained backward in this fashion until the start state
of the MDP lies inside the initiation set of some option. The inductive bias of creating sequentially
executable skills guarantees that as long as the agent successfully executes each skill in its chain, it
will solve the original task. More formally, skill chaining amounts to learning options such that the
termination condition βoi(st) of an option oi is the initiation condition Ioi−1(st) of the option that
precedes it in its chain.

Our algorithm proceeds as follows: at time t, the policy over options πO : st ∈ S −→ o ∈ O
determines which option to execute (Section 3.2). Control is then handed over to the selected option
oi’s internal policy πoi : s ∈ S −→ at ∈ R|A|. πoi outputs joint torques until it either reaches its goal
(βoi := Ioi−1

) or times out at its predetermined budget T (Section 3.1). At this point, πO chooses
another option to execute. If at any point the agent reaches the goal state of the MDP or the initiation
condition of a previously learned option, it creates a new option to target such a salient event. The
machinery for learning the initiation condition of this new option is described in Section 3.3. We now
detail the components of our architecture and how they are learned. Readers may also refer to the
figures and the pseudo-code in the appendix to gain greater intuition about our algorithm.

3.1 Intra-Option Policy

Each option o maintains its own policy πo : s −→ at ∈ R|A|, which is parameterized by its own
neural networks θo. To train πo(s; θo), we must define o’s internal reward function. In sparse reward
problems, o is given a subgoal reward when it triggers βo; otherwise it is given a step penalty. In the
dense reward setting, we can compute the distance to the parent option’s initiation set classifier and
use that to define o’s internal reward function. We can now treat learning the intra-option policy (πo)
as a standard RL problem and use an off-the-shelf algorithm to learn this policy. Since in this work
we solve tasks with continuous action spaces, we use Deep Deterministic Policy Gradient (DDPG)
[15] to learn option policies over real-valued actions.

3.2 Policy Over Options

Initially, the policy over options πO only possesses one option that operates over a single time step
(T = 1). We call this option the global option oG since its initiation condition is true everywhere in the
state space and its termination condition is true only at the goal state of the MDP (i.e, IoG(s) = 1∀s
and βoG = 1g). Using oG, πO can select primitive actions. At first the agent continually calls upon
oG, which uses its internal option policy πoG to output exactly one primitive action. Once oG triggers
the MDP’s goal state N times, DSC creates its first temporally extended option, the goal option og,
whose termination condition is also set to be the goal state of the MDP, i.e, βog = 1g .
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As the agent discovers new skills, it adds them to its option repertoire and relies on πO to determine
which option (including oG) it must execute at each state. Unlike oG, learned options will be
temporally extended, i.e, they will operate over T > 1 time steps. If in state st the agent chooses
to execute option oi, then oi will execute its own closed-loop control policy (for τ steps) until its
termination condition is met (τ < T ) or it has timed out at τ = T time steps. At this point, control is
handed back to πO, which must now choose a new option at state st+τ .

Option selection: To select an option in state st, πO first constructs a set of admissible options given
by Equation 2. πO then chooses the admissible option that maximizes its option-value function, as
shown in Equation 3. Since the agent must choose from a discrete set of options at any time, we learn
its option-value function using Deep Q-learning (DQN) [13].

O′(st) = {oi|Ioi(st) = 1 ∩ βoi(st) = 0,∀oi ∈ O} (2)

ot = argmax
oiεO′(st)

Qφ(st, oi). (3)

Learning the option-value function: Given an SMDP transition (st, ot, rt:t+τ , st+τ ), we update
the value of taking option ot in state st according to SMDP Q-learning update [44]. Since the agent
learns Q-values for different state-option pairs, it may choose to ignore learned options in favor of
primitive actions in certain parts of the state-space (in the interest of maximizing its expected future
sum of discounted rewards). The Q-value target for learning the weights φ of the DQN is given by:

yt =

τ∑
t′=t

γt
′−trt′ + γτ−tQφ′(st+τ , argmax

o′εO′(st+τ )
Qφ(st+τ , o

′)). (4)

Adding new options to the policy over options: Equations 2, 3 and 4 show how we can learn the
option-value function and use it for selecting options. However, we must still incrementally add
new skills to the network during the agent’s lifetime. After the agent has learned a new option o’s
initiation set classifier Io (we will discuss how this happens in Section 3.3), it performs the following
steps before it can add o to its option repertoire:

• To initialize o’s internal policy πo, the parameters of its DDPG (θo) are set to the parameters of the
global agent’s DDPG (θoG). Subsequently, their neural networks are trained independently. This
provides a good starting point for optimizing πo, while allowing it to learn sub-problem specific
abstractions.

