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Abstract

Exploiting the high-potential of nanoscale architectures
requires that they be controlled by CMOS technology. Such
an interface, a decoder, must control many nanowires
(NWs) with a small number of meso-scale wires (MWs).
Multiple types of decoder have been proposed, each of
which can be modelled as embedding resistive switches in
NWs. In this paper we present a general model for NW de-
coders and use it to specify the criteria they must meet to
function correctly and be fault-tolerant. To illustrate the
power of our model, we derive the first bounds on the size
of a fault-tolerant randomized contact decoder.

1 Introduction

Nanowire-based crossbars constitute a technology with
the potential to extend Moore’s Law beyond the limits of
photolithography. A fundamental challenge in crossbar ar-
chitectures is providing a reliable means of controlling in-
dividual NWs in each dimension with a small number of
MWs. A circuit that provides this control is called a NW
decoder. (See Figure 1.) These circuits address the general
problem of controlling individual NWs. They are applica-
ble to a wide range of architectures.

1.1 Nanowire Decoding

Four types of decoder have been proposed. All work
on the principle that switchable resistances are created in
NWs by the assembly process. The first two, the “ran-
domized contact decoder” and the “randomized mask de-
coder,” work with undifferentiated NWs, NWs that are all
the same, except for possible manufacturing defects. Such
NWs can be grown on chip using nanoimpring lithography
[1, 2] and the superlattice nanowire pattern transfer (SNAP)
method [3, 4]. The second two decoders, the “axially-doped
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Figure 1. A crossbar with two parallel sets of
NWs controlled by mesoscale address wires (MWs).
FETs are defined at the intersection of lightly doped
(dark) NW regions with MWs. Ohmic contacts
(OCs) are made at ends of each set of NWs. Data
is stored in the conductivity of molecular switches
at crosspoints, intersections of orthogonal NWs.

NW decoder” and the “radially-doped NW decoder,” work
with differentiated NWs. Different large batches of identi-
cal NWs are grown off chip, mixed together, and deposited
on chip. In each case the goal is to produce NWs with sec-
tions whose resistance can be controlled by fields applied
by MWs. The set of MW fields that cause a NW to be con-
ducting is called itscodeword.

The randomized contact decoder[5] scatters parti-
cles randomly between NWs and orthogonal MWs, thereby
making switcheable resistances at the point of contact be-
tween NWs and MWs. (See Figure 2 (a).) A NW is con-
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Figure 2. (a) A randomized contact decoder and (b)
a randomized mask decoder.

ducting only when all its resistances are small. Theran-
domized mask decoder[6, 7] interposes lithographically
defined high-K dielectric regions, many of which are ran-
domly placed, between MWs and NWs. A high-K dielectric
that is adjacent to a MW intensifies its electric field, allow-
ing the MWs to substantially increase the resistance of NWs
exposed to the intensified field. (See Figure 2 (b).)

The third decoder, theaxially-encoded NW decoder,
controls axially differentiated NWs. As NWs grow through
chemical vapor deposition, heavily and lightly doped re-
gions are introduced along their axis. When a lightly doped
NW region lies under a MW carrying an electric field, the
NW’s resistance is increased. (See Figure 1.) The fourth
decoder, theradially-encoded NW decoder, operates on
radially differentiated NWs that are formed by growing dif-
ferentiably etcheable shells on lightly doped cores. To con-
trol these NWs, etching is done in lithographically defined
regions to expose the cores of certain NWs to certain MWs,
effectively simulating axial encodings.

Differentiated NWs have been assembled on chip us-
ing a fluid-based method [8], which aligns NWs in parallel
through fluid flow but does not guarantee end-to-end align-
ment of NWs. Misalignment of axially encoded NW doped
regions can lead to ambiguous control of NWs, a problem
that doesn’t arise with radially encoded NWs.

1.2 The General Decoder

We now present our general model for NW decoders.
Small sets of NWs are controlled by “simple NW decoders”

that are aggregated into “composite NW decoders.” Since
nanoscale manufacturing is stochastic, simple decoders be-
come difficult to produce whenN is large. For this reason,
we use composite decoders.

Definition 1.1 In a simple nanowire decoder:

1. M large MWs controlN much smaller NWs. The NWs
are tightly packed and (at least partially) aligned, but
arenot in electrical contact with one another.

2. A pair of ohmic contacts applies a voltage acrossall
NWs simultaneously. In the absence of MW control, all
NWs conduct, effectively behaving like a single wire.

3. Each MW provides control over some subset of the
NWs. A MWcontrols a NW if its resistance increases
substantially when that MW carries a voltage.

4. When multiple MWs carry a voltage, the resistances
induced in a NW are summed. The decoderaddresses
the NWs with low resistance.

Definition 1.2 A composite nanowire decoderuses multi-
ple simple NW decoders, each associated with a pair of in-
dependently controllable ohmic contacts, to control groups
of N NWs. All simple decoders share a single set of MWs,
saving a substantial amount of space.

To analyze these NW decoders, we require a model for
MW control of NWs. We provide such a model in Sec-
tion 2 and provide criteria that decoders must meet to func-
tion properly. In Section 3 we describe several classes of
code that meet these criteria. Section 4 extends our model to
cope with real-world manufacturing defects. To conclude,
we provide a bound on the size of a fault-tolerant random-
ized contact decoder.

2 NW Codewords

Consider a simple NW decoder withM MW inputs and
N NW outputs. Each MW provides control over a subset of
NWs. In anideal decoder, a NW is completely turned off
(made nonconducting) by applying a field on a controlling
MW and unaffected by a noncontrolling MW.

To describe an idealized NW decoder, we associate an
M -bit vector (abinary codeword) with each NW. Letci

be the codeword associated with NWni, 1 ≤ i ≤ N , and
let ci

j (1 ≤ j ≤ M ) be thejth bit of ci. ci
j = 1 (0) if and

only if NW ni is controlled (unaffected) by thejth MW.
Let a be theM -bit input (activation pattern) supplied

to the decoder whereaj = 1 if and only if the jth MW
carries a voltage. An activation pattern turns off NWni if
and only if there exists aj such thataj = 1 andci

j = 1.
Equivalently,a turns off NW ni if and only if a · ci =
∑M

j=1 ai
jc

i
j ≥ 1, where addition is over the integers.
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2.1 Random Codeword Assignment

The four decoders described above assign codewords
stochastically, a characteristic of all known NW decoders.
Although some proposals allow portions of a NW’s code-
words may be assigned deterministically [9], a stochastic
decoder is still needed.

The probability distribution governing the selection of
NWs depends on the manufacturing process. This distribu-
tion is very important when evaluating decoding technolo-
gies. To illustrate this point, we compare the randomized
contact and axial decoders when there is no misalignment.

1. In an ideal randomized contact decoder, codeword bits
are generated independently.ci

j = 1 with probability
p, a parameter of the manufacturing process.

2. In an axial decoder codewords are assigned to NWs
independently with some fixed probability. In an ideal
axial decoder (which is not misaligned),ci

j = 1 if NW
ni has a lightly-doped region under thejth MW. Oth-
erwiseci

j = 0. When NWs are deposited, a random
subset of axial encodings is selected. Each encoding
maps to a codeword. Codeword probabilities are a
function of the corresponding encoding’s relative con-
centrations in the original ensemble. Axial decoders
are analyzed in [10].

We now show that ideal axial decoding is at least as
good as ideal randomized contact decoding (or any decod-
ing method which assigns bits independently at random).

Theorem 2.1 An ideal axial decoder can simulate an ideal
randomized contact decoder by assigning lightly- and
heavily-doped regions to NW sections with equal probabil-
ity while they are grown.

Proof If all possible doping patterns are produced with
the proper concentrations, bits in an axial decoder will
be independent random variables, simulating codeword
assignment in a randomized contact decoder.

2.2 NW Addressability

We define the criteria codewords in a properly function-
ing decoder must meet using the binary codeword model.

1. Consider two NWs,na andnb. If ca contains a 1 in
every position thatcb has a 1, it is impossible to turn
off nb without also turning offna. For this reason, we
saycb implies ca, denotedcb ⇒ ca.

2. Thecomplementof codewordci, denotedci, is the
NOT of M -bit vectorci. If cb 6⇒ ca, activation pattern
a = cb turns off NWna, but notnb (sincecb

· cb =
0). If cb 6⇒ ca andca 6⇒ cb, NWs na andnb are
independently controllable.

3. A setS of NWs is addressableif there exists an ac-
tivation pattern that turns off every NW not inS, and
no NWs inS. A subsetS′ of S is addressablewith re-
spect toS if there exists an activation pattern that turns
off every NW inS − S′ and no NWs inS′. A single
NW, ni, is addressable if the set{ni} is addressable.
A codeword is addressable if the set of NWs with that
codeword are addressable.

To understand the importance of codeword implication,
we provide the following lemma.

Lemma 2.1 A NWna with codewordca is addressable if
and only ifci 6⇒ ca for all i 6= a. A codewordca is ad-
dressable if and only ifci 6⇒ ca for all ci 6= ca

Proof If na (ca) is addressable, an activation pattern,a,
exists that turns off all NWs (codewords) other thanna

(ca). None of these NWs (codeword) implyca. For the
converse, recall that ifci 6⇒ ca, a = ca turns offni.

Notice that if two NWs are addressable, they are neces-
sarily independently controllable. Also, if all pairs of NWs
are independently controllable, every NW is addressable.

2.3 Memory Decoders

NW decoders can be used to control a memory. (See
Fig 1.). In a NW crossbar, a composite decoder is used
along each dimension to select one or more crosspoints. For
the memory to function properly, binary addresses must be
mapped to disjoint sets of crosspoints.

A simple NW decoder which can addressD disjoint sets
of NWs is called aD-address simple memory decoder.
Its codewords must meet the following requirement.

Lemma 2.2 A decoder is aD-address simple memory de-
coder if and only if there existD addressable codewords.

Proof If D addressable codewords exist, the NWs with
these codewords formD disjoint addressable subsets. For
the converse, assumeD disjoint addressable subsets of
NWs exists. Each set must contain a codeword which no
other codeword implies. Since each set is addressable,
theD codewords are addressable and also distinct.

In anN -address simple memory decoder all NWs, and
hence all codewords, must be addressable. This implies that
all pairs of NWs are independently controllable. In Sec-
tion 3 we give the minimum length of such a code.

2.4 Circuit Decoders

A memory decoder must activate disjoint subsets of
wires in order to control a memory efficiently. Now con-
sider a decoder that acts as input to a circuit. If the circuit
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hasD inputs, the decoder must provide control over a set
S of D NWs. To supply the circuit with all2D possible
inputs, the decoder must be able to address every subset of
S with respect toS. We call such a decoder aD-address
circuit decoder and give a condition on its codewords.

Definition 2.1 Let S be a set of NWs that contains NWni.
ni is uniquely controllable with respect toS if there exists
a j such thatci

j = 1 and ca
j = 0 for every otherna ∈ S.

Hereaj uniquely controls ni, with respect toS.

Lemma 2.3 A decoder is aD-address circuit decoder if
and only if there exists a setS of sizeD such that each
NW inS is uniquely controllable with respect toS.

Proof If every NW inS is uniquely controllable, there is
anaj which uniquely controls eachni ∈ S. To turn off
a subset of NWS′, setaj = 1 if and only if aj uniquely
controls a NW inS′. For the converse, assume each sub-
set ofS is addressable with respect toS. Since each set
S − {ni} is addressable with respect toS, each NW,ni,
is uniquely controllable, with respect toS.

Our lemma does not assume a simple NW decoder. The
condition onS still holds even if the decoder is composite.

To controlN NW inputs to a circuit, we require at least
N MWs, which presents an I/O challenge. It also presents
a manufacturing challenge, as shown below.

In randomized-mask decoders, each MW controls mul-
tiple consecutive NWs. They cannot produce a set of adja-
cent, uniquely controllable NWs. Axial, radial and random-
contact decoders assign codewords to NWs independently,
and with fixed probability. In this case, the following holds.

Theorem 2.2 Consider a NW decoder in which allN NWs
are uniquely controllable usingM MWs with probability
(1 − ε). If NWs are assigned codewords independently and
with fixed probability,

M ≥ e(1 − ε)(N − 1)

Proof Since probabilities are fixed, the probability than
NW ni receives a particular codeword is independent of
i. Thuspj = Prob(ci

j = 1) is independent ofi. It fol-
lows that the probability that thejth MW uniquely con-
trols NWni is Q(pj) = pj(1 − pj)

N−1. The probability
that thejth MW controls one of theN NWs is exactly
NQ(pj) because theN events are disjoint.Q(pj) is max-
imal whenpj = 1/N . SoNQ(pj) ≤ (1 − 1/N)N−1 =
(N/(N − 1))(1 − 1/N)N ≤ e−1N/(N − 1).

Since allN NWs are uniquely controllable with prob-
ability (1−ε), the expected number of MWs that uniquely
control some NW is at least(1 − ε)N . The expected
number of NWs controlled byM MWs is at most
Me−1N/(N − 1). Thus,M ≥ e(1 − ε)(N − 1).

3 Minimum Code Size

Even when codeword assignment is stochastic, some de-
coders (axial and radial, for example) provide substantial
control over which codewords are generated. Future nan-
otechnology may even permit codewords to be determinis-
tically programmed. In both cases, we wish to satisfy the
conditions established by Lemmas 2.2 and 2.3 using min-
imum length codewords. In this section we present codes
(sets of codewords) that satisfy this condition.

3.1 Codewords for Circuits

In a circuit decoder, Lemma 2.3 requires a set ofD
uniquely controllable NWs. Each wire must have a distinct
codeword and each of these codewords must have a 1 in a
unique position. The lemma implies thatM , the number of
bits in each codeword, is at leastD. M = D if and only if
codewords are drawn from a(1,D)-hot code. A(k, M)-
hot code[11] consists of codewords of lengthM in which
each codeword hask 1s. Thus, a 1-hot code has a single 1
in each of its M codeword.

3.2 Codewords for Memories

In a memory decoder, Lemma 2.2 requires a set ofD
NWs with distinct codewords, none of which imply other
codewords. GivenM MWs, we now consider methods for
generating length-M codewords in which every codeword
is addressable.

First consider binary reflected codes, introduced in [10].
A binary reflected code (BRC) is code that contains all
length-M codewords of the formxx, wherex is an arbi-
trary binary vector (andM is even).

In our previous work, we have found it convenient to
use BRCs because each codeword directly corresponds to a
binary sequence,x. (They also have the property that they
are closed under cyclic shift, which models misalignment
of axial codes.) BRCs and their subsets have also been used
by others for the same reason [12, 13].

A BRC contains2M/2 codewords. All pairs of code-
words are independently addressable (since no codeword
implies another codeword). Unfortunately, they are not op-
timal in that they use more MWs than some other codes
with the same number of codewords.

The (dM/2e,M)-hot codes are optimal in their use of
MWs, as we show. A(k,M)-hot code contains

(

M
k

)

code-
words. As with BRCs, each codeword is addressable. (They
are also closed under cyclic shift.) An(dM/2e,M)-hot
code has

(

M
dM/2e

)

addressable codewords, which is optimal.

Lemma 3.1 Consider a set ofC addressable codewords.
The set consisting of the complement of each codeword also
containsC addressable codewords.
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Proof All codewords are addressable if and only if for
any pair of codewords,ca 6⇒ cb andcb 6⇒ ca. If ca 6⇒
cb andcb 6⇒ ca, thenca 6⇒ cb andcb 6⇒ ca.

Lemma 3.2 Consider a set ofC codewords which are in-
dependently addressable. If the minimum weight codeword
has weightw < bM/2c, there exists a code withC ′ code-
words, such thatC ′ > C and all codewords have weight at
leastw + 1.

Proof If w < bM/2c, replace eachw-weight codeword
with each of theM − w (w + 1)-weight codewords it
implies. It can be show that this both increases the size of
the code, and maintains the condition that all codewords
are independently addressable.

Lemma 3.3 Consider a set ofC codewords which are in-
dependently addressable. If all codewords have weight
bM/2c or dM/2e, there exists a code withC ′ ≥ C code-
words such that all codewords have weightdM/2e.

Proof If M is odd, consider the same replacement de-
scribed in the proof of Lemma 3.2. Now code size may
remain unchanged.

Theorem 3.1 GivenM MWs, there exist at most
(

M
dM/2e

)

addressable codewords.

Proof Consider a code that maximizes the number of
codewords. Lemma 3.1 states that the complement of this
code also maximizes the number of codewords.

Lemma 3.2 implies that the code and its complement
both have minimum weight codewords of weight at least
bM/2c. This means that all codewords in either code
have weightbM/2c or dM/2e.

Lemma 3.3 states that an equal size code exists where
all codewords have weightdM/2e. There are at most
(

M
dM/2e

)

such codewords.

4 Tolerating Codeword Errors

Binary codewords describe the behavior of an ideal de-
coder. In ideal decoders, MWs provide all-or-nothing con-
trol over NWs. If NW on/off ratios are large, this is not
an unreasonable assumption, although in practice it may be
necessary to accommodate defects of various kinds. We do
this by modifying our binary model slightly, assuming that
some bits can be corrupted by an error. If bitci

j is in error,
NW ni behaves unpredictably with regard to MWaj . To
address codewordni, we must not activate MWaj . To turn
off ni, we must activate anak for which ci

k is not in error
(and equal to 1). If MWaj is activated, a MWak must also
be activated.

Codewords in BRC and(k,M)-codes are addressable in
the absence of errors. If codes tolerated errors, we can
accommodate the following real-world decoder defects.

1. After codewords are assigned,d bit flips occur. (This
can model etching errors in radial decoders.)

2. d bits become partially corrupted, no longer behaving
as 0s and 1s. (This can model misalignment, doping
variation or poor separation between NWs and MWs.)

3. d transient errors in which a 1 becomes a 0 or is par-
tially corrupted.

Unfortunately, transient errors in which a 0 becomes a
1 (and a NW is turned off incorrectly) cannot be tolerated
because even one such error can prevent a corrupted NW
from being addressed. Fortunately, these errors may be de-
tectable by measuring the current produced by the decoder.

Two NWs, na and nb are independently controllable
without errorsif ca 6⇒ cb andcb 6⇒ ca.

Definition 4.1 Two NWs ared-independently control-
lable if they remain independently addressable when up
to d bit flips occur in their codewords. A set of NWs
is d-addressable if every pair of NWs in the set isd-
independently controllable.

NWs which ared-independently controllable will be able
to tolerate up tod errors. Let|ca − cb〉 be the number ofis
for whichca

i = 1 butcb
i = 0. Thebalanced Hamming dis-

tancebetweenca andcb is 2min (|ca − cb〉, |cb − ca〉).

Lemma 4.1 If all pairs of codewords have a balanced
Hamming distance of at least2d + 2, they are d-
independently controllable. In this case, a total ofd errors
can be corrected. Also, up tod/2 errors in every codeword
can be corrected.

Lemma 4.2 If codewords have a balanced Hamming dis-
tance of2d + 2, they have a normal Hamming distance of
at least2d + 2. Two BRC codewordsx1x1 andx2x2 have
a balanced Hamming distance2d + 2 if and only ifx1 and
x2 have a normal Hamming distanced + 1.

The last observation allows thexi to be codewords from
a standard error correcting code. The previous work on fault
tolerant NW decoders assumes binary reflected codewords
[12] and thus fails to define the more general notion of bal-
anced Hamming distance. This work also does not accu-
rately categorize which codewords are addressable. If er-
rors causeca ⇒ cb, the authors assume neither codeword is
addressable. Lemmas 2.1 and 2.2 correct this assumption.

4.1 Randomized Contact Decoder

In this section we enforce the condition of balanced
Hamming distance for the randomized contact decoder. We
give an upper bound onM , the number of MWs required
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for all codewords in a randomized contact decoder to have
a balanced Hamming distance of at least2d+2 with proba-
bility at least1− ε. Whend = 0, the bound simply ensures
that all NWs are addressable. A bound onM whend = 0
is cited in [5] but gives no mention ofε.

Theorem 4.1 All N NWs in a randomized contact decoder
(whereP (ci

j = 1) = p) are d-addressable with probability
at least1 − ε when the number of MWsM satisfies

M ≥

(

d +
√

d2 + 4 ln(N2/ε)
)2

(4p(1 − p))

The bound isM ≥ ln(N/
√

ε)/(2p(1 − p)) whend = 0.

Proof Two NWs na and nb are d-independently con-
trollable if their balanced Hamming distance is at least
2(d+1). If NWs na andnb are notd-independently con-
trollable, then either|ca − cb〉 ≤ d or |cb − ca〉 ≤ d.
Since there areN(N − 1) such inequalities, all pairs of
NWs ared-independently controllable with probability at
least1 − ε when the following condition holds.

N(N − 1)Pr(|ca − cb〉 ≤ d) ≤ ε

Let xj = 1 denote the eventca
j = 0 andcb

j = 1. Then,

X =

M
∑

i=1

xj = |ca − cb〉

The probability thatxj = 1 is q = p(1 − p). The
boundP (X ≤ d) ≤ e−MqE(θ) is given in [10, Lemma
A.3] when d = θMq and E(θ) = (1 − θ + θ ln θ).
We must chooseM so thatN2P (X ≤ d) ≤ ε. Since
(Mq)E(d/Mq) ≥ Mq − d ln(Mq), our condition on
M holds whenMq − d ln Mq ≥ ln(N2/ε). Because
Mq ≥ 1, we can impose an even stronger condition
and replacelnMq by

√
Mq. This gives the inequality

Mq−d
√

Mq ≥ ln(N2/ε). This is a quadratic inequality

satisfied when4Mq ≥
(

d +
√

d2 + 4 ln(N2/ε)
)2

.

5 Conclusions

We introduce the binary codeword model, permitting a
general discussion of NW decