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1 Introduction

The dream of nanoscale computing was first articulated by Richard

Feynman in his 1959 speech to the American Physical Society. He
argued that no physical law prevented the room-sized comput-

ers of the 1950’s from being replaced with vastly more power-
ful pin-sized computers built from billions of nanoscale devices.

Since then computers have become orders of magnitude smaller,
faster and more powerful. Their wires and gates, however, have

not yet reached the nanoscale (i.e., the dimensions of individual
molecules).

Although individual nanoscale devices have been demonstrated,
we lack the ability to place these devices with nanoscale precision.

As a result, near-term nanoscale architectures will be assembled
stochastically. The range of device variation these architectures

must tolerate makes them fundamentally different from today’s
CMOS. Our approach to nanoscale circuit design must change

accordingly.

For the past 30 years, chips with ever shrinking features have been
produced using photolithography. Wires and gates are defined
using light on a silicon substrate. This allows many copies of a

chip to be produced from a single set of costly masks. Although
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Fig. 1. A crossbar formed from two orthogonal sets of NWs with programmable
molecules (PMs) at the crosspoints defined by intersecting NWs. NWs are divided
into contact groups by connecting them to ohmic contacts (OCs). To activate a
NW in one dimension, a contact group is activated and MWs are used to deactivate
all but one NW in that group. Data is stored at a crosspoint by applying a large
electric field across it. Data is sensed with a smaller field.

photolithography allows for a very wide range of circuit designs,
the wavelength of light (193nm or greater) is too large to allow for

features on the order of a few nanometers, the range considered
in this paper. Nanoscale architectures require new manufacturing

technology.

A particularly viable basis for nanoscale architectures that has

received significant attention in the physical science and engineer-
ing communities is the nanowire crossbar [1,2] (See Figure 1).

Here a grid of nanowires (NWs) provides control over molecular
devices that reside at their crosspoints. Like traditional crossbars,
NW crossbars can act as memories (such as RAM) and circuits

(such as PLAs) [3,4]. Unlike traditional crossbars, however, their
assembly is stochastic. This results in three very important chal-

lenges:

(1) NWs are randomly assigned physical addresses.
(2) A testing procedure is required to configure a crossbar’s con-

trol circuitry.

(3) Permanent and transient faults must be tolerated.
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To overcome these challenges, nanoscale crossbar-based architec-
tures rely on stochastically assembled NW decoders. A nanowire

decoder is any device capable of controlling the resistances of
individual NWs using larger lithographically-produced mesoscale

wires (MWs) and ohmic contacts (OCs). In Section 2 we explain
how NW decoders can be used to control a NW crossbar-based

memory.

To date, all proposed NW decoders rely on a stochastic assembly
process. Three types of NW decoder have been analyzed proba-

bilistically, “encoded NW decoders,” “mask-based decoders,” and
“randomized-contact decoders”. In Section 3 we describe these

decoders and summarize their performance. We also provide a
new bound on the number of MWs an encoded NW decoder re-
quires to control a large fraction of all NWs.

In Section 4 we examine in detail the addressing of NWs by MWs
and derive conditions that must be met by the resistances of
NW/MW junctions in order to address NWs correctly. This al-

lows us to give a model of NW decoders that it explicitly takes
manufacturing errors into account.

In Section 5 we use this model to derive probabilistic bounds on

the number of MWs needed to address NWs with the randomized-
contact decoder (RCD). We bound the number of MWs needed

to address all NWs connected to a single OC. We also bound
the number of MWs required to address some fixed fraction of

NWs across all OCs. Our analysis demonstrates that RCDs are
efficient and robust. They can reliably control a large number of

NWs using a small number of MWs, even when some fraction of
contacts between MWs and NWs are defective.

Our bounds improve upon the analysis of [5]. They take errors

into account and also make explicit the probability that the
bounds hold. Additionally, their derivation is more precise, as
it avoids an unnecessary independence approximation (see Sec-

tion 3.3). This ensures that our bounds apply even to small
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groups of NWs connected to OCs. In the case of a large num-
ber of NWs connected to an OC, our bound on the number of

MWs required to address all NWs agrees with the asymptotic
analysis in in [5].

We also note that previous work on coping with manufacturing

defects in NW decoders has focused on the use of error correcting
codes [6–8]. In these coding-based approaches, a specific error

correcting code is used to determine which subsets of MWs have
the ability to address NWs. Viewed in this light, the bounds of

Section 5 show that even randomly generated codes provide good
defect-tolerance with only constant factor overhead.

This is a significant insight, since it eliminates the requirement

that a NW decoder provide designers with a great deal of control
over which subsets of MWs can control NWs. This level of control

is present in encoded NW decoders [8], or programmable NW
decoders [9,7] (which themselves require a second NW decoder
to configure), but is not present in RCDs, which are arguably

simpler to manufacture.

Since we cannot predict in advance which MWs will control which
NWs, NW addresses must be discovered after an RCD is assem-

bled. These addresses must then be stored and mapped to fixed
binary addresses using programmable circuitry. Strategies for im-

plementing this mapping and a method for estimating the area
used by a crossbar as well as its addressing circuitry are discussed

in Section 6. The need for such circuitry is also mentioned in [3],
but the varying overhead associated with specific mapping strate-

gies is not considered. In [10] specific mappings are considered in
the context of encoded NW decoders, but not the “Almost All
Wires Addressable” and “Take What You Get” strategies pre-

sented here.

The problem of discovering which subsets of MWs address NWs
is discussed in Section 7. Exhaustive search is considered, as is a

search randomized algorithm. The randomized algorithm is an-
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alyzed in Section 8. Again, we improve on work done in [5], re-
laxing an assumption about what testing circuitry is present. We

also correct an independence assumption that is not met unless
the number of MWs used to control the NWs connected to an
OC is much larger than what the bounds of Section 5 require.

Conclusions are drawn in Section 9.

2 Crossbar Overview

To motivate our analysis, we briefly describe how NW crossbars
can be used as memories. This approach can be extended to cir-

cuits as well [4]. Since our research focuses on controlling indi-
vidual NWs with MWs, crossbar-based memories offer sufficient

motivation.

2.1 Crossbar Assembly

There are multiple approaches to constructing a NW crossbar.

Undifferentiated NWs can be stamped onto a chip, [11–13], or
alternatively, many types of differentiated NWs can be grown

off chip, collected in a large ensemble, then deposited fluidically
[14,15]. In either approach, a molecular layer is deposited between

two layers of parallel NWs. This layer can be comprised of molec-
ular diodes that switch between a low and high resistance in a
large electric field [16,17]. A layer of amorphous silicon has also

been proposed as a storage medium [18]. Programmable devices
that do not behave like diodes (e.g. nanoscale resistors or transis-

tors) have also been considered [19,9]. Some of these alternatives
have been compared to diodes with regard to their information

storage capacity and ability to control NWs [20,7,21]. When used
for information storage, resistors are inferior to other alternatives

[20].

Once a NW crossbar is assembled, g OCs and M MWs can be
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placed along each dimension of the crossbar using photolithog-
raphy (see Figure 1). Although each MW controls (makes non-

conducting) a subset of the NWs, these subsets cannot be chosen
deterministically. For each NW, we can describe the subset of

MWs that control it using a binary M -tuple. We call this a NW
codeword.

In the case of undifferentiated NWs, two methods have been pro-
posed to control NWs with MWs. The first, the randomized-

contact decoder (RCD), is analyzed here. A proposed approach
for producing an RCD is to randomly deposit nanometer-sized

particles between NWs and MWs, making each NW/MW junc-
tion controlling with some fixed probability [5,22]. The second
method for controlling undifferentiated NWs relies on randomly

shifted lithographically-defined regions of high-K dielectric ma-
terial between NWs and MWs [23,24]. Here again, each MW is

made to control some random subset of the NWs. Additional
methods for producing decoders are possible using differentiated

NWs [25,26].

2.2 Crossbar Operation

In a crossbar memory, NWs along each dimension are divided

up into g contact groups of N NWs each. NWs in each contact
group are connected to a common OC. To use the crossbar as a

memory, a voltage is applied to a single contact group of NWs
along each dimension of the crossbar. Subsets of MWs along each

dimension are then used to address NWs within each of the two
groups. This operation can either read or write a single bit to

the crosspoints of the NWs being addressed (See Figure 2). If
multiple NWs connected to an OC are addressed by the same set
of MWs, it may be acceptable to store the same bit at multiple

crosspoints.

In a write operation, the diodes at crosspoints are turned on

or off by applying a large potential between one or more pairs of
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Fig. 2. A crossbar-based memory in which OCs and MWs read and write data to
programmable molecules at crosspoints. The darkened segments along each NW
indicate lightly doped regions. These regions become nonconducting when the ad-
jacent MW is turned on. In a read operation an OC at each end of a NW is discon-
nected from ground. Current flows through any conducting NW crosspoints that
are addressed by MWs. The amount of current reveals the value stored at the cross-
points. In a write operation, NWs along each dimension apply a larger electric field
across their crosspoints. The direction of the field determines the value stored at the
crosspoints. In this figure, the same bit of information is stored at two crosspoints.

orthogonal NWs by addressing (giving low resistance to) one or
more NWs in each dimension. Both ends of the NWs are main-

tained at the same potential. The polarity of the potential deter-
mines the state of a crosspoint and the value written.

In a read operation, a smaller voltage is used, allowing the

decoder to detect the state of crosspoints. In a read operation
each NW is disconnected from one of its ohmic contacts. Current
will either flow or not flow through a crosspoint, depending on

its state. The amount of current reveals the resistive state of the
crosspoints, and thus the value being stored.

Both read and write operations require that the NWs being ad-

dressed have a significantly lower resistance than the other NWs
in the same contact group. This requirement is formalized at the

beginning of Section 4.

2.3 Address Translation Circuitry

When a memory is supplied with a particular external binary

address, address translation circuitry (ATC) along each di-
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mension of the crossbar maps that address to a contact group
and MW input. This mapping depends on the stochastic assem-

bly of the decoder. To ensure each external address addresses
some NW, the ATC must store information about which MWs

control which NWs. In the next subsection, we discuss how this
information can be obtained. For now, assume it is known and

consider the storage overhead required.

In order to make address translation circuitry fast, reliable, and
easy to manufacture, it may be implemented in CMOS. Any ap-

proximation of the area of the memory must take into account not
just the area of MWs and ohmic contacts, but also the area used

to store physical NW addresses using CMOS. We explicitly model
the size of address translation circuitry in [10], but it has received

less attention elsewhere. The appendix of [3], also estimates the
area required for the ATC, but does so without exploring how dif-
ferent address mapping strategies affect area requirements. The

prospect of implementing the ATC using nanoscale storage is
considered in [9].

Most previous work on NW decoders has focused on the num-

ber of MWs required to control NWs. Although MWs are much
wider than NWs, they are still relatively small. In an RCD, how-

ever, each NW/MW junction, corresponds to a bit of storage in
address translation circuitry. As a result, these bits, when stored

in mesoscale devices, collectively take up far more area than the
NW/MW junctions.

The ATC must associate a contact group and codeword with

each external address. In the worst case, this requires log2 g + M
bits of storage per NW. In some cases fewer bits are required.

For example, if all NWs can be addressed, and the number of
NWs per contact group is a power of 2, the high order bits of

an external address can be used to index a contact group. The
address translation circuitry now requires only M bits of storage
for each NW. The way in which external addresses are mapped to

NWs is called an addressing strategy. Later, several addressing

8



strategies are discussed in detail. As we explain, some addressing
strategies require more overall area than others.

2.4 Address Discovery

We also explore the problem of testing. In an RCD, each NW has
a physical address determined by which MWs control it. Since
addresses are randomly generated during decoder assembly, they

must be discovered. This is a difficult problem, as some addresses
mask others, and faults make test outputs unreliable. We evaluate

the effectiveness of several simple testing procedures that do not
require read/write operations.

In [10], an efficient testing procedure involving read/write opera-

tions was given for differentiated NW decoders. The algorithm’s
reliance on nanoscale storage devices is a drawback. Read/write
operations are relatively time consuming, and possibly faulty.

Also, in circuits, they may not be possible at all (as not all NWs
will be used to control nanoscale storage devices).

The testing algorithms we consider are only allowed to apply a

voltage across a contact group, turn on a subset of the MWs,
and observe if any NW remains conducting. This test does not

reveal which NW is on, nor does it reveal if multiple NWs are on.
Nonetheless, it is sufficiently powerful to determine which subsets

of MWs address individual NWs. As it turns out, the algorithm
in [10] can also be adapted to this model. Unfortunately it does
not work for RCDs. A discovery algorithm for RCDs is given in

[5], which we improve upon in Section 7 on this algorithm here.
We also improve upon its analysis.

3 Decoding Technologies

In this section we describe three types of NW decoder. Each

type of decoder can itself be manufactured in multiple ways. As
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shown in Section 4, however, all three decoders can be modeled in
a unified way. Using this model, we analyze the number of MWs

required by an RCD in Section 5. In Section 6 we estimate the
total amount of area RCDs require.

3.1 The Encoded NW Decoder

Encoded NW decoders work with two kinds of NWs, modulation-

doped NWs [27,28], NWs with sequences of lightly and heavily
doped regions, and radially encoded NWs [29], NWs with remov-

able shells. In both cases many NW types are prepared sepa-
rately, each with a different encoding. When modulation-doped
NWs are used, encodings correspond to patterns of lightly and

heavily doped regions. When radially encoded NWs are used, en-
codings correspond to sequences of shells. In either case many

NWs of each type are all collected in a large ensemble then de-
posited onto a chip using fluidic methods that align the NWs in

parallel [30].

When MWs are placed across the NWs, any NW/MW junction

comprised of a lightly doped region forms a field effect transis-
tor (FET). The application of an immobilizing electric field to
the MW causes the resistance of the junction to become high.

A NW is addressed by applying fields to all MWs that do not
significantly increase its resistance. If doping sequences are prop-

erly chosen, only one type of NW will become nonconducting.
(See Figures 1 and 2.) In practice, lightly doped NW regions will

not align perfectly with MWs [29]. Consequently, a MW’s con-
trol over a NW can be ambiguous. Several methods for encoding

modulation-doped NWs are studied in [10].

The encoded NW decoder also works with radially encoded NWs,

that is, NWs that have shells composed of differentially etchable
NWs [29]. There are several ways to control these NWs with
MWs. The simplest method uses one MW to control each type

of NW. Each NW type is grown with a different sequence of s
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shells surrounding a lightly doped core. Once NWs have been
deposited, a different sequence of s shells are etched away in the

space reserved for each MW. Under each MW, only the lightly
doped cores of one NW type are exposed, and if shells are suf-

ficiently thick, each MW controls only NWs with exposed cores.
Radially encoded NWs do not suffer from misalignment but may

require slightly larger radii than modulation-doped NWs.

3.1.1 Known Results

In an encoded NW decoder, the number of controllable NWs
depends on the number of differently-encoded NW types, C, be-

ing used. This in turn determines how many MWs, M , are re-
quired. In an encoded NW decoder, each NW is equally likely

to contain each encoding. NWs with different encodings can be
addressed separately. When NWs are encoded using “binary re-
flected codes” [10], M = 2 log2 C. Using “h-hot codes” [25], M

can be reduced to close to log2 C. Despite using more MWs bi-
nary reflected codes require the same amount of ATC. The main

advantage of binary reflected codes is that they allow for “wild-
carding”, which in turn yields a simple testing algorithm [10]. If

the N NWs in a given contact group each have a different encod-
ing, these encodings can be discovered in time O(NM), which is

optimal.

The area required for an encoded NW decoder also depends on

C. In order for all NWs in a contact group to be addressable
with probability 1 − ǫ, the number of NW types, C, must be at

least N(N − 1)/(−2 ln(1 − ǫ)) [10]. Half of the NWs in a con-
tact group are addressable with probability 1 − ǫ if C is at least
e(N−1−2 ln ǫ)/(N+1)(N − 1)/2 [10]. It was demonstrated in [10] that

requiring half of the NWs be addressable requires significantly
less total area than requiring that all NWs be addressable. Ad-

ditionally, it requires fewer NW encodings be manufactured.

As explained in [10], NWs in an encoded NW decoder are as-

signed encodings with equal probability. Since each encoding can
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be addressed separately, the probability that a NW is individually
addressable is (1 − 1/C)N−1, and the expected number of indi-

vidually addressable NWs per contact group is N(1 − 1/C)N−1.
This observation allows us to directly apply the derivations of

theorem 5.2 and corollary 5.2 that appear in Section 5.1. Doing
this gives following result, which does not appear elsewhere.

Theorem 3.1 Let N ′
a be the total number of individually ad-

dressable NWs in an encoded NW decoder with g contact groups,
N NWs per contact group, N ′ = gN NWs in total and M MWs.

P (N ′
a > κN ′) ≥ 1 − ǫ

if κ ≤ (1 − 1/C)N−1 −
√

− ln ǫ/(2g∗) where g∗ = g(N/(N − 1))2.

Also, as mentioned in Section 2.1, it is not always necessary to
address NWs individually. If two NWs have the same encoding

(see Figure 2), they can still be addressed collectively and used
to store the same bit at multiple NW crosspoints. In an encoded
NW decoder, the expected number of different encodings per con-

tact group is C(1− (1− 1/C)N). If addressing groups of NWs is
acceptable, the above theorem can be modified.

Theorem 3.2 Let N ′
a be the total number of addresses in an en-

coded NW decoder with g contact groups, N NWs per contact
group, N ′ = gN NWs in total and M MWs.

P (N ′
a > κN ′) ≥ 1 − ǫ

if κ ≤ (C/N)(1−(1−1/C)N)−
√

− ln ǫ/(2g∗) where g∗ = g(N/(N−
1))2.

3.2 The Masked-Based Decoder

Mask-based decoders [23] work with uniform NWs [13,31].
Lithograpically-defined high-K dielectric rectangles are deposited

between NWs and MWs. A rectangle amplifies a MW’s electric
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Fig. 3. a) A masked-based NW decoder in which regions of high-K dielectric allow
each MW to control a different subset of NWs. If arbitrarily small high-K dielectric
regions could be manufactured and placed with nanoscale precision, 2 log2(N) MWs
could be used to address each of N NWs. b) Since this is not the case, many
randomly shifted copies of the smallest manufacturable region can be used to gain
control over individual NWs.)

field, allowing it to increase the resistance of the lightly-doped

NWs underneath. If rectangles can be as small as the pitch of
NWs, they can be used with M = 2 log2 N MWs to cause all

but one NW to have high resistance, as suggested in Figure 3a.
Unfortunately, rectangles cannot be made as small as the pitch

of NWs. Instead, many randomly shifted copies of the smallest
lithographically-defined rectangles can be deposited on a chip.

The natural randomness in their locations provides control over
NWs with high probability [23] (see Figure 3b). One difficulty,
however, is that nanoscale misalignment of a high-K dielectric

regions can cause a particular MW to only partially turn off a
particular NW. A similar problem will arise if the boundary of a

high-K dielectric regions is not sufficiently sharp, although [23]
appears to indicate that nanoscale transitions between high-K

and low-K dielectric regions are feasible.

3.2.1 Known Results

The number of MWs, M , needed to control N NWs is estimated

to be at least six times the number required with an encoded
NW decoder [32]. Unless masks can be placed with sub-NW pitch

accuracy, the number of MWs required for all N NWs in a contact
group to be addressable with probability ǫ is approximately 2(N−
1) ln(2(N − 1)/ǫ). Even though M is large, each NW can be

addressed using a small number of MWs. As a result, the area
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required for ATC remains reasonable.

3.3 The Randomized-Contact Decoder

A randomized-contact decoder is any decoder in which NW/MW

connections can be modeled as independent random variables. In
an RCD, a MW provides strong control over a NW with probabil-

ity p, very weak or no control with probability q and intermediate
or ambiguous control with probability r = 1− (p + q). Since this

third case models a manufacturing error, we do not assume that
p + q = 1. This is a very practical generalization of the error-free
model given in [5]. In Section 5 we bound the number of MWs

M required to tolerate a given error rate.