• To begin predicting Q-values for o, we add a new output node to final layer of the DQN parameter-
izing πO.

• To assign appropriate initial values to Qφ(s, o), we collect all the transitions that triggered βo
and use the max over these Q-values to optimistically initialize the new output node of our DQN
[5].3 This is done by setting the bias of this new node, which ensures that the Q-value predictions
corresponding to the other options remain unchanged.

3.3 Initiation Set Classifier

Central to the idea of learning skills is the ability to learn the set of states from which they can be
executed. First, we must learn the initiation set classifier for og , the option used to trigger the MDP’s
goal state. While acting in the environment, the agent’s global DDPG will trigger the goal state N
times (also referred to as the gestation period of the option by Konidaris & Barto [5] and Niekum &
Barto [46]). We collect these N successful trajectories, segment the last K states from each trajectory
and learn a one-class classifier around the segmented states. Once initialized, it may be necessary to
refine the option’s initiation set based on its policy. We do so by executing the option and collecting
data to train a two-class classifier. States from which option execution was successful are labeled as
positive examples. States from which option execution timed out are labeled as negative examples.

3Using the mean Q-value is equivalent to performing Monte Carlo rollouts. Instead, we follow the principle
of optimism under uncertainty [45] to select the max over the Q-values.
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We continue this process of refining the option’s initiation set classifier for a fixed number of episodes,
which we call the initiation period of the option.

At the end of the initiation period, we fix the option’s initiation set classifier and add it to the list
of salient events in the MDP. We then construct a new option whose termination condition is the
initiation classifier of the option we just learned. We continue adding to our chain of options in this
fashion until a learned initiation set classifier contains the start state of the MDP.

3.4 Generalizing to Skill Trees

Our discussion so far has been focused on learning skill chains that extend from the goal to the start
state of the MDP. However, such a chain is not sufficient if the agent has multiple start states or if we
want the agent to learn multiple ways of solving the same problem. To permit such behavior, our
algorithm can be used to learn skills that organize more generally in the form of trees [5, 47]. This
generalization requires some additional care while learning initiation set classifiers, the details of
which can be found in Section A.1 of the Appendix. To demonstrate our ability to construct such skill
trees (and their usefulness), we consider a maze navigation task, E-Maze, with distinct start states in
Section 4.

3.5 Optimality of Discovered Solutions

Each option o’s internal policy πo is is given a subgoal reward only when it triggers its termination
condition βo. As a result, πo is trained to find the optimal trajectory for entering its own goal region.
Naively executing learned skills would thus yield a recursively optimal solution to the MDP [1].
However, since the policy over options πO does not see subgoal rewards and is trained using extrinsic
rewards only, it can combine learned skills and primitive actions to discover a flat optimal solution π∗
to the MDP [1]. Indeed, our algorithm allows πO to employ discovered skills to quickly and reliably
find feasible paths to the goal, which over time can be refined into optimal solutions. It is worth
noting that our ability to recover π∗ in the limit is in contrast to feudal methods such as HAC [8] in
which higher levels of the hierarchy are rewarded for choosing feasible subgoals, not optimal ones.

To summarize, our algorithm proceeds as follows: (1) Collect trajectories that trigger new option ok’s
termination condition βok . (2) Train ok’s option policy πok . (3) Learn ok’s initiation set classifier
Iok . (4) Add ok to the agent’s option repertoire. (5) Create a new option ok+1 such that βok+1

= Iok .
(6) Train policy over options πO. Steps 1, 3, 4 and 5 continue until the MDP’s start state is inside
some option’s initiation set. Continue steps 2 and 6 indefinitely.

4 Experiments

We test our algorithm in five tasks that exhibit a strong hierarchical structure: (1) Point-Maze [48],
(2) Four Rooms with Lock and Key, (3) Reacher [49], (4) Point E-Maze and (5) Ant-Maze [48, 49].
Since tasks 1, 3 and 5 appear frequently in the literature, details of their setup can be found in the
appendix.

Four Rooms with Lock and Key: In this task, a point agent [48] is placed in the Four Rooms
environment [3]. It must pick up the key (blue sphere in the top-right room in Figure 1(c), row 2)
and then navigate to the lock (red sphere in the top-left room). The agent’s state space consists of
its position, orientation, linear velocity, rotational velocity and a has_key indicator variable. If it
reaches the lock with the key in its possession, its episode terminates with a sparse reward of 0;
otherwise it gets a step penalty of −1. If we wish to autonomously discover the importance of the
key, (i.e, without any corresponding extrinsic rewards) a distance-based dense reward such as that
used in related work [31] would be infeasible.

Point E-Maze: This task extends the benchmark U-shaped Point-Maze task [48] so that the agent
has two possible start locations - on the top and bottom rungs of the E-shaped maze respectively. We
include this task to demonstrate our algorithm’s ability to construct skill trees.
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(a) (b) (c)

Figure 1: (a) Learning curves comparing deep skill chaining (DSC), a flat agent (DDPG) and
Option-Critic. (b) Comparison with Hierarchical Actor Critic (HAC). (c) the continuous control tasks
corresponding to the learning curves in (a) and (b). Solid lines represent median reward per episode,
with error bands denoting one standard deviation. Our algorithm remains the same between (a) and
(b). All curves are averaged over 20 runs, except for Ant Maze which was averaged over 5 runs.
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(a) (b) (c) (d)

Figure 2: Initiation sets of options learned in the Lock and Key task. Blue sphere in top-right room
represents the key, red sphere in top-left room represents the lock. Red regions represent states inside
the initiation classifier of learned skills, whereas blue/gray regions represent states outside of it. Each
column represents an option - the top row corresponding to the initiation set when has_key is false
and the bottom row corresponding to the initiation set when has_key is true.

4.1 Comparative Analyses

We compared the performance of our algorithm to DDPG, Option-Critic and Hierarchical Actor-Critic
(HAC), in the conditions most similar to those in which they were originally evaluated. For instance,
in the Ant-Maze task we compare against Option-Critic under a dense-reward formulation of the
problem while comparing to HAC under a sparse-reward version of the same task. As a result, we
show the learning curves comparing against them on different plots (columns (a) and (b) in Figure
1 respectively) to emphasize the difference between the algorithms, the settings in which they are
applicable, and the way they are evaluated.

Comparison with DDPG and Option-Critic: Figure 1(a) shows the results of comparing our
proposed algorithm (DSC) with a flat RL agent (DDPG) and the version of Option-Critic designed for
continuous action spaces (PPOC).4 Deep skill chaining comfortably outperforms both baselines. Both
DSC and DDPG use the same exploration strategy in which at = πθ(st) + ηt where ηt ∼ N(0, εt).
Option-Critic, on the other hand, learns a stochastic policy πθ(at|st) and thus has baked-in exploration
[9, Ch. 13], precluding the need for additive noise during action selection. We hypothesize that this
difference in exploration strategies is the reason Option-Critic initially performs better than both
DDPG and DSC in the Reacher and Point E-Maze tasks.

Comparison with Hierarchical Actor-Critic: We compare our algorithm to Hierarchical Actor-
Critic (HAC)5 [8], which has recently outperformed other hierarchical reinforcement learning methods
[31, 30] on a wide variety of tasks. A noteworthy property of the HAC agent is that it may prematurely
terminate its training episodes to prevent flooding its replay buffer with uninformative transitions.
The length of each training episode in DSC however, is fixed and determined by the test environment.
Unless the agent reaches the goal state, its episode lasts for the entirety of its episodic budget (e.g, this
would be 1000 timesteps in the Point-Maze environment). Thus, to compare the two algorithms, we
perform periodic test rollouts wherein all networks are frozen and both algorithms have the same time
budget to solve the given task. Furthermore, since both DSC and HAC learn deterministic policies,
we set εt = 0 during these test rollouts. When comparing to HAC, we perform 1 test rollout after
each training episode in all tasks except for Ant-Maze, where we average performance over 5 test
rollouts every 10 episodes.

