
Representing and Learning
Complex Object Interactions

Yilun Zhou and George Konidaris
Duke Robotics

Departments of Computer Science and Electrical & Computer Engineering
Duke University, Durham, North Carolina 27708

{yilun, gdk}@cs.duke.edu

Abstract—We present a framework for representing scenarios
with complex object interactions, in which a robot cannot directly
interact with the object it wishes to control, but must instead do
so via intermediate objects. For example, a robot learning to
drive a car can only indirectly change its pose, by rotating the
steering wheel. We formalize such complex interactions as chains
of Markov decision processes and show how they can be learned
and used for control. We describe two systems in which a robot
uses learning from demonstration to achieve indirect control:
playing a computer game, and using a hot water dispenser to
heat a cup of water.

I. INTRODUCTION

Powerful task representations will be essential for construct-
ing generally capable robots, because they will need to reason
about how to interact with the world to achieve their goals.
While there has been a great deal of research on reasoning
about such interactions, it has largely focused on the case
where a robot directly manipulates an object of interest; for
example, the robot must open a door [16] or grasp and fold a
towel [15].

However, in many cases the direct manipulation of the
object that the robot is interacting with is not the point; rather,
the robot should use that object to indirectly affect the state
of some other object(s). Consider teaching a robot to drive
a car. The robot’s direct interaction with the environment is
via the steering wheel. However, we are not trying to teach
the robot to move the steering wheel to a specific position,
or even to follow a specific steering-wheel trajectory; instead,
we are using the steering wheel to control the car—controlling
the car is the primary objective of our actions, but this must
be achieved through interaction with an intermediate object
(the wheel). We cannot learn only the interaction with the
intermediate object (because that ignores the state of the car),
but we cannot ignore it either (because it is the only way to
control the car).

A representation that is aware of this interaction structure
could facilitate learning in at least two ways. First, learning
each part of the interaction can be done independently, in
an appropriate state space: when the robot learns how its
grippers rotate the steering wheel, it need not care about the
car position; when it learns how the wheel controls the car,
it does not even need to be in the driver’s seat (observing a
human driver is sufficient). Second, learned knowledge can be
transferred even if parts of the task change: if the robot must

now learn to steer a ship, it need only focus on the interaction
between the steering wheel and the ship, without having to
re-learn how to rotate the wheel. This transfer of knowledge
could substantially reduce the time required to learn everyday
tasks.

We therefore introduce a framework for representing such
complex interactions as chains of Markov decision processes,
and show how such a chain can be learned. We show that this
framework allows a robot to learn to use a joystick to control
a video game from demonstration. In addition, we extend the
framework to handle more general object interaction graphs,
which express interaction relationships that can change over
time. For example, a robot may pour cold water from bottle
to an electric kettle, boil the water, and pour the water back
from the kettle to the bottle. In the first stage of the task,
the robot uses the bottle to affect the state of the kettle
(i.e. amount of water inside), but in the final stage, it uses
the kettle to affect the state of the bottle. We introduce
the use of activation classifiers and deactivation classifiers
to represent the circumstances under which an interaction
between two objects becomes active or inactive, and show that
our framework can be used to re-sequence individual skills
learned by demonstration to operate a hot water dispenser to
warm a cup of cold water.1

II. BACKGROUND AND RELATED WORK

Control learning problems are often modeled as Markov
decision processes (or MDPs) [18], which can be described by
a tuple {S,A, Tr,R} where S is a set of (possibly continuous)
states, A is a set of (possibly continuous) actions, Tr : S ×
A→ Pr(S) is a transition function that maps current state and
action to a distribution over next state, and R : S × A → R
is a reward function that maps current state and action to a
real-valued reward. A solution to an MDP takes the form of
a policy π : S → A that maps a state to an action to be
taken in that state, in order to maximize the return (expected
discounted summed reward):

arg max
π

Eπ

[∞∑
t=0

γtrt

]
, (1)

1A video explaining the model and showing both experiments is available
at https://www.youtube.com/watch?v=TJlxXX1v6S4.

https://www.youtube.com/watch?v=TJlxXX1v6S4

where 0 < γ ≤ 1 is a discount factor expressing a preference
for immediate over delayed reward (set to 1 in this paper).

In learning from demonstration (LfD) [2], a robot is given
demonstration trajectories obtained by executing an expert’s
policy, and must be able to reproduce the policy. There are
multiple possible strategies here, depending on how much
the robot knows about the MDP. For example, if the robot
does not know the transition or reward function, it may try
to learn the policy directly, using the state-action pairs in the
demonstration trajectories as labelled training examples in a
supervised learning setting. If the robot knows the transition
model but neither knows nor observes the reward function, it
could produce a policy that tries to follow the demonstrated
trajectories, or use inverse reinforcement learning [1] to try to
recover the reward function. If the robot is given the reward
function, it may also use the state-action-reward tuples in the
demonstration trajectories as labelled training data to learn
the MDP transition and reward functions, and then solve the
resulting MDP. LfD has received a great deal of attention
[2, 4], but to the best of our knowledge we are the first
to explicitly consider object-object interactions in the same
manner as robot-object interactions.

In our interaction graph model, demonstrations are broken
into different pieces (e.g. pressing a button, moving a cup,
pouring water, etc.), and each segment can be considered a
task with transition dynamics independent from state of other
objects in the absence of collisions. Much work has been
done on automatically breaking unstructured demonstrations
into subskills [9, 14, 6, 5, 8, 3, 13, 11, 17], which could be
applied in our framework to find the individual motor skills
that enable or disable an interaction.

For scenarios with multiple objects, Ekvall and Kragic [7]
identified spatio-temporal constraints for a pick-and-place task
involving multiple objects from either teacher instruction or
inference and reasoning over multiple demonstrations. Our
activation and deactivation classifier have similar functions to
the constraints in their work. In a similar vein, Konidaris et al.
[12] used classifiers to represent the conditions under which a
high-level action can be executed, and used them to construct
an abstract representation of a task.

There is a large body of literature on building complex
skills via hierarchical learning and execution. Kolter et al.
[10] introduced hierarchical apprenticeship learning which
enables the trainer to demonstrate skills at different levels of
abstraction. For example, a trainer can demonstrate footstep
placement on rough terrain, and also demonstrate how to do
low-level motor control to locally follow the footsteps for
quadruped locomotion.

In general, while hierarchical approaches are concerned
with hierarchical structure that is internal to the robot, we
are concerned with structure that exists in the relationships
between objects in the world. In that sense, hierarchical
approaches could be viewed as vertical (the robot building
new skills on top of old skills), whereas our approach could
be considered horizontal (the robot affecting control through
chains of objects).

III. INTERACTION CHAINS

We now present a model that captures scenarios in which a
robot interacts with an object through a chain of other objects.
The state of each object in the chain affects the transition
dynamics of its successor object, and is therefore modeled
as an action in the successor object’s MDP. Later, Section V
generalizes our interaction chain model to a graph, which can
capture scenarios with more complex interactions.

An interaction chain consists of N objects O1, O2, ..., ON ,
where O1 is the robot. Each Oi has an associated MDP Mi ≡
{Si, Ai, T ri, Ri}, where Si is the set of states for Oi, Ai is the
set of “actions” (explained below), Tri : Si × Ai → Pr(Si)
is a (stochastic) transition function, and Ri : Si → R is an
optional reward (alternatively, cost) function.

In the chain model, we assume that interactions only
exist between successive objects Oi−1 and Oi, for all i ∈
{2, ..., N}. For such an interaction, we call Oi−1 the prede-
cessor object and Oi the successor object. The interactions are
modeled by coupling their MDPs so that the state of object
i−1 affects (or controls) the state of object i, and thus serves
as the action of Mi, i.e.:

Si−1 ≡ Ai i = 2, ..., N. (2)

S1 describes the state of the robot, and A1 describes the raw
control available to it. Changes in the robot state (along with
the passive dynamics at each level) are ultimately the source of
all state transitions in our model, as objects interact with each
other through the chain. We make no particular distinction
between the robot and other objects, except that the robot is
the root of the chain and cannot be controlled by other objects.

In the car-driving task, S1 ≡ A2 is the state of the robot
(e.g. gripper position), S2 ≡ A3 is the state of the steering
wheel (e.g. rotation angle), and S3 is the state of the car (e.g.
pose and speed). Figure 1 shows the interaction chain for this
example.

robot

steering wheel

car

𝑆1 ≡ 𝐴2

𝑆2 ≡ 𝐴3

𝑆3

Fig. 1. The interaction chain for the car driving example.

During implementation we discovered a subtle point about
timing: since most physical systems are continuous in nature
but we are using discrete time, we found that when modeling
the interaction between successive objects Oi−1 and Oi, as a
practical matter the action causing the transition from s

(t)
i to

s
(t+1)
i is better predicted by s(t+1)

i−1 than by s(t)i−1. Recall that
the state of the predecessor object serves as the action of the
successor object. Thus for Oi−1 and Oi, we have Si−1 ≡ Ai.
Therefore, for two consecutive time points, t and t+1, we have
four states: s(t)i−1, s(t)i , s(t+1)

i−1 , s(t+1)
i . It may seem natural to

credit s(t)i−1 for making the transition in Oi from s
(t)
i to s(t+1)

i .
However, it is actually better to treat s(t+1)

i−1 as the action for
the transition. For example, consider the interaction between
the robot and the steering wheel. When the robot holds the
steering wheel, s(t+1)

robot , the hand position at time t+ 1, instead
of s(t)robot, best predicts s(t+1)

wheel, the steering wheel rotation angle
at time t+1. More generally, at time t, it is difficult to predict
the action in effect for the duration between time t and t+ 1,
which is revealed at time t+ 1.

Using this notation, Figure 2 shows a diagram of state tran-
sitions at all levels. Nodes that do not have arrows represent
initial conditions or robot actions; all others have two incoming
arrows representing the two inputs to the transition function.
The top row denotes the robot actions.

𝑠2
 0

𝑠𝑛
 0

𝑠1
 0

…

𝑎1
 1

𝑠2
 1

𝑠𝑛
 1

𝑠1
 1

…

𝑎1
 2

𝑠2
 2

𝑠𝑛
 2

𝑠1
 2

…

𝑎1
 𝑇

𝑠2
 𝑇

𝑠𝑛
 𝑇

𝑠1
 𝑇

…

...

...

...

Fig. 2. The forward transition graph for an interaction chain.

During learning and control, a key piece of information
is the inverse transition function, Tr−1 : Si × Si → Si−1.
Given a state transition of the successor object, the inverse
transition function outputs a state in the predecessor object
that can induce the transition. This function can be either
derived from the forward transition function Tr, if known, or
learned. Note that the inverse transition function presents some
difficulties. There may be several possible predecessor states
that induce the target successor transition, and it may return a
state that is not reachable from the predecessor object’s current
state. Moreover, in a stochastic system, it may only return a
state the is likely (rather than guaranteed) to cause the target
transition. Fortunately, a relatively simple recursive feedback
control algorithm (given in the Appendix) was sufficient to
overcome these difficulties in our experiments.

IV. THE CAR GAME

The car game domain involves a robot operating a joystick
that controls a car in a custom-made video game. The inter-
action chain diagram was shown previously in Figure 1, with
the steering wheel being replaced by the joystick. We use a
mix of autonomous learning and learning from demonstration
to show that the robot can learn to control the car to follow
complex trajectories.

Because of the small movements and high sensitivity of
the joystick, we do not use computer vision. Instead, the
robot hand position is extracted directly from the robot API;
the joystick configuration, also retrieved programmatically,
is represented by two axis (left/right and forward/backward)
values in the range of -1 to 1. The position of the car is also
read programmatically.

We learn two interactions: between the robot hand and the
joystick, and between the joystick and the car. We collect the
data for the first interaction (robot to joystick) by having the
robot directly play with the joystick and learn the association
between the hand position and the joystick axis values. The
robot tried about 500 hand positions to learn the relationship
between the hand position and the joystick configuration. This
interaction is not linear as the joystick axis values do not
change linearly with tilting angle.

We used human demonstration for the second interaction
(joystick to car). While the game runs at 30Hz, we found that
the robot can only be controlled reliably at 3Hz: beyond this
control rate, the robot will start dropping control commands
and cannot faithfully execute a command sequence. Thus, the
training data are also collected at 3Hz. We generated about
500 transition pairs. The game dynamics were designed to be
noisy and non-linear.

For both levels, we directly learned the inverse transition
function using polynomial regression. Figure 3 shows the
learning process.

Fig. 3. Learning at two levels. Left: learning the robot-joystick interaction
by playing with the joystick. Right: learning the joystick-car interaction by
observing a human playing the game. (Best viewed in color.)

During execution, the robot’s goal is to follow a given
car path as closely as possible. Three complex trajectories
were followed by the robot. Figure 4 shows the followed
trajectories overlaid on the game screen in the left column,
and the commanded and executed paths in the right column.

We calculated the average distance between demonstrated
and followed trajectories by sampling random points from the

Fig. 4. Trajectory following. The car images are faded out with time so that
positions older in time are more transparent. The “road” on the game interface
is for visual illustration purposes only and does not constrain the motion of
the car. (Best viewed in color.)

executed trajectory, finding the minimum distance of each
point to the commanded trajectory (also discretized), and
averaging those distances. The paths have average error of
0.790, 1.2480, and 1.8662 pixels (on a 800×600 game screen),
respectively. Thus, we are able to reproduce the demonstrated
trajectories very accurately on this task.

Our model is readily adaptive to several variations: if the
joystick position is changed, the robot need only translate its
hand accordingly; if the robot gripper is changed, it need only
re-learn how to hold and control the joystick; if the game is
changed, the robot need only re-learn the interaction between
the joystick and the new game.

V. INTERACTION GRAPHS

The model presented in Section III can only describe
scenarios in which objects are arranged in a chain. However,
many real-life scenarios are more complex. For example,
consider operating a microwave oven (consisting of a door,
an on/off button, and a power level knob) to heat food. The
door must be open to place and retrieve food, and closed for
the oven to operate. The on/off button starts and stops the
oven, and the power level knob changes the heating speed.
All three components can influence the temperature of the
food (the door influences the temperature by preventing it
from changing when open). However, they do not interact
with each other. Moreover, in addition to interacting with the

components of the microwave, the robot can directly modify
properties of the food such as its position and orientation. We
must therefore extend the interaction chain to a graph where
each node represents an object (a collection of state variables
that can be simultaneously manipulated). A directed edge from
node i to node j represents the fact that the state of node
i (possibly jointly with states of other nodes) can affect the
state of node j. Figure 5 shows the interaction graph for the
microwave oven example described above.

robot

door
on/off

button

food

power level

knob

Fig. 5. The interaction graph for the microwave oven example.

We represent an interaction graph as a collection of MDPs
M = {M1, ...,Mn}, along with a graph G(M,E) in which
the directed edges between the MDPs represent relationships
of influence. Since many objects can jointly affect one object,
the action set for object i is now the Cartesian product of all
the state sets belonging to its parents:

Ai ≡
∏

k:(k,i)∈E

Sk. (3)

When multiple objects can jointly interact with one object,
the inverse transition function can be even harder to compute.
To mitigate the problem, we distinguish between active and
inactive interactions. In an interaction chain, we assume that
all interactions are always “happening”. For example, as long
as the robot is holding the steering wheel, any movement
of the hand will induce corresponding rotation of the wheel.
However, in an interaction graph, an object may only affect
another in some cases. For example, the robot can only
manipulate one object at a time. The states of objects that
are not being manipulated progress according to their passive
dynamics.

Activation classifiers and deactivation classifiers govern
the change in interactions from inactive to active, and from
active to inactive, respectively. An activation classifier re-
turning true denotes the activation of a previously inactive
interaction, and false means that the interaction remains
inactive. The deactivation classifier is similar.

As a specific example, in the microwave oven scenario, the
interaction between the robot and the food is only active when
the robot is grasping the food. The interaction between the
power level knob and the food (i.e. changing the heating speed)
is only active if the food is inside the microwave oven, the door
is closed and the on/off button is on (so that heating process
can occur).

In learning, both the transition function and (de)activation
classifiers must be learned. The transition function should
only be learned when the interaction is active. To learn the
interaction classifiers, the robot needs the interaction status
between two objects at consecutive time steps. It is given
by hand in our example, but could in principle be learned
autonomously by determining whether or not the passive
dynamics of the object have been perturbed.

VI. THE WATER DISPENSER

We now demonstrate the use of an interaction graph in a
system where a robot uses a hot water dispenser to turn a cup
of cold water into a cup of hot water. The water dispenser has
a water tank to hold water, a dispense button to dispense the
water in the tank, and a power button to heat the water in the
tank. Figure 6 shows the interaction graph.

water

tank

power

button

dispense

button cup

robot

Fig. 6. The interaction graph of the water dispenser experiment.

We used an Intel Realsense F200 camera to track the cup
pose and the depressions of power and dispense buttons. Since
it is very challenging to extract information about liquid (such
as the water amount in a tilted cup) and computer vision is not
a focus of our work, we pre-computed the water amount for
each cup tilting angle. We also estimated the water temperature
in the tank during heating.

For the robot hand, the state variables include x, y, z co-
ordinates in the robot frame, and the tilt angle θ necessary
for pouring water from cup. We use a binary variable to
model whether the fingers of the hand are open or closed. The
state variables of the cup include its pose variables (defined
similarly to those for the hand, but in the camera frame), and
two real variables between 0 and 1 denoting the normalized
amount of water (0 being empty) and the water temperature (0
being cold). Finally, it has a change in water level defined to be

∆water amount(t) ≡ water amount(t) − water amount(t−1).
Only with the inclusion of this state variable can the interaction
between cup and water tank be Markov. The two buttons each
have a level of depression expressed as an integer between 0
and 6, since they have a maximum depression of 6 pixels
in our camera setting. The water tank has three variables:
water amount, water temperature, and change in water amount,
defined similarly as those of the cup.

For the robot-cup interaction, activation occurs when the
cup is inside the hand and the hand is closed; deactivation
occurs when the hand opens. When the interaction is active,
the position and tilt of the cup will follow those of hand. They
are not the same, however, since they are in different reference
frames. The water amount will decrease and the change in
water amount will be negative if the cup is tilted. The water
temperature does not change in this interaction.

For the interactions between the robot and the
power/dispense button, activation occurs when the robot
hand is on top of the button and deactivation happens at the
same position. During interaction, the button level will be
determined by the z-coordinate of the hand (its height). For
both buttons, a depression greater than 3 will trigger heating
and dispensing, respectively. When the dispense button is
active, the water amount in the tank decreases by 1/16 each
time unit (second) until it reaches 0, since it takes about 16
seconds to empty the dispenser. When the power button is
active, the temperature increases by 1/80 until reaching 1,
for a similar reason.

Both pouring and dispensing interactions can happen be-
tween the cup and tank, albeit in different directions. The
pouring interaction activates when the cup is above the tank
and the dispensing interaction activates when cup is below
the tank. The key to the transition function is that the water
amounts change in opposite directions. Thus, the Markov
property holds through the change in water amount. Finally,
the new water temperature is an average between the old
temperature and the temperature of the newly added water,
weighted by their relative volumes.

During learning, the robot was tele-operated to do a set
of tasks that helped it learn all the interactions. Figure 7
visualizes the tele-operation. About ten demonstration pieces
were given. It should be noted that these skill demonstrations
are unordered. The active and inactive states are hand-labeled.
From these skills, the robot learns a model of the interaction
between the objects.

Given this model, the robot was able to apply a control
algorithm to obtain a cup of hot water when it is given a cup
of cold water, a challenging task that requires multiple object
interaction steps. Specifically, in execution, the robot must use
the cup to pour the cold water into the water tank, move the
cup to below the tank, press and hold the power button until
the water is boiling, then press the dispense button. Once the
water tank is empty, the robot must retrieve the cup of newly
heated water.

After we modified the control algorithm for the interaction
chain model to incorporate activation and deactivation classi-

(a) Pouring water

(b) Pressing the power button

(c) Pressing the dispense button

Fig. 7. The robot learns various interactions through tele-operation. (Best
viewed in color.)

fiers (see the Appendix), our system was able to autonomously
achieve the goal using its learned knowledge. The assembled
execution consists of about 1000 discrete control steps. Figure
8 shows several waypoints in the robot execution.

VII. CONCLUSION AND FUTURE WORK

We have introduced a flexible representation that goes be-
yond modeling robot-object interactions to account for object-
object interactions, and showed that it can be used to learn two
distinct real-life tasks involving complex object interactions.

There are several advantages of our model. First, it naturally
represents interactions among objects, so that we can build
complex systems capable of using intermediate objects. In
particular, tool use is an embodiment of this characteristic as
tools are intermediate objects we use to achieve some goal. In
order to use such systems, robots must also be able to reason
about interactions between objects.

Second, by modeling each object as a separate MDP, we
can factor the joint state space to mitigate against the curse
of dimensionality. Models that are unaware of intermediate
objects must represent the compounded interaction of the robot

(a) pick up the cup (b) pour cold water to the machine

(c) place the cup under the machine (d) press the power button to boil
water

(e) press the dispense button to dis-
pense water

(f) move the cup to original position

Fig. 8. The robot autonomously sequences learned skills to heat a cup of
water. (Best viewed in color.)

monolithically. Even if individual interactions are simple, the
compounded one can be very hard to model.

Finally, our model can accomplish knowledge transfer.
Since each interaction is represented by an MDP, a control
algorithm can directly use a transferred MDP in place of a
freshly learned MDP for task execution. This step requires no
overhead and directly reduces the total amount of learning,
which can be very significant for low-cost robots with limited
onboard computational resources. Since our work does not
require demonstrations to be given in the correct order, in-
teractions can be learned at different times and from different
sources. In addition, when equipped with a database of “prim-
itive interaction models” as prior knowledge, a robot can be
immediately versatile in everyday environments, without too
much learning.

Other than a better control algorithm, autonomous interac-
tion graph structure discovery is a very important direction
for future work. The inclusion of prior knowledge (e.g. our
interactions are causal and it is highly unlikely that a lamp
lighting up will cause a button to depress), accurate sensing,
and active information gathering will likely prove necessary
for learning complex interaction model structures completely
from scratch. In addition, ideas from structure discovery in
Bayesian networks may also be relevant here.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful sugges-
tions and criticisms. We are grateful for Ying Qi for narrating
the video. The game sprites and pictures appearing in the
video are courtesy of www.clipartbest.com, www.clipartsheep.
com, www.clker.com, www.flickr.com, www.iconarchive.com,
www.openclipart.org, www.pd4pic.com, and www.pixabay.
com under Creative Commons 0, Creative Commons Attribu-
tion License, or custom license allowing free non-commercial
use with attribution. This research was supported in part
by DARPA under agreement number D15AP00104, and
by the National Institutes of Health under award number
R01MH109177. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health
or DARPA.

APPENDIX

In this section, we sketch the feedback-control algorithms
used in the two experiments. They are very simple and are
included only to make our work easier to reproduce. The
development of more complex algorithms is left to future
work.

A. Trajectory Following for Interaction Chains

The building block of the algorithm is a controller that
moves the n-th object toward a target state; it can be used
as the basis of a feedback controller that, over a sequence of
successive calls, controls the system to approximately follow
a desired trajectory.

We aim to learn an inverse transition function Tr−1 :
Si × Si → Si−1 such that for the interaction between object
i − 1 and object i, the function can return an action s

(t+1)
i−1

that can cause the desired transition from s
(t)
i to s(t+1)

i (recall
the time convention discussed at the end of Section III). Note
that the returned s

(t+1)
i−1 can be impossible to reach from the

current state of object i − 1, s(t)i−1. For example, if the robot
can only turn the steering wheel gradually, but s(t)i−1 and s(t+1)

i−1
represents two very different angles, then we must effect the
transition over a longer period of time. We use path planning
at each level in turn to solve this problem. The resulting
algorithm move_to, which should be called successively to
achieve trajectory following, is given in Algorithm 1.

B. Trajectory Following for Interaction Graphs

Trajectory following for a interaction graph is similar to
that in the chain case, except that the robot must know
how to activate and deactivate interactions. We model actions
that perform the activation and deactivation—reaching states
within the classifiers—as motor skills that can either be
given by the system designer, or learned from demonstration.
Specifically, from the given or learned classifiers the robot can
find states of both manipulating and manipulated objects that

def move_to(i, si)
while not done do

move_one_step (i, si);
end

def move_one_step(i, si)
if i == 1 then

control robot toward si for a time unit;
else

s
(next)
i = state_plan(i, s(cur)i , si);
s
(next)
i−1 = inv_transition(i, s(cur)i , s(next)i);
move_to(i− 1, s(next)i−1);

end
def inv_transition(i, s(t)i , s(t+1)

i)

return s
(t+1)
i−1 most likely for transition s(t)i → s

(t+1)
i ;

def state_plan(i, s(cur)i , si)
return next state for Oi on the way to si from s

(cur)
i ;

Algorithm 1: Feedback Control Algorithm. Superscript of
“(cur)” means current value of the state.

will (de)activate an interaction. Then objects are manipulated
such that the states will match the predicted states.

With (de)activation skills, the inverse transition function
should also output the interaction type. For example, the
transition of water amount increasing in the cup has the
interaction type of dispensing, while the transition that the cup
position changes has the interaction type of robot moving the
cup. The only addition to the trajectory following algorithm is
that when the interaction type switches (e.g. from hand moving
cup to pressing a button), the previous interaction must be
deactivated and the next interaction activated before the control
algorithm loops.

REFERENCES

[1] P. Abbeel and A.Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of the
21st International Conference on Machine Learning,
2004.

[2] B.R. Argall, S. Chernova, M. Veloso, and B. Browning.
A survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57(5):469–483, May 2009.

[3] J. Butterfield, S. Osentoski, G. Jay, and O.C. Jenkins.
Learning from demonstration using a multi-valued func-
tion regressor for time-series data. In Proceedings of the
Tenth IEEE-RAS International Conference on Humanoid
Robots, 2010.

[4] S. Chernova and A. Thomaz. Robot Learning from
Human Teachers. Morgan & Claypool, 2014.

[5] S. Chiappa and J. Peters. Movement extraction by
detecting dynamics switches and repetitions. In Advances
in Neural Information Processing Systems 23, pages 388–
396, 2010.

[6] S. Chiappa, J. Kober, and J. Peters. Using Bayesian
dynamical systems for motion template libraries. In

www.clipartbest.com
www.clipartsheep.com
www.clipartsheep.com
www.clker.com
www.flickr.com
www.iconarchive.com
www.openclipart.org
www.pd4pic.com
www.pixabay.com
www.pixabay.com

Advances in Neural Information Processing Systems 21,
pages 297–304, 2009.

[7] S. Ekvall and D. Kragic. Robot learning from demon-
stration: a task-level planning approach. International
Journal of Advanced Robotic Systems, 5(3):223–234,
2008.

[8] D.H. Grollman and O.C. Jenkins. Incremental learning
of subtasks from unsegmented demonstration. In Inter-
national Conference on Intelligent Robots and Systems,
2010.

[9] O.C. Jenkins and M. Matarić. Performance-derived be-
havior vocabularies: data-driven acquisition of skills from
motion. International Journal of Humanoid Robotics, 1
(2):237–288, 2004.

[10] J.Z. Kolter, P. Abbeel, and A.Y. Ng. Hierarchical ap-
prenticeship learning with application to quadruped lo-
comotion. In Advances in Neural Information Processing
Systems 20, pages 769–776, 2008.

[11] G.D. Konidaris, S.R. Kuindersma, R.A. Grupen, and
A.G. Barto. Robot learning from demonstration by
constructing skill trees. International Journal of Robotics
Research, 31(3):360–375, March 2012.

[12] G.D. Konidaris, L.P. Kaelbling, and T. Lozano-Perez.
Constructing symbolic representations for high-level
planning. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, pages 1932–1940,
2014.

[13] V. Krüger, D.L. Herzog, S. Baby, A. Ude, and D. Kragic.
Learning actions from observations. IEEE Robotics and
Automation Magazine, 17(2):30–43, 2010.

[14] D. Kulić, W. Takano, and Y. Nakamura. Online seg-
mentation and clustering from continuous observation of
whole body motions. IEEE Transactions on Robotics, 25
(5):1158–1166, 2009.

[15] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and
P. Abbeel. Cloth grasp point detection based on multiple-
view geometric cues with application to robotic towel
folding. In Proceedings of the 2010 IEEE Conference
on Robotics and Automation, pages 2308–2315, 2010.

[16] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann,
P. Mihelich, E. Marder-Eppstein, M. Muja, V. Eruhimov,
T. Foote, J. Hsu, R.B. Rusu, B. Marthi, G. Bradski,
K. Konolige, B. Gerkey, and E. Berger. Autonomous
door opening and plugging in with a personal robot. In
Proceedings of the 2010 IEEE Conference on Robotics
and Automation, pages 729–736, 2010.

[17] S. Niekum, S. Osentoski, G.D.Konidaris, S. Chitta,
B. Marthi, and A.G. Barto. Learning grounded finite-
state representations from unstructured demonstrations.
The International Journal of Robotics Research, 34(2):
131–157, 2015.

[18] R.S. Sutton and A.G. Barto. Introduction to Reinforce-
ment Learning. MIT Press, Cambridge, MA, USA, 1st
edition, 1998.

	Introduction
	Background and Related Work
	Interaction Chains
	The Car Game
	Interaction Graphs
	The Water Dispenser
	Conclusion and Future Work
	Trajectory Following for Interaction Chains
	Trajectory Following for Interaction Graphs