Williams and Kuekes first proposed the randomized-contact de-
coder (RCD) in [33]. There are a number of ways an RCD might

be produced. One approach is to randomly deposit impurities
(such as gold particles) onto undifferentiated NWs (see Figure 4).

Another approach is to randomly deposit small regions of high-K
dielectric. An RCD can also be constructed from axially encoded

NWs. If many sets of axially encoded NWs are produced with
randomly placed lightly doped regions, each NW/MW junction

can be treated as an independent random variable. As a result,
analysis of RCDs provides bounds that apply to axial (and simi-
larly radial) decoders.

There is also another interesting relationship between RCDs, en-
coded NW decoders, and masked-based decoders. In a masked-
based decoder, there is significant correlation regarding which

NWs a given MW controls. In an encoded NW decoder there
is correlation between which MWs control a given NW. In an

RCD, neither correlation should exist, although in practice a
small amount of spacial correlation between NW/MW junctions

might be present.

Hogg et al [5] have explored the conditions under which most
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Fig. 4. A randomized-contact decoder in which random particle deposition causes
each MW to control certain NWs.

of the N NWs in an RCD can be controlled by a set of M

MWs. They demonstrate through simulation that when M passes
a threshold, which is around 4.8 log2 N , the probability that all

NWs are addressable grows rapidly as N increases. This is in
agreement with our Corollary 5.3.

Their asymptotic analysis doesn’t make explicit the dependence
of M on N and the probability ǫ of failing to having all NWs be

addressable. It also fails to capture the impact of manufacturing
errors. We develop tight bounds for both purposes in Section 5,

and do so without the independence approximation used in [5],
namely that pairs of NWs can be analyzed independently with
regard to whether or not each can be controlled separately. We

also give a more careful analysis of the value of M required for
at least some fixed fraction of NWs to be addressable.

4 Decoder Requirements

In Section 5, we bound the number of MWs, M , required by
RCDs with N NWs per OC to control many individual NWs.

To derive these bounds, we first define the requirements that
decoders must meet. The conditions we obtain in this section

apply to other types of decoders as well.

4.1 Nanowire Addressing

As explained in Section 1, read/write operations are performed in

a NW crossbar-based memory by employing an address decoder
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Fig. 5. On the left, the crosspoint being read has a high resistance, but all other
crosspoints have a low resistance. On the right, however, the crosspoint being read
has a low resistance, but all other crosspoints have a high resistance. To correctly
determine the state of the crosspoint, the amount of current flowing from one di-
mension of the crossbar to the other must be greater on the the right than the
left.

in each dimension of the memory. If each decoder addresses at

least D disjoint sets of NWs, they collectively control D2 disjoint
sets of NW crosspoints each of which can store a bit.

Since each of the two decoders is comprised of g contact groups,
D =

∑g
i=1 Di, where Di is the number of disjoint sets of NWs

that can be addressed within the ith contact group.

Let Ri be the resistance of NW ni. When a decoder addresses a
set S of NWs within a single contact group, each NW in S has

a low resistance, while the NWs not in S have a high resistance.
In a write operation, every NW in S must have a much lower

resistance than every NW not in S, that is, max(Ri | ni ∈ S) ≪
min(Ri | ni 6∈ S). This ensures that the bits associated with NWs
in S are written whereas those not in S are not written. A read

operation requires that the combined resistance of all NWs in S,
RIN , be much less than the combined resistance of NWs not in S,

ROUT , that is 1/ROUT ≪ 1/RIN . Consider the two extremes illus-
trated in Figure 5. Since the resistance R of a set of n resistances,

R1, . . . , Rn, placed in parallel satisfies 1/R = 1/R1 + · · · + 1/Rn,
this is equivalent to

∑

ni 6∈S 1/Ri ≪ ∑

ni∈S 1/Ri.

Definition 4.1 A set, S, of NWs is addressed if and only if
a) every NW not in S has a resistance that is at least α times

that of every NW in S and b) the combined resistance of all NWs
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not in S is at least α times that of the combined resistance of all
NWs in S, where α ≫ 1.

In general, the choice of an actual value of α is application spe-
cific. A larger value, for example, would be required to read data

from molecular devices with poor on/off ratios. A larger value
would also facilitate reading data more quickly or more reliably.

Following the above analysis, if Ri ≤ RL when ni ∈ S and Ri ≥
RH when ni 6∈ S, the condition on writing is satisfied when
RH ≥ αRL and that on reading is satisfied when RH/(N−|S|) ≥
αRL/|S|. This read condition is hardest to meet when |S| = 1 in
which case RH ≥ α(N − 1)RL. This is clearly stronger than the

write condition RH ≥ αRL.

4.2 Resistive and Ideal Models of Control

A NW decoder addresses a set of NWs by applying an elec-

tric field to a subset of the MWs. These MWs are said to be
activated. The set of activated MWs is called an activation

pattern. A particular activation pattern, a, is represented as a
binary vector where aj = 1 if and only if the jth MW is ac-
tivated. Each activated MW increases each NW’s resistance by

some amount (possibly 0). More formally, NWs behave as follows.

Definition 4.2 In the resistive model of NW control, each

NW ni has initial resistance ηi when no MWs are activated. As-
sociated with each NW is a length-M vector of reals, or a real-

valued nanowire codeword, ri. The jth entry of ri, ri
j, is the

amount by which the jth MW increases the resistance of ni when

activated. When the decoder is supplied with a, the resistance of
NW ni is ηi +a ·ri where a ·ri is the inner product of activation
pattern a and codeword ri.

When the jth MW provides strong control over NW ni, ri
j is

large. ri
j is small when the jth MW provides weak control over
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ni. In the ideal case each ri
j is either 0 or ∞ and a codeword is

associated with each NW. Note that multiple NWs may have the
same codeword.

Definition 4.3 In the ideal model of NW control, each NW,
ni is assigned a binary codeword, ci, where ci

j = 1 if and only

if ri
j = ∞. For a particular activation pattern, a, a · ci > 0 if

and only if a · ri = ∞. A set S of NWs is addressed when

a · ci = 0 for NWs in S and a · cj ≥ 1 for NWs not in S.

In either model of control, a set, S, of NWs is considered ad-

dressable if there is some activation pattern such that S is ad-
dressed. Similarly, a particular NW ni is individually address-

able if there is an activation pattern such that {ni} is addressed.
A codeword ci is individually addressable if each NW with

that codeword is individually addressable.

Notice that in the ideal model of NW control, if a binary code-

word is addressable, the NWs with that codeword are addressed
by activation pattern a = ci. Furthermore, if ci is not address-
able, there is some other codeword ck such that for each j it is

not true that ci
j = 0 and ck

j = 1. This is the mathematical defi-
nition of implication; that is, ck

j implies ci
j. When this condition

holds for all values of j, we say that ck implies ci, and write
ck ⇒ ci. The following is immediate.

Lemma 4.1 In a simple NW decoder in the ideal model of con-
trol, a NW codeword ci is addressable if and only if no other

codeword that is present implies ci. The decoder can address D
disjoint sets of NWs if and only if D distinct NW codewords are

addressable.

4.3 Modeling Errors

If each ri
j takes value rlow = 0 or rhigh = ∞, each real-valued

codeword can be mapped to a binary codeword, which are simple
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to work with. When rlow and rhigh don’t hold these extreme values
we map ri to ci such that:

• ci
j = 0 if ri

j ≤ rlow

• ci
j = 1 if rhigh ≤ ri

j

• ci
j = e if rlow ≤ ri

j ≤ rhigh, meaning that ci
j is in error.

Our goal is to choose values for rlow and rhigh so that a set S
of NWs is addressed by an activation pattern a if the following
conditions hold:

• for ni ∈ S, ci
j = 0 when aj = 1,

• for nk 6∈ S, there exists j such that ck
j = 1 and aj = 1.

Consider an activation pattern a that meets these two conditions.
Let rbase = maxi ηi. Observe that every NW in S has resistance

at most RL = rbase + (M − 1)rlow because at most M − 1 MWs
are activated. Also, note that every NW not in S has resistance

at least RH = rhigh. From Definition 4.1 and the discussion that
follows it is clear that S is addressed if RH ≥ α(N − 1)RL or

rhigh ≥ α(N − 1)(rbase +(M − 1)rlow). To simplify the discussion,
let rlow = crbase for some constant c > 0. Then, S is addressed if

rhigh ≥ α(N − 1)(cM − c + 1)rbase

where α >> 1.

In the above model with errors we say that NW ni is addressable

if for each NW nk there is at least one index (MW) j such that
ci
j = 0 and ck

j = 1. The ensures that ci has low resistance while

ck has high resistance. When this condition fails, ci may still be
addressable but this cannot be guaranteed. We say that a code-

word ci fails to be addressable if there exists a codeword ck

such that the conditions ci
j = 0 and ck

j = 1 fail to be satisfied
for some j. In this case, and by analogy with the ideal model,

we say that codeword ck possibly implies ci, denoted ck ?⇒ ci.

If ck ?⇒ ci, there is no guarantee that ni can be addressed sepa-

rately from nk.
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Lemma 4.2 In a simple decoder in the model with errors, a code-

word, ci, is addressable if for no other codeword ck does ck ?⇒ ci.
The decoder can address D disjoint sets of NWs if and only if D

distinct NW codewords are addressable.

If rhigh is too low or rlow is too high to be realized using a par-
ticular manufacturing technology, NWs can still be addressed if

we set rlow = crbase and rhigh = (α/d)(N − 1)(cM − c + 1)rbase,
but instead require that each NW is addressed by an activation

pattern that activates at least d high resistance junctions in the
other NWs. This ensure that RH = drhigh.

It is possible for an RCD to be realized with diodes instead of
FETs. The decoder model with errors can also be used in this

case to capture diodes with imperfect behavior.

5 Analysis of the RCD

In an RCD, consider a simple decoder consisting of single contact
group with N NWs and M MWs. As mentioned, we assume that

NW/MW junctions are controlling (i.e. ci
j = 1) with probability

p, noncontrolling (i.e. ci
j = 0) with probability q, and ambigu-

ous (i.e. ci
j is in error) with probability r = 1 − p − q. We also

assume that these events are statistically independent and iden-

tically distributed.

We now bound Na, the number of individually addressable NWs

in each contact group in terms of M , the number of MWs. Re-
call that for a NW with codeword ci to be individually address-

able there must be no other codeword ck such that ck ?⇒ ci (see

Lemma 4.2).

We take two approaches to deriving bounds on M . First, in The-
orem 5.1 we bound the expected value of Na, E[Na]. This allows
us to apply Hoeffding’s Inequality and derive a lower bound on

M such that the total number of individually addressable NWs
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across all g contact groups is some at least a fixed fraction of gN ,
with probability 1 − ǫ.

Second, in Theorem 5.3, we use the principle of inclusion-exclusion
to derive upper and lower bounds on M such that all NWs in

all (or almost all) contact groups are independently addressable.
The first bound is used to evalute the Take What You Get

addressing strategy evaluated in Section 6. The second is used to
evaluate the All Wires Addressable and Almost All Wires

Addressable strategies.

5.1 Bounds Using Expectation

We now bound the mean number of individually addressable
NWs. We use this to bound the fraction of NWs in a compound

RCD that are addressable with high probability.

Theorem 5.1 In an RCD, let Na be the number of independently
addressable NWs in a contact group with N NWs and M MWs.

N(1 − (N − 1)(1 − pq)M) ≤ E[Na] ≤ N(1 − (1 − pq)M)

Proof Let xi = 1 if NW ni is independently addressable and
0 otherwise. Since Na =

∑N
i=1 xi, E[Na] =

∑N
i=1 E[xi]. Also,

since the {xi} are identically distributed 0-1 random variables,
E[Na] = NE[x1] = NP (x1 = 1).

Let Ek,i be the event that ck ?⇒ ci. P (x1 = 1) = 1−P (x1 = 0) =
1−P (E2,1∪E3,1∪. . .∪EN,1). Since P (E2,1) ≤ P (E2,1∪E3,1∪. . .∪
EN,1) ≤

∑N
k=2 P (Ek,1) and P (E2,1) = P (E3,1) = . . . = P (EN,1),

1 − (N − 1)P (E2,1) ≤ P (x1 = 1) ≤ 1 − P (E2,1).

c2 ?⇒ c1 if for all 1 ≤ j ≤ M it is not the case that both c1
j = 0

and c2
j = 1, thus P (E2,1) = (1−pq)M and 1−(N−1)(1−pq)M ≤

P (x1 = 1) ≤ 1 − (1 − pq)M .
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Corollary 5.1 Let N ′ = gN be the total number of NWs con-
tained in the g contact groups of a RCD, and let N ′

a be the number
of those NWs that are individually addressable. Then,

N ′(1 − (N − 1)(1 − pq)M) ≤ E[N ′
a] ≤ N ′(1 − (1 − pq)M)

.

Proof N ′
a is the sum of the number of individually addressable

NWs in each contact group. Since each contact group has N
NWs, E[N ′

a] = gE[Na]. Substituting the bounds from Theo-

rem 5.1 yields the desired result.

Let S = n1+n2+...+nt be the sum of t independent random vari-
ables, where each ni ranges from ai to bi. Hoeffding’s Inequality

[34] states that

P (E[S] − S ≥ d) ≤ e−2d2/
∑

c2
i

where ci = bi − ai, and d ≥ 0. We use this to bound the total

number of independently addressable NWs with high probabilty.

Theorem 5.2 Let N ′
a be the total number of addressable NWs in

an RCD with g contact groups, N NWs per contact group, and
N ′ = gN NWs in total.

P (N ′
a ≤ E[N ′

a] − N ′k) ≤ e−2k2N ′N/(N−1)2 = e−2k2g∗

for any k ≥ 0 where g∗ = g(N/(N − 1))2.

Proof In Hoeffding’s Inequality, let t = g, d = N ′k, S =

N ′
a and ci = (N − 1). This gives P (E[N ′

a] − N ′
a ≥ N ′k) ≤

e−2(N ′k)2/g(N−1)2 = e−2k2N ′N/(N−1)2. We can then rewrite P (E[N ′
a]−

N ′
a ≥ N ′k) as P (N ′

a ≤ E[N ′
a] − N ′k).

From this we obtain a corollary

Corollary 5.2 Let N ′
a be the total number of addressable NWs

in an RCD with g contact groups, N NWs per contact group,
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N ′ = gN NWs in total and M MWs.

P (N ′
a > κN ′) ≥ 1 − ǫ

if κ ≤ 1−
√

− ln ǫ/(2g∗)−(N−1)(1−pq)M where g∗ = g(N/(N−
1))2.

Proof From Corollary 5.1 we have E[N ′
a] ≥ N ′(1− (N −1)(1−

pq)M) and by the above theorem,

P (N ′
a ≤ N ′(1 − (N − 1)(1 − pq)M) − N ′k) ≤ e−2k2g∗

Thus, if k = (1 − (N − 1)(1− pq)M) − κ, then

P (N ′
a ≤ κN ′) ≤ e−2g∗(1−(N−1)(1−pq)M−κ)2

Thus, when e−2g∗(1−(N−1)(1−pq)M−κ)2 ≤ ǫ the desired conclusion

follows. This occurs when ln ǫ ≥ −2g∗(1−(N−1)(1−pq)M−κ)2

or
√

− ln ǫ/(2g∗) ≤ (1 − κ) − (N − 1)(1 − pq)M .

As an example, suppose p = q = 1/2, g = 175, N = 8, N ′ =
1400, ǫ = .01, and κ = .733. When M = 13, κ = .733 ≤ 1 −
√

− ln .01/(2 ∗ 175 ∗ (8/7)2) − 7 ∗ (3/4)13. Thus at least ⌈.733 ∗
1400⌉ = 1027 NWs are addressable with probability .99.

If errors occur, that is, when p + q < 1, but g is held fixed,

M must increase to keep κ constant. For example, if pq = .2
rather than pq = .25 in the error-free case, M must grow by
a factor of ln(4/3)/ ln(5/4) = 1.29. If pq = .1, the factor is

ln(4/3)/ ln(10/9) = 2.73. Even for relatively high error rates,
M is not prohibitively large.

5.2 Bounds Using Inclusion/Exclusion

In this section we derive bounds on the number of MWs required
for all NWs to be individually addressable with high probability.

Theorem 5.3 In an RCD, let Γ be the probability that M NWs
fail to control all N NWs in a single contact group. Γ satisfies

the following bounds

23



Q(1 − Q/2) − ∆ ≤ Γ ≤ Q (1)

where Q = N(N−1)µM
1 and ∆ = 2N(N−1)(N−2)

(

µM
3 + µM

5 − 2µ2M
1

)

and µ1 = (1−pq), µ3 = (1−pq(p+2q)), and µ5 = (1−pq(2p+q)).

Proof See Appendix

This theorem implies upper and lower bounds on M in terms of N

and Γ. For the cases examined below when p = q and Γ is small,
these bounds are tight, meaning the upper and lower bounds they

give on M agree. Slightly weaker but simpler bounds are given
in the following corollary, in which upper and lower bounds on

M differ by ln(2)/ ln(1 − pq).

Corollary 5.3 In an RCD, the minimum value of M such that
all N NWs in a contact group are individually addressable with

probability 1 − ǫ satisfies the following.

ln(N(N − 1)/2ǫ)

− ln(1 − pq)
≤ M ≤ ln(N(N − 1)/ǫ)

− ln(1 − pq)

Where the lower bound holds when ǫ ≤ .05 and the actual mini-

mum value of M is itself at least (1 − pq)/(pq min(p, q)).

Proof The upper bound follows from (1). For the lower bound,

assume Q ≤ 0.1, which implies that M ≥ ln(10N(N−1))/(− lnµ1).
This is less than ln(N(N−1)/2ǫ/(− ln(1−pq)) when ǫ ≤ .05. In

∆ drop the last term and replace µM
3 + µM

5 by 2 max(µ3, µ5)
M .

Since µ3 = µ1 − pq2 and µ5 = µ1 − p2q, max(µ3, µ5) = µ1(1 −
min(pq2, p2q)/µ1). The lower bound on Γ becomes Γ ≥ Q(.95−
4N(1 − pq min(p, q)/µ1)

M). Using the inequality (1 − x)n ≤
1−nx, the lower bound is at least Q/2 if M ≥ (1− .45/4N)(1−
pq)/(pq min(p, q)) which is less than (1 − pq)/(pq min(p, q)).

In this corollary, when ǫ ≤ .05, the second condition associated

with our lower always holds when p and q are fairly close to 1/2.
To see why, consider the extreme case when N = 2. Here the
minimum value of M such that neither NW implies the other

must satisfy (1−pq)M ≤ ǫ, or equivalently M ≥ ln(ǫ)/ ln(1−pq).
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It is easy to verify numerically that ln(.05)/ ln(1 − pq) ≥ (1 −
pq)/(pq min(p, q)) when pq ≥ .21.

Corollary 5.4 In an RCD with N ′ NWs divided into g contact
groups, all NWs are independently addressable with probability

(1 − ǫ) if

M ≥ ln(N ′((N ′/g) − 1)/ǫ)/(− ln(1 − pq)).

Proof Let δ be the probability of failure of all NWs in a con-

tact group to be individually addressable. Then, the probability
that one or more contact groups fails to have all its NWs be in-

dividually addressable is at most gδ. If gδ ≤ ǫ, the probability
that all N ′ NWs are addressable is at least 1 − ǫ. We use the

upper bound on M given in Corollary 5.3 when N is replaced
by N ′/g and ǫ by ǫ/g.

When N ′ = 1, 024, g = 128 and M ≥ 47, all N ′ NWs will be

individually addressable with probability 0.99 or better. In fact,
evaluating Theorem 5.3 numerically shows this threshold value

of M to be exact. These parameters apply to the All Wires

Addressable addressing strategy in which every NW address is

used.

The number of MWs is reduced if we don’t require that all NWs in
each contact group be individually addressable. We illustrate this

with an example. Corollary 5.3 says that a failure rate of at most
ǫ = .01 can be achieved with a simple RCD when p = q = .5 and

N = 8 if M ≥ 30. (As above, this threshold value of M is exact.)
The number of individually addressable NWs in each contact

group is statistically independent. If all N NWs in a particular
contact group are individually addressable with probability 1−ǫ,

the probability that f or fewer contact groups fail to have all NWs
addressable is φ(ǫ, f, g) =

∑f
i=0

(

g
i

)

ǫi(1−ǫ)g−i. Let ǫ = .01, g = 133
and f = 5. Because φ(.01, 5, 133) ≥ .99, at least 128 of g = 133

contact groups have all NWs addressable with probability 0.99.
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In summary, when M = 30, g = 133, and N = 8 ∗ 133 = 1064,
N ′

a = 8 ∗ 128 = 1, 024 NWs are individually addressable with

probability 0.99. These parameters apply to the Almost All

Wires Addressable addressing strategy in which almost every

NW address is used.

As discussed at the end Section 5.1, manufacturing errors only
increase the number of required MWs by a small constant factor.

6 Addressing Strategies

We now use the bounds on M to estimate the total area required
for a crossbar-based memory that uses RCDs. As explained in

Section 2.3, this area estimate depends not just on the number
of MWs used but also on the size of an ATC. In this section

we consider three addressing strategies, that is, ways of using an
ATC to map an external binary address E of b = |E| bits to
an internal NW address consisting of a contact group σ and an

activation pattern a on M MWs.

All Wires Addressable: Here we choose M so that, with prob-
ability (1 − ǫ), all NWs in every contact group are individually

addressable. If we assume that the number of NWs in each con-
tact group is 2k, we can simply use the first b − k bits of E to

select σ. This fixed mapping does not depend on the particular
NW codewords that are present, although the mapping of E to a

does. To execute the second mapping, the ATC stores each NW
codeword that is present in a lookup table. This requires N ′

aM

bits of storage where N ′
a is the number of addressable NWs in

the decoder.

All Wires Almost Always Addressable: Here we choose M

so that with probability (1 − ǫ), all NWs in nearly all contact
groups are addressable. Contact groups in which not all NWs
are addressable are not used. Since the particular contact groups

that are not used will vary from decoder to decoder, the ATC
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cannot use a fixed mapping from E to contact groups σ. Instead,
a lookup table is used to obtain an integer to be added to the

first b − k bits of E so that it corresponds to the proper contact
group. Let g be the number of contact groups and g′ be the

number for which all NWs are addressable. Then g − g′ is an
upper bound on the values in the table. We also use a lookup table

to map E to a. The two tables combined require approximately
g′⌈log2 g − g′⌉ + N ′

aM bits.

Take What You Get: Here we choose M so that a fixed frac-
tion of the NWs are individually addressable. In this case, some

contact groups may have all NWs addressable, but some may not.
Since the number of addressable NWs per contact group varies,

we can no longer map fixed blocks of binary memory addresses
to a particular contact group. Instead, we store a value of σ and

a for each addressable NW. This requires N ′
a(⌈log2 g⌉+ M) bits.

6.1 Area Estimate

To estimate the total area, AT , required to produce a crossbar
memory using each of the three strategies, we use the approach

of [10] and write:

AT ≈ 2χβ + 2λ2
mesog⌈log2 g⌉ + (λmesoM + λnanoN

′)2

Here λmeso and λnano denote the pitch of MWs and NWs respec-

tively, that is, the center-to-center distance between wires. Also,
χ denotes the area of a mesoscale memory cell, and β denotes

the number bits stored in each dimension of the crossbar’s ATC.
Thus, 2χβ approximates the amount of programmable storage re-

quired, 2λ2
mesog⌈log2 g⌉ approximates the area required to imple-

ment a standard demultiplexer used to activate contact groups,
and (λmesoM + λnanoN

′)2 approximates the area occupied by the

NW crossbar.
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6.2 Comparison of Strategies

To compare the three addressing strategies, we estimate their area

when used to produce a memory with a given storage capacity. In
our comparison, we fix ǫ, the probability of failure, and N/g, the

number of NWs per contact group. Given these values, we would
ideally like to also fix N ′

a, the number of addressable NWs along

each dimension of the crossbar, then estimate AT for all three
strategies. Unfortunately, for a given strategy, it is difficult to

choose M and N ′ to yield an exact value for N ′
a, but in all three

cases we show that about 1, 024 NWs are individually addressable
along each dimension.

To compare the strategies, we consider the case when p = q = 1/2

and use the numerical results given above.

• All Wires Addressable:
Here M = 47, g = 128, and N ′ = N ′

a = 1024 with probability

at least .99. The ATC requires β = N ′
aM = 47, 990 bits. This

gives

AT ≈ 95, 982χ + λ2
meso1, 792 + (λmeso49 + λnano1, 600)2

• All Wires Almost Always Addressable:

Here M = 30, g = 133, and N ′ = 1, 064 yields N ′
a = 1, 024

and g′ = 128 with probability at least .99. The ATC requires

β = g′⌈log g − g′⌉ + N ′
AM = 31, 104 bits. This gives

AT ≈ 62, 208χ + 1, 877λ2
meso+(λmeso30 + λnano1, 064)2

• Take What You Get:
Here M = 13, g = 175 and N ′ = 1400, yields N ′

a of 1,027

with probability at least .99. The ATC requires β = N ′
a(⌈log g⌉+

M) = 21, 567 bits. This gives

AT ≈ 43, 134χ + 2, 800λ2
meso + (λmeso13 + λnano1, 400)2

Since the parameter χ, the area of a mesoscale memory unit, will

be many times λ2
meso, and it is expected that λmeso ≥ 10λnano,
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the Take What You Get addressing strategy is clearly best.

7 Codeword Discovery

Although required of all NW decoders, codeword discovery has

received significantly less attention than NW addressing. In this
section, we consider several codeword discovery algorithms that

do not require the addition of specialized testing circuitry. We
make three assumptions: (a) the ideal decoder model applies so

no NW/MW junctions are in error; (b) arbitrary subsets of MWs
can be activated; and (c) for any subset of MWs the total amount

of current flowing across all NWs in a contact group can be mea-
sured, but not with high precision. In Section 7.5 we re-examine
(a).

Even when many or all NWs are individually addressable, their

codewords (or at least some portion of their codewords) must be
discovered to properly configure the ATC. It is not feasible to

individually probe each NW/MW junction.

In the ideal model if all MWs in a contact group are activated
and all NWs are controlled by at least one MW, no current will
flow. As MWs are turned off one by one, one or more NWs will

become conducting. At this point, current is detected. In theory,
accurate current measurements and knowledge of NW resistances

could allow a testing procedure to estimate how many NWs are
conducting, but we avoid this assumption.

In [5] it is assumed that one can distinguish how between all NWs

being off, one NW being addressed, and two or more NWs being
addressed. We avoid this assumption and assume only the ability

to distinguish between all NWs being off and at least on NW
being on. Since α in Definition 4.1 is much greater than 1, this is
a very reasonable assumption. It is already met, for example, by

circuitry used to read data from a crossbar-based memory.
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We also examine the number of tests a discovery algorithm must
perform. In doing so, we point out an important flaw in the less

rigorous analysis given in [5].

7.1 Exhaustive Search

The simplest codeword discovery algorithm is exhaustive search.
For each contact group, we determine whether current flows for

every possible MW activation pattern. The outputs of all 2M tests
are reviewed offline to determine which codewords are present on

individually addressable NWs.

Suppose codeword ci is present on the ith NW. Activation pat-
tern a = ci turns on ni and turns off all other NWs. Also, any

other activation pattern, a′, that turns on a strictly larger subset
of MWs turns off all NWs. For this reason we call a maximal.

An activation pattern a is maximal if and only if ci = a is in-
dividually addressable. Once exhaustive testing is complete, the

set of maximal activation patterns can be identified.

7.2 Parallel Exhaustive Search

The runtime of this algorithm is exponential in M , but as shown
in the previous section M may be relatively small. In our analy-

sis of the “Take What You Get” addressing strategy, we demon-
strated through analysis that a M = 13 suffices. Smaller values of

M are also possible if one is willing to tolerate a smaller fraction
of addressable NWs.

The exponential running time of exhaustive search can be amor-

tized across contact groups if all contact groups can be tested
in parallel. If current measurements for each contact group can
be taken simultaneously, each of the algorithm’s 2M tests can be

performed on all contact groups at once.

30



In an exhaustive search, every possible activation pattern is tested.
A more efficient search algorithm would be adaptive. It would

use the outcome of previous tests to determine which activation
pattern to apply next. For certain values of M and g, however,

parallel exhaustive search is superior to any adaptive search pro-
cedure in which contact groups are tested one at a time.

Suppose all contact groups can be tested in parallel when M =

13, N = 8, g = 175 and p = q = 1/2, the conditions on the Take

What You Get strategy discussed in the previous section. The

number of tests per contact group is 2M/175 < 47. We show
that more tests are required by any adaptive discovery algorithm

operating on contact groups one at a time using tests with binary
outcomes (e.g. the current measured is “high” or “low”).

An adaptive discovery procedure must produce the codeword for

each individually addressable NW in a contact group. As shown in
Theorem 5.1, the expected number of addressable NWs in a con-

tact group is at least N(1−(N−1)(1−pq)M) = 1−7(3/4)13 > 6.6.
This indicates that at least six NWs are addressable at least 1/2
the time. (Given that N = 8, if less than six NWs are address-

able half the time, the average number of addressable NWs is at
most (5 + 8)/2 = 6.5 because at most five NWs are addressable

half the time and at most eight NWs the rest of time.) There are
2MN assignments of M -bit codewords to N NWs. We call these

codes. Since all assignments are equally likely, at least (1/2)2MN

of these have six individually addressable NWs. The codewords

of these NWs will be produced by a discovery algorithm.

Let σ be the maximum number of codes containing any fixed set
of six, seven or eight individually addressable codewords. When

an adaptive discovery algorithm produces six or more codewords
as output, one of at most σ codes is present in the contact group.

If eight codewords are produced, one of 8! codes is present. If
seven codewords are produced, one of at most 7!(8)2M codes is
present. These codes contain all 7! permutations of the codewords

and eight locations for the remaining codeword, which takes at
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most 2M values. Finally, if six codewords are produced, the num-

ber of associated codes is at most 6!
(

8
2

)

22M . Since the last case

yields the most codes, σ ≤ 6!
(

8
2

)

22M .

It follows that any discovery algorithm must be able to identify at
least (1/2)2MN/σ codes. Since it is assumed that tests produce
binary outcomes, the number of testing steps for an adaptive

algorithm must be at least T = log2[(1/2)2MN/σ = MN − 1 −
2M − log2(6! ∗ 28)]. When M = 13 and N = 8, T = 67. Thus,

an adaptive algorithm that examines one contact group at a time
will need to perform at least 67 tests per group.

7.3 Randomized Codeword Discovery

For large values of M exhaustive search is prohibitively slow.

In this regime adaptive algorithms need to be explored. Also, if
multiple searches cannot be run in parallel, an adaptive algorithm

will always be faster. In this section we consider a simple adaptive
algorithm and examine its runtime. A less efficient version of this

algorithm appeared in [5]. As we explain, however, its analysis
was based on faulty assumptions.

The goal of our algorithm is to discover the maximal activation

patterns that address codewords. The algorithm, sketched be-
low, chooses a random permutation of MWs, π, and activates

the MWs in order specified by this permutation until no cur-
rent is produced. When current is turned off, the last MW to be

turned on is deactivated, and the process continues.
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procedure Discover Codewords

π = RandomPermutation(MW1, MW2, ..., MWM)

for i = 1 to M do

Activate π(i)

if All NWs are turned off, then deactivate MW π(i)

After each execution of this procedure, a maximal activation pat-
tern is identified. Its complement yields the discovered codeword.
For ease of simulation, it is convenient to note that the discovered

codeword is the codeword that comes first when all codewords are
sorted lexicographically according to π.

Each execution of the discovery procedure requires M tests. After

each test some codeword is discovered. The total time required
for codeword discovery thus depends on the relative likelihood of

discovering each codeword. If all codewords are equally likely to
be discovered the well-known coupon collector problem, stated in

Section 8, shows that approximately Na log(Na/ǫ) executions are
required to discover all Na individually addressable codewords
with probability (1 − ǫ).

As an optimization, we note that it is not actually necessary to

activate subsets of MWs when they do not turn off all of the code-
words that have already been discovered. This observation was

also made in [35], which evaluates a similar codeword discovery
algorithm through simulation.

This is the faulty assumption made in [5]. In fact, experiments

indicate that for small values or medium-sized values of M , some
codewords will often be much less likely to be discovered than

others. For example, when M is 30, all NWs in a contact group
of N = 8 NWs are addressable with very high probability. If
all NWs were equally likely to be discovered, N log(N/.01) =

69 executions are required with probability .01. Our simulations
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reported in Section 8.2 show this values to be approximately 270.
When M is 100, however, the value shrinks to 72.

The reason for this discrepancy is that, when M is small, some
NWs that are addressable are much less likely to be discovered

than others. For example, more than 1/10 of the time there was
at least one NW that had only a 1/70 chance being discovered

on each run of the algorithm. For intuition as to why this occurs,
consider the following four codewords: c1 = 111100000000, c2 =

000011110000, c3 = 000000001111, c4 = 011101110111. By sym-
metry, c1, c2 and c3 are equally likely to be discovered, but c4 can

only be discovered if at least two of MW1, MW5 and MW9 are
activated before any of the other MWs. This observation reveals
that c4 is discovered is with probability 3/12∗2/12∗1/4 = 1/96,

where as all other codewords are discovered with probability
(1− 1/96)/3 = 95/288. When M is small, these sorts of extreme

examples are much more likely to occur.

As M increases the probability of discovering a NW address ap-

proaches 1/N . This points to an interesting trade off not just be-
tween the number of MWs and the number of addressable NWs,

but the number of NW codewords that can be quickly discov-
ered. When the number of MWs is in an intermediate range,
adding additional MWs may actually increase the speed with

which codewords are discovered.

7.4 Possible Extensions

Our codeword discovery algorithm does not require specialized
testing circuitry or the ability to measure current in individual

NWs. This makes our algorithm highly practical. However, the
algorithm can be improved if the testing is done in the context

of a memory. Consider testing a horizontal contact group. First
activate all the NWs in one vertical contact group to make con-
tacts (i.e. write 1’s) at the intersections of NWs in the two groups.

When testing the horizontal contact group, measure current using
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the vertical contact group. After discovering a maximal activa-
tion pattern, use the corresponding codeword to open the con-

tacts (i.e. write 0’s) at any intersections formed from horizontal
NWs with that codeword. This ensures that the codeword will

not be discovered again. Using the discovery procedure and this
method of eliminating previously discovered NWs, all NW ad-

dress will be discovered. It will then be necessary to analyze the
addresses to find the individually addressable NWs.

The main disadvantage of this modified randomized algorithm

is the read/write requirement. In a circuitry (as opposed to a
memory) molecular switches may not be present. Furthermore,

read/write operations may be faulty and slow. If the number of
MWs is small, it may still be faster to implement the parallel
exhaustive search algorithm described above.

A codeword discovery algorithm that uses read/write operations
for encoded NW decoders was described in [10]. In fact, the al-

gorithm can be adapted to find codewords without the use of
read/write operations, but the algorithm will not work with the
randomly generated codewords found in an RCD. The read/write

discovery algorithm described above uses at most M tests per NW
and works for both encoded NW and RCD decoders.

7.5 Coping with Errors

An even more important extension to codeword discovery is learn-
ing to cope with errors. For simplicity, we only consider the ex-
haustive search case. In the case of errors, it is no longer possible

to describe certain activations patterns as maximal, because it is
no longer reasonable to treat the output of each test as binary.

An error can produce an intermediate level of current flow along
a NW.

We have already shown that, for sufficiently large M , all NWs

are addressable with high probability. This result holds even if
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errors occur. If N NWs are addressable, there is some activation
pattern that causes each of these NWs to conduct while all other

N − 1 NWs are turned off. Furthermore, if we combine any two
of these activation patterns, all N NWs will be turned off. If we

have a pair of activation patterns that satisfy this property, we
call them disjoint.

If N NWs are addressable and we exhaustively test all 2M acti-

vation patterns, we can then identify N patterns that are all dis-
joint. One method for identifying these patterns from the testing

data is to construct a graph G with vertex associated with each
pattern that causes at least one NW to conduct. The testing data
is then used to place an edge between between any two vertices

that correspond to disjoint activation patterns. A clique of N ver-
tices in G corresponds to a set of N addresses that each address

a distinct NW. Exhaustive testing is currently the only known
method for discovery of codewords in the presence of errors.

8 Analysis of the Discovery Procedure

We now bound the number of tests required by the randomized
codeword discovery algorithm given in Section 7.3. The number
of runs needed to ensure that with high probability all codewords

are discovered is modeled by the coupon collection problem

with non-uniform probabilities. We now state bounds on the

number of trials that are needed to collect all coupons with prob-
ability at least ǫ. They can be derived using established methods

[32].

Lemma 8.1 Consider the collection of N coupons in which each
coupon is collected with probability at least u. The expected num-
ber of trials to collect all N coupons is at most 1+ 1

u
HN−1, where

Hn−1 = 1 + 1
2 + ... 1

N−1.

Proof The average time to collect N coupons is T =
∑N

i=1 xi

where xi is the time to collect the ith coupon. Let {p1, p2, . . . , pN}
be the probabilities of collecting the coupons and let j1, j2, . . . , jN
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be the order in which they are collected. Because the first new
coupon is collected on the first trial, x1 = 1. For i ≥ 2 the proba-

bility distribution for xi is geometric with probability (1−(pj1 +
pj2 + . . .+pji−1

)). Thus, xi = 1/(1−(pj1 +pj2 + . . .+pji−1
)). It fol-

lows that T is maximized by maximizing (pj1 +pj2 + . . .+pjN−1
).

Since pN ≥ u, T is largest when pN = u. Similarly, the remain-

ing terms in the sum for T are maximized by setting pj = u for
2 ≤ j ≤ N and p1 = 1 − (N − 1)u, which provides the desired

result.

8.1 The Likelihood of Generating Discoverable Codewords

We show that the probability Q(u) of choosing a code such that

each codeword can be discovered by Discover Codewords with
probability at least u is close to one when M , the number of

MWs, is O(log2 N) where N is the number of NWs.

The codeword associated with the ith NW is defined in Section 5
as ci = {ci

1, . . . , c
i
M} where ci

j = 1 (0) if the jth NW/MW junction

in the ith codeword is controlling (noncontrolling). If ci
j = e, the

control of the junction is ambiguous. A code C is a collection of

codewords. We let p, q, and r = 1−p−q be the probabilities that
ci
j = 1, 0 and e, respectively. In this section we consider codeword

discovery when there is no ambiguity, that is, when r = 0.

We consider codes containing codewords that are all about equally

likely, C0, and C0, the complement of that set. C0 is defined in
terms of Bi(0) = {i | ci

j = 0}, the indices for which ci has value

0, and Bi(0)
⋂

Bk(0), the indices for which ci and ck have 0s in
common locations. The first condition on C0 is that each code-

word must satisfy is the following (where k1 is an appropriately
chosen constant):

|Bi(0)| ≥ Mq − k1 (2)

This ensures that each codeword has approximately the average
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number of 1s and 0s. The second condition (where k2 is an appro-
priately chosen constant), given below, also ensures that pairs of

codewords are typical, namely, that the number of 0s they have
in common is approximately the average.

|Bi(0) ∩ Bk(0)| ≤ Mq2 + k2 (3)

Let D(C, u) be the event that the each codeword in code C is
discovered with probability at least u. It follows that probability

Q(u) satisfies the following bound.

Q(u)=
∑

C∈C
P (D(C, u) ∩ E(C))

≥ ∑

C∈C0

P (D(C, u) | E(C))P (E(C))

Let Di(C) be the event that codeword ci in a code C is dis-
covered and let P (Di(C)) be the probability of this event. If

P (Di(C)) ≥ u for all words in codes in C0, then P (D(C, u) |
E(C)) = 1. Below we derive such a bound, the proof of which in

the Appendix.

Theorem 8.1 If C is a code in the set C0, the probability P (Di(C))

that the ith codeword in C is discovered is given below when
γ = (Mq − k1)/(Mq2 + k2) > 1 and M ≥ (ln 4N)/ ln γ + 1.

P (Di(C))≥ 1

2
(4N)−

1
γ (ln q−k1/M)e

−
(

(ln 4N)2

γ2M

)(

1
q−k1/M −1

)

(4)

Here k1 and k2 are any constants satisfying the above requirement.
If M is large relative to k1 and (ln 4N)2/γ2, the lower bound

approaches P (Di) ≥ 1
2
(4N)−

ln q
γ . When M is also large relative

to k2, γ approaches 1/q and the limiting value of P (Di) becomes
1
2
(4N)−q ln q or 1

2
(4N)−.35 when q = 1/2.

When u satisfies P (Di(C)) ≥ u, Q(u) has the following lower
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bound.
Q(u) ≥ ∑

C∈C0

P (E(C)) = P (C0)

But P (C0) = 1 − P (C0) where P (C0) is the probability that
either |Bi(0)| ≥ Mq − k1 is violated for one of the N codewords

or |Bi(0)∩Bk(0)| ≤ Mq2 + k2 is violated for one of the
(

N
2

)

pairs
of codewords. Thus, P (C0) satisfies the following.

P (C0)≤NP
(

|Bi(0)| < Mq − k1

)

(5)

+





N

2



P
(

|Bi(0) ∩ Bk(0)| > Mq2 + k2

)

(6)

Bits in codewords are i.i.d 0-1 random variables in which 0s

(1s)occur with probability q (p = 1 − q). A 0 occurs in a given
position in two codewords simultaneously with probability q2. We

use the Chernoff bound cited below to bound these probabilities
[34, p. 66].

Theorem 8.2 Let X be the sum of n independent and identi-
cally distributed random variables each with mean µ/n. Then,

the following holds when k ≤ µ.

P (X ≤µ − k) ≤ e−k2/2µ

Corollary 8.1 Let Y be the sum of n independent and identically
distributed random variables each with mean µ/n and maximum

value P/n. Then, the following holds when k ≤ P − µ.

P (Y ≥µ + k) ≤ e−k2/2(P−µ)

To obtain the corollary let X = P − Y . Then, P (Y ≥ µ + k) =
P (X ≤ (P − µ) − k) where P − µ is the average of X.

When applied these bounds are applied to the events in question

the following holds.

39



P
(

|Bi(0)| < Mq − k1

)

≤ e−k2
1/(2Mq)

P
(

|Bi(0) ∩ Bk(0)| > Mq2 + k2

)

≤ e−k2
2/(2M(1−q2))

Thus, P (C0) satisfies the following bound.

P (C0) ≤ Ne−k2
1/(2Mq) +





N

2



e−k2
2/(2M(1−q2)) (7)

Summarizing, we have the following result concerning the perfor-

mance of the Discover Codewords procedure.

Theorem 8.3 Consider RCD codes consisting of N codewords of
length M in which 0s (1s) occur independently with probability q

(p). If γ = (Mq−k1)/(Mq2+k2) > 1, k1 ≥
√

2Mq ln(2N/(1− Q(u))),

k2 ≥
√

2M(1 − q2) ln(N2/(1 − Q(u))), and u satisfies

u ≤ 1

2
(4N)−

1
γ (ln q−k1/M)e

−
(

(ln 4N)2

γ2M

)(

1
q−k1/M −1

)

then the probability that a code is selected for which the procedure
Discover Codewords discovers each codeword with probability at
least u is at least Q(u).

Proof The results follow from Theorem 8.1 and (5) if k1 and k2

are chosen so that Ne−k2
1/(2Mq) ≤ (1−Q(u))/2 and N2e−k2

2/(2M(1−q2) ≤
(1 − Q(u)).

When Q(u) = .99 and q = 0.5, k1 ≥
√

M(ln N + 5.3) and k2 ≥
√

M(2 lnN + 4.6).

8.2 Experimental Results

We simulated 2000 runs in Matlab of the Discover Codewords
procedure on each of 5000 randomly generated, error-free con-

tact groups. Each contact group had 8 NWs. In Figure 6 we plot
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the cumulative distribution of the number of runs before all indi-
vidually addressable codewords were discovered for both 30 and

100 MWs. We also plot the cumulative distribution of the frac-
tion of runs that discovered whichever codeword was discovered

least often, that is, an empirical estimate of u.

As discussed at the end of Section 7.3 as the number of MWs
increases from 30 to 100, the minimum probability with which a

codeword is discovered increases. Similarly, the number of runs
to discover nearly all codewords with high probability decreases

as M increases. In fact, approximately 270 runs are needed to
discover all codewords with probability 0.99 when M = 30 and
approximately 72 when M = 100. The latter number is very close

to the number predicted when all codewords are equally likely to
be discovered using the coupon collector problem. This is further

illustrated by the right-hand plots in Figure 6, which show that
when M = 100, u is usually close to 1/8. In other words, when

more MWs are used, it is usually the case that each codeword
has an approximately equal chance of being discovered on each

run of the discovery algorithm.

9 Conclusions

We have shown analytically that stochastically assembled RCD

decoders can control large number of NWs using a smal number
of MWs. Our resuls are obtained using a simple but broadly

applicable model that quantifies the requirements a decoder must
meet to address sets of NWs. Our model is robust in the sense

that it takes manufacturing defects into account.

By applying our model to RCDs, we obtain tight bounds on the
probability that M MWs control all N NWs in all or almost all

contact groups. We also bound the total fraction of individually
addressable NWs. Both bounds allow us to investigate multi-
ple addressing strategies for implementing a NW crossbar-based

memories. We conclude that “Take What You Get” addressing
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Fig. 6. Shown are empirical plots obtained by simulating 2,000 runs of Dis-
cover Codewords on 5,000 randomly generated, error-free contact groups each of
which has 8 NWs. The plots show the cumulative distribution of the number of
runs before all individually addressable codewords are discovered and the fraction
of the runs in which the least frequently discovered codeword were found.

strategy uses the smallest area to individually address at least

1024 NWs along each dimension of the crossbar. What is more,
only 13 MWs are required.

We have also considered the problem of codeword discovery. We
have given the first formal analysis of several codeword discov-

ery algorithms. As explained, parallel exhaustive search may be
preferable to an adaptive search algorithm that must test only
one contact group at a time. When an adaptive algorithm is used,

there appears to be a tradeoff between the number of MWs and
its runtime. The specific algorithm we consider can be modeled

as a coupon collection problem where some coupons are more
likely to be collected than others.

Although RCDs have not yet been demonstrated experimentally,
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we believe they are a very promising NW decoder technology.
Their ability to cope with manufacturing errors, as well as to be

produced using a range of manufacturing methods, makes them
practically appealing. Their highly stochastic assembly represents

a significant departure from current lithographic manufacturing
techniques. They serve as an important example of how nanoscale

architectures can cope with randomness and still achieve signifi-
cant gains over CMOS.
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Appendix

Theorem 5.3 In an RCD, let Γ be the probability that M NWs

fail to control all N NWs in a single contact group. Γ satisfies
the following bounds

Q(1 − Q/2)− ∆ ≤ Γ ≤ Q

where Q = N(N−1)µM
1 and ∆ = 2N(N−1)(N−2)

(

µM
3 + µM

5 − 2µ2M
1

)

and µ1 = (1−pq), µ3 = (1−pq(p+2q)), and µ5 = (1−pq(2p+q)).

Proof The principle of inclusion-exclusion states that P (E1 ∪
E0 ∪ . . . ∪ En) ≤ ∑n

i=1 P (Ei) and
∑n

i=1 P (Ei) − 1/2
∑

i 6=j P (Ei ∩
Ej) ≤ P (E1 ∪ E0 ∪ . . . ∪ En).

Let Ea,b (where a 6= b) be the event that ca ?⇒ cb. By Lemma 4.2,

we know that all NWs are independently addressable if no event
Ea,b occurs. The probability that not all NWs are individually
addressable, Γ, satisfies Γ = P (∪(a,b)Ea,b). We use inclusion-

exclusion to bound Γ.
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As established in the proof of Theorem 5.1, P (Ea,b) = µM
1 where

µ1 = (1 − pq). Let Q =
∑

a 6=b P (Ea,b). Since a and b can both
take values from 1 to N , Q = N(N−1)µM

1 . We must now bound
∑

(a,b)6=(c,d) P (Ea,b ∩ Ec,d). Here 1 ≤ a, b, c, d ≤ N provided that

(a, b) 6= (c, d), i.e., either a 6= b or c 6= d or both.

To compute P (Ea,b ∩ Ec,d), we consider 3 cases:

In case (1), a, b, c and d are all different. There are N(N −
1)(N − 2)(N − 3) ways of selecting them. Since Ea,b and Ec,d

are independent, P (Ea,b ∩ Ec,d) = P (Ea,b)P (Ec,d) = µ2M
1 .

In case (2), two of the four variables are equal. Here either a = c,

a = d, b = c or b = d. As stated earlier, we do not allow a = b
or c = d. There are N(N − 1)(N − 2) ways to choose indices in

each case. These cases are considered below.

In case (3), there are only two different values for a, b, c, and
d. Since (a, b) 6= (c, d), a = d and b = c, which can occur in

N(N − 1) ways. Here P (Ea,b ∩ Ec,d) = P (Ea,b ∩ Eb,a), which is
the probability that, for no j is ca

j = 0 and cb
j = 1, or ca

j = 1

and cb
j = 0. So P (Ea,b ∩ Eb,a) = µM

2 where µ2 = (1 − 2pq).

Returning to case 2, we have four subcases to consider.

Let Fa,b(m) be the event that ca
m = 0 and cb

m = 1. Let Ea,b(m)

be the complement of Fa,b(m). Since the probability of Fa,b(m) is
pq, it follows that the probability of event Ea,b(m) is P (Ea,b(m)) =

1 − pq. Since the event Ea,b is
∏

m Ea,b(m), P (Ea,b) = µM
1 .

(1) na = nc. Fa,b(m)∪Fa,d(m) occurs only if (ca,m, cb,m, cd,m) as-
sumes the value (0, 1, 0), (0, 1, 1), or (0, 0, 1). Thus, P (Fa,b(m)∪
Fa,d(m)) = pq(p + 2q) and P (Ea,b ∩ Ec,d) = µM

3 where
µ3 = (1 − pq(p + 2q)).

(2) na = nd. Thus, Fa,b(m) ∪ Fc,a(m) occurs if (ca,m, cb,m, cc,m)
assumes the value (0, 1, 0), (0, 1, 1), (1, 1, 0), or (1, 0, 0). Thus,
P (Fa,b(m)∪Fc,a(m)) = 2pq(p+q) and P (Ea,b)∩Ec,a) = µM

4

where µ4 = (1 − 2pq(p + q)).
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(3) nb = nc. Thus, Fa,b(m) ∪ Fb,d(m) occurs if (ca,m, cb,m, cd,m)
assumes the value (0, 1, 0), (0, 1, 1), (0, 0, 1), or (1, 0, 1). Thus,

P (Fa,b(m)∪Fc,b(m)) = 2pq(p+q) and P (Ea,b)∩Eb,d) = µM
4 .

(4) nb = nd. Thus, Fa,b(m) ∪ Fc,b(m) occurs if (ca,m, cb,m, cc,m)
assumes the value (0, 1, 0), (0, 1, 1), or (1, 1, 0). Thus, P (Fa,b(m)∪
Fc,b(m)) = pq(2p + q) and P (Ea,b) ∩ Ec,a) = µM

5 where
µ5 = (1 − pq(2p + q)).

Let D =
∑

(a,b)6=(c,d) P (Ea,b ∩ Ec,d). Then,

D/(N(N − 1))=(N − 2)(N − 3)µ2M
1 + µM

2

+(N − 2)
(

µM
3 + 2µM

4 + µM
5

)

where µ1 = (1 − pq), µ2 = (1 − 2pq), µ3 = (1 − pq(p + 2q)),

µ4 = (1− 2pq(p + q)), and µ5 = (1− pq(2p + q)). The behavior
of D is dominated by the largest term µM

i . Note that µ2 ≤ µ2
1

and µ4 ≤ min(µ3, µ5) ≤ (µ3+µ5)/2. It follows that (N−2)(N−
3)µ2M

1 +µM
2 ≤ N(N−1)µ2M

1 and (µM
3 +2µM

4 +µM
5 ) ≤ 2(µM

3 +µM
5 ).

Thus, D satisfies the following bound.

D ≤ Q2 + 2N(N − 1)(N − 2)
(

µM
3 + µM

5 − 2µ2M
1

)

The lower bound to Γ follows directly from the above.

Theorem 8.1 If C is a code in the set C0, the probability P (Di(C))

that the ith codeword in C is discovered is given below when
γ = (Mq − k1)/(Mq2 + k2) > 1 and M ≥ (ln 4N)/ ln γ + 1.

P (Di(C))≥ 1

2
(4N)−

1
γ (ln q−k1/M)e

−
(

(ln 4N)2

γ2M

)(

1
q−k1/M −1

)

(8)

Here k1 and k2 are any constants satisfying the above requirement.
If M is large relative to k1 and (ln 4N)2/γ2, the lower bound

approaches P (Di) ≥ 1
2(4N)−

ln q
γ . When M is also large relative

to k2, γ approaches 1/q and the limiting value of P (Di) becomes
1
2(4N)−q ln q or 1

2(4N)−.35 when q = 1/2.
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Proof The event Di that codeword ci in a code C is discovered
is the event that for some 1 ≤ ρ ≤ M after ρ MWs are activated

ci remains on and for no other codeword ck do both ci and ck

remain on. Let E(ci, ρ) be the event that ci remains on after

the ρth trial. Then,

Di =
⋃

1≤ρ≤M



E(ci, ρ) − ⋃

k 6=i

E(ci, ρ) ∩ E(ck, ρ)





It follows that the probability that ci is discovered, P (Di), sat-
isfies the following bound

P (Di)≥ max
1≤ρ≤M



P (E(ci, ρ)) − ∑

k 6=i

P (E(ci, ρ) ∩ E(ck, ρ))





= max
1≤ρ≤M



P (E(ci, ρ))



1 − ∑

k 6=i

R(i, j, ρ)









where

R(i, j, ρ)=P (E(ci, ρ) ∩ E(ck, ρ))/P (E(ci, ρ)) (9)

Later we show that for all i and j, R(i, j, ρ) ≤ R0(z), a function

independent of i and j for z = ρ − 1, from which we have the
following.

P (Di)≥ max
1≤ρ≤M

(

P (E(ci, ρ)) (1 − (N − 1)R0(z))
)

(10)

Because all permutations under Discover Codewords are equally

likely, P (E(ci, ρ)) is the probability that one of the |Bi(0)| 0s of
ci is activated by the first MW, which occurs with probability
|Bi(0)|/M , that one of the remaining |Bi(0)| − 1 0s is activated

by the second MW, which occurs with probability (|Bi(0)| −
1)/(M −1), etc, giving the following expression for P (E(ci, ρ)).

P (E(ci, ρ)) =
∏

0≤t≤ρ−1

|Bi(0)| − t

M − t
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Fig. 7. When f(x) is decreasing,
∑β

α f(x) ≤ f(α) +
∫ β

α
f(x) dx, as suggested in (a).

Also,
∑β

α f(x) ≥
∫ β

α
f(x) dx + f(β), as suggested in (b).

Similarly,

P (E(ci, ρ) ∩ E(ck, ρ)) =
∏

0≤t≤ρ−1

|Bi(0) ∩ Bk(0)| − t

M − t

It follows that R(i, j, z) has the following form.

R(i, j, ρ)=
∏

0≤t≤ρ−1

|Bi(0) ∩ Bk(0)| − t

|Bi(0)| − t
(11)

Figure 7 illustrates the use of integration to obtain bounds
on decreasing functions such as ln f(m, z) where f(m, z) =
∏

0≤t≤z(m − t). Bounds are stated in terms of h(α, β, m) =
∫ β
α ln(m−x) dx = (y ln y− y) |m−α

m−β . The following is immediate.

eh(α,β,m) =
(m − α)(m−α)

(m − β)(m−β)
e(α−β)

Consequently f(m, z) satisfies the following bounds

(

1 − z

m

)

F (m, z) ≤ f(m, z)≤F (m, z)

where

F (m, z) = mz
(

1 − z

m

)−(m−z)

e−z

To simplify these bounds, consider the function g(x) = (1 −
x) ln(1−x). Because its Taylor series expansion is g(x) = −x+
∑

j=1
xj

j(j−1)
, g(x) ≥ −x + x2/2. Also, because ln(1 − x) ≤ −x,

g(x) ≤ −x + x2. These results imply the following bounds on
F (m, ρ).

mze−(z)2/(2m) ≤ F (m, z) ≤ mze−z2/m

This leads to the following bounds on f(m, z).
(

1 − z

m

)

mze−(z)2/(2m) ≤ F (m, z) ≤ mze−z2/m
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Using the assumptions of (2) and (3) and these results provides
the following upper bound on R(i, j, ρ) where z = ρ − 1.

R(i, j, ρ)≤R0(z) = (1 − z

Mq − k1
)−1





Mq2 + k2

Mq − k1





z

e
z2( 1

Mq−k1
− 1

Mq2−k2
)

Now let γ = (Mq − k1)/(Mq2 + k2) for γ > 1. Also, let z ≤
(Mq − k1)/2 so that (1− z/(Mq − k1))

−1 ≤ 2 and the following
bound holds.

R0(z) ≤ 2γ−ze−z2 γ−1
Mq−k1

In (10) R0(z) is multiplied by (N − 1). For the bound to be

meaningful, (N − 1)R0(z) must be less than 1. Thus, we let
NR0(z) ≤ 1/2 and solve the value of ρ for which this is true.

But this holds when the following condition applies.

z2
(

γ − 1

Mq − k1

)

+ z ln γ − ln 4N ≥ 0

z has two solutions, one positive and one negative. The positive

solution, which is shown below, is the only viable alternative.

z+ = ln γ





−1 +

√

√

√

√

√1 +
4(γ − 1)

(Mq − k1)

ln 4N

(ln γ)2







Mq − k1

2(γ − 1)

Using
√

1 + x ≤ 1 + x/2, it follows that NR0(z) ≤ 1/2 is sat-
isfied if z ≥ z+ = (ln 4N)/ lnγ when γ = Mq−k1

Mq2+k2
> 1. Under

these conditions P (Di) satisfies the following condition when

the maximization is restricted to ρ ≥ ρ0 = (ln 4N)/ lnγ + 1.

P (Di)≥ max
ρ0≤ρ≤M

(

P (E(ci, ρ))/2
)

(12)

Because ρ ≤ M , the condition ρ ≥ (ln 4N)/ lnγ+1 implies that
M must satisfy M ≥ (ln 4N)/ ln γ + 1.

To finish this analysis, we derive a lower bound to P (E(ci, ρ)).
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P (E(ci, ρ))≥ ∏

0≤t≤ρ−1

Mq − k1 − t

M − t

≥
(

1 − ρ − 1

Mq − k1

)(

q − k1

M

)ρ−1

e−(ρ−1)2( 1
Mq−k1

− 1
M )

≥ 1

2

(

q − k1

M

)ρ−1

e−(ρ−1)2( 1
Mq−k1

− 1
M )

The latter holds because ρ − 1 ≤ (Mq − k1)/2. Because q −
k1/M < 1, this lower bound decreases with increasing ρ. Thus,
we evaluate the lower bound to P (Di) at ρ = ρ0, as shown

below.

P (Di)≥ 1

2
(4N)−

1
γ (ln q−k1/M)e

−
(

(ln 4N)2

γ2M

)(

1
q−k1/M −1

)

(13)

When M is large relative to (ln 4N)2/γ2, the lower bound ap-

proaches the following when γ = (Mq−k1)/(Mq2+k2) > 1 and
k1/M approaches 0.

P (Di)≥ 1

2
(4N)−

ln q
γ (14)

As k2/M approaches 0, γ approaches 1/q and the limiting value
of P (Di) is 1

2
(4N)−q ln q or 1

2
(4N)−.35 when q = 1/2.
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