4PPOC author’s implementation: https://github.com/mklissa/PPOC
5HAC author’s implementation: https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
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(a) Point-Maze (b) Four-Rooms (c) Ant-Maze (d) E-Maze

Figure 3: Solution trajectories found by deep skill chaining. Sub-figure (d) shows two trajectories
corresponding to the two possible initial locations in this task. Black points denote states in which
πO chose primitive actions, other colors denote temporally extended option executions.

Figure 1(b) shows that DSC outperforms HAC in all environments except for Four Rooms with a Lock
and Key, where their performance is similar, even though DSC does not use Hindsight Experience
Replay [32] to deal with the sparse reward nature of this task.

4.2 Interpreting Learned Skills

Figure 2 visualizes the initiation set classifiers of options discovered by DSC in Four Rooms with a
Lock and Key. Despite not getting any extrinsic reward for picking up the key, DSC discovers the
following skill chain: the options shown in Figure 2 columns (c) and (d) bring the agent to the room
with the key. The option shown in column (b) then picks up the key (top row) and then takes the agent
to the room with the lock (bottom row). Finally, the option in column (a) solves the overall problem
by navigating to the lock with the key. Similar visualizations of learned initiation set classifiers in the
E-Maze task can be found in the Figure 3 in the Appendix.

Figure 3 shows that DSC is able to learn options that induce simple, efficient policies along different
segments of the state-space. Furthermore, it illustrates that in some states, the policy over options
prefers primitive actions (shown in black) over learned skills. This suggests that DSC is robust to
situations in which it constructs poor options or is unable to learn a good option policy in certain
portions of the state-space. In particular, Figure 3 (d) shows how DSC constructs a skill tree to solve
a problem with two distinct start states. It learns a common option near the goal (shown in blue),
which then branches off into two different chains leading to its two different start states respectively.

5 Discussion and Conclusion

Deep skill chaining breaks complex long-horizon problems into a series of sub-problems and learns
policies that solve those sub-problems. By doing so, it provides a significant performance boost when
compared to a flat learning agent in all of the tasks considered in Section 4.

We show superior performance when compared to Option-Critic, the leading framework for option
discovery in continuous domains. A significant drawback of Option-Critic is that it assumes that
all options are executable from everywhere in the state-space. By contrast, deep skill chaining
explicitly learns initiation set classifiers. As a result, learned skills specialize in different regions of
the state-space and do not have to bear the burden of learning representations for states that lie far
outside of their initiation region. Furthermore, each option in the Option-Critic architecture leverages
the same state-abstraction to learn option-specific value functions and policies, while deep skill
chaining permits each skill to construct its own skill-specific state-abstraction [50]. An advantage of
using Option-Critic over DSC is that it is not confined to goal-oriented tasks and can work in tasks
which require continually maximizing non-sparse rewards.

Section 4 also shows that deep skill chaining outperforms HAC in four out of five domains, while
achieving comparable performance in one. We note that even though HAC was designed to work
in the multi-goal setting, we test it here in the more constrained single-goal setting. Consequently,
we argue that in problems which permit a stationary set of target events (like the ones considered
here), deep skill chaining provides a favorable alternative to HAC. Furthermore, HAC depends on
Hindsight Experience Replay to train the different layers of their hierarchy. Deep skill chaining
shows the benefits of using hierarchies even in the absence of such data augmentation techniques but
including them should yield additional performance benefits in sparse-reward tasks.

A drawback of deep skill chaining is that, because it builds skills backward from the goal, its
performance in large state-spaces is dependent on a good exploration algorithm. In this work, we
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used the naive exploration strategy of adding Gaussian noise to chosen actions [15, 51] since the
exploration question is orthogonal to the ideas presented here. The lack of a sophisticated exploration
algorithm also explains the higher variance in performance in the Point-Maze task in Figure 1.
Combining effective exploration [52, 53] with DSC’s high reliability of triggering target events is a
promising avenue for future work.

We presented a new skill discovery algorithm that can solve high-dimensional goal-oriented tasks
more reliably than flat RL agents and other popular hierarchical methods. To our knowledge, DSC
is the first deep option discovery algorithm that does not treat the number of options as a fixed and
costly hyperparameter. Furthermore, where other deep option discovery techniques have struggled to
show consistent improvements over baseline flat agents in the single task setting [54, 55, 56, 24], we
unequivocally show the necessity for hierarchies for solving challenging problems.
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A Appendix

A.1 Creating Skill Trees

In Section 3.4, we introduced the idea of generalizing skill chains to skill trees to incorporate
qualitatively different solution trajectories. In this section, we provide some of the implementation
details required to learn initiation set classifiers that organize in the form of trees.

When creating skill chains, the goal of each option is to trigger the initiation condition of the option
that precedes it in its chain (i.e, its parent option). When creating a skill tree of branching factor
B, we allow at most B options to target each salient event in the MDP (i.e, the goal state and the
initiation set classifiers of pre-existing options). To further control the branching factor of the skill
tree, we impose two more conditions on option creation:

1. Consider an option o1 which already has one child option o2 targeting it. Now suppose that
we want to learn another option o3 that also targets o1. We only consider state st to be a
positive example for training Io3 if Io2(st) = 0.

2. To prevent significant overlap between options that target the same event, we treat the positive
examples used to train the initiation set classifier of one as negative training examples of all
its sibling options. This allows for multiple options that trigger the same target event, while
encouraging them to specialize in different parts of the state-space.

In the Point E-Maze task considered in Section 4, we learn a skill tree with B = 2.

A.2 Test Environments

A description of the Four Rooms and the Point E-Maze tasks was provided in Section 4. Here we
describe the remaining tasks considered in this paper:

Point Maze: In this task, the same point agent as in the four rooms task must navigate around a
U-shaped maze to reach its goal. The agent receives a reward of −1 for every step it lives, and
a sparse terminating reward of 0 when it reaches its goal location. This is an interesting task for
hierarchical agents because in order to reach the goal, the agent must first move away from it. It is
clear that a dense distance-based reward formulation of this problem would only serve to deceive
non-hierarchical agents such as DDPG.

Ant Maze: The ant [1] is a challenging agent to control due to its non-linear and highly unstable
dynamics. In this task, the ant must now navigate around the same U-shaped maze as in the Point
Maze task. Getting the ant to cover significant distances along the x, y plane without falling over,
is a benchmark control task itself [2]. As a result, constructing options backward from the goal
could require prohibitively large training episodes or the use of a sophisticated exploration algorithms
[3, 4, 5]. To avoid conflating our results with the orthogonal investigation of effective exploration in
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Figure 1: An illustration of the deep skill chaining algorithm. ? represents the goal state, × represents
the two start states. (a) Before the agent has discovered its first skill/option, it acts according to its
global DDPG policy. Having encountered the goal state N times, the agent creates an option to
trigger the goal from its local neighborhood. (b) Now, when the agent enters the initiation set of the
first option, it begins to learn another option to trigger the first option. (c) Because the agent has two
different start states, it learns two qualitatively different options to trigger the option learned in (b).
(d) Finally, the agent has learned a skill tree which it can follow to consistently reach the goal.

RL, we follow the experimental design of other state-of-the-art hierarchical reinforcement learning
algorithms [6, 7] and sample the initial state of the ant uniformly across the maze for the first 30
episodes. For fair comparison, all baseline algorithms use this exploration strategy.

Fixed Reacher: We use the Reacher task [2] with two modifications. First, rather than randomly
sampling a new goal at the start of each episode, we fix the target across all episodes. We do
this because if the goal moves, following a learned skill chain will no longer solve the MDP. This
modification was also made in the original DDPG paper [8]. Second, to increase the difficulty of the
resulting task, we use a sparse reward function rather than the dense distance-based one used in the
original formulation.

Task Number of steps per episode
Point-Maze 1000
Four Rooms with Lock and Key 5000
Point E-Maze 1500
Reacher 500
Ant-Maze 2000

Table 1: Maximum number of time steps per episode in each of the experimental domains
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(a) (b) (c) (d)

Figure 2: Analysis of performance (as measured by mean cumulative reward) of DSC agent as it
is allowed to learn more skills in (a) Point-Maze, (b) Four Rooms with Lock and Key, (c) E-Maze
and (d) Ant-Maze. Note that in general, DSC discovers as many skills as it needs to solve the given
problem. For this experiment alone, we restrict the number of skills that the DSC agent can learn. All
experiments averaged over 5 runs. Error bars denote 1 standard deviation. Higher is better.

Figure 3: Initiation set classifiers learned in the Point E-Maze domain. Discovered skills organize
in the form of a tree with a branching factor of 2. The option on the extreme left initiates in the
proximity of the goal. Options learned after the goal option branch off into two separate skill chains.
The chain on top extends backward to the start state in the top rung of the E-Maze. The chain shown
in the bottom row extends backward to the start state in the bottom rung of the E-Maze.
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A.3 Ablation Study

A.3.1 Performance as a Function of Number of Skills

Deep skill chaining generally discovers and learns as many skills as it needs to solve a given problem.
In this experiment however, we restrict the number of skills DSC can learn to examine its impact on
overall agent performance (as measured by cumulative reward during training). Figure 2 shows that
the performance of the agent increases monotonically (with diminishing marginal improvements) as
it is allowed to learn more skills.

A.3.2 Number of Skills over Time

Figures 4 (a) and 4 (b) illustrate how deep skill chaining incrementally discovers options and adds it
to the agent’s option repertoire. Figure 4(c) shows how the number of skills empirically increases
over time, plateaus and has low variance between runs. Since the agent has to learn the importance of
the key in the Four Rooms task, learning initiation set classifiers takes longer than in the Point-Maze
task.

A.3.3 Hyperparameter Sensitivity

In this section, we analyze DSC’s sensitivity to some of the hyperparameters specific to the algorithm.
In Figure 5, we show that even under a fairly large range of values for the buffer length K and the
gestation period N , DSC is able to retain its strong performance.

A.4 More Details on Implementing Option Reward Functions

Section 3.1 explains that to learn an option’s intra-option policy, we must define its internal reward
function. While most of our experiments are conducted in the sparse-reward setting, deep skill
chaining can be used without much modification in dense reward tasks as well. All that remains is a
clear description of how each option’s internal reward function would be defined in such a setting.

Consider an option oi with parent option oi−1 such that βoi = Ioi−1 . In the dense reward setting,
we use the negative distance from the state to the parent option’s initiation classifier as the reward
function. Since initiation classifiers are represented using parametric classifiers, computing the
distance to the classifier’s decision boundary is straightforward and can be done using most popular
machine learning frameworks. For instance, when using scikit-learn [9], this is implemented as
follows:

Ro(s, a, s
′) =

{
0, if βo(s′) = 1

−Ioi−1
.decision_function(s′), otherwise

(1)

Where in Equation 1, decision_function(x) returns the distance in feature space between point
x ∈ RN and the decision boundary learned by the classifier Ioi−1

.

A.5 Learning Initiation Set Classifiers

To learn initiation set classifiers as described in Section 3.3, we used scikit-learn’s One-Class SVM
and Two-Class SVM packages [9]. Initiation set classifiers were learned on a subset of the state
variables available in the domain. For instance, in the Lock and Key domain, the initiation set
classifier was learned over the x, y position and the has_key indicator variable. This is similar to
other methods like HAC [6] which require the user to specify the dimensions of the state variable
necessary to achieve the overall goal of the MDP. Incorporating the entire state variable to learn
initiation set classifiers or using neural networks for automatic feature extraction is left as future
work.
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Algorithm 1: Deep Skill Chaining
s0 is the start state of the MDP
1g(s) := 1 if s is a target state in the MDP, 0 otherwise
Given hyperparameter T0, the time budget for discovered, temporally extended options
Global option: oG = (IoG , πoG , βoG = 1g, T = 1)
Goal option: og = (Iog , πog , βog = 1g, T = T0)
Agent’s option repertoire: O = {oG}
Untrained Option: oU = og // option whose initiation classifier is yet unlearned
Policy over options: πO: st −→ ot
st = s0
while not st.is_terminal() do

1. Pick new option and execute in environment
Choose ot according to πO(st) using Equations 2 and 3
rt:τ , st+τ = execute_option(ot)
πO.update(st, ot, rt:t+τ , st+τ ) using Equation 4
2. Learn initiation set of new option
// Collect trajectories that trigger oU ’s termination region unless we have finished chaining
if βoU (st+τ ) & (s0�∈Ioi∀oi ∈ O) then

oU .learn_initiation_classifier() using procedure described in Section 3.3
if oU .initiation_classifier_is_trained() then

πO.add(oU ) using procedure described in Section 3.2
O.append(oU )
oU = create_child_option(oU )

end
end

end
Function create_child_option(o):

""" Create a new option whose β is the parent’s I. """
o∗ = Option() // Create a new option
Io∗ = None
βo∗ = Io
return o∗

Function execute_option(ot):
""" Option control loop. """
t0 = t
T is the option’s episodic time budget
πot is the option’s internal policy
while not βot(st) & t < T do

at = πot(st; θot)
rt, st+1 = env.step(at)
st = st+1

t = t+ 1
end
τ = t // duration of option execution
return rt0:t0+τ , st0+τ
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(a) (b)

(c)

Figure 4: (a) Initially, the policy over options πO can only choose the global option oG as a proxy for
selecting primitive actions. (b) Over time, the agent learns temporally extended skills and adds output
nodes to the final layer of the DQN parameterizing πO. This continues until the start state s0 lies
inside the initiation set of a learned option. (c) Empirical evaluation of how the number of skills in
the agent’s option repertoire changes over time in Point-Maze and Four-Rooms with a Lock and Key.

A.6 Hyperparameter Settings

We divide the full set of hyperparameters that our algorithm depends on into two groups: those that
are common to all algorithms that use DDPG (Table 2), and those that are specific to skill chaining
(Table 3). We did not try to optimize over the space of DDPG hyperparameters, and used the ones
used in previous work [8, 10]. Table 3 shows the hyperparameters that we chose on the different
tasks considered in this paper. Most of them are concerned with learning initiation set classifiers, the
difficulty of which varies based on domain. To determine the correct setting of these parameters, we
usually visualized the learned initiation set classifiers during the course of training (like Figure 3),
and made adjustments accordingly.

A.7 Compute Infrastructure

We used 1 NVIDIA GeForce 2080 Ti, 2 NVIDIA GeForce 2070 Ti and 2 Tesla K80s on the Google
Cloud compute infrastructure to perform all experiments reported in this paper.

A.8 Note on Computation Time

Each option is parameterized by its own neural networks, which are only updated when the agent is
inside that option’s initiation set. For a given transition, this leads to at most two or three updates. In
Point-Maze, updating all options on a transition took 0.004± 0.0003 s more than just updating the
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Figure 5: Variation in DSC performance (as measured by mean cumulative reward) as a function of
two hyperparameters: (left) the buffer length K and (right) the gestation period N of the option. For
a qualitative description of both hyperparameters, refer to Section 3.3. This experiment shows that
DSC is fairly robust to most reasonable choices of these parameters. All experiments averaged over 5
runs. Error bars denote 1 standard deviation. Higher is better.

Parameter Value
Replay buffer size 1e6
Batch size 64
γ 0.99
τ 0.01
Number of hidden layers 2
Hidden size 1 400
Hidden size 2 300
Critic learning rate 1e− 3
Actor learning rate 1e− 4

Table 2: DDPG Hyperparameters

global DDPG agent (averaged over 300 episodes using 1 NVIDIA 2080 Ti GPU) - a trivial amount of
extra computation time.

Parameter Point Maze Four Rooms Reacher Ant Maze E-Maze
Gestation Period (N ) 5 10 5 1 5
Initiation Period 1 10 3 0 1
Buffer Length (K) 20 20 20 750 20
Option Max Time Steps (T ) 100 150 150 100 100

Table 3: Deep Skill Chaining Hyperparameters
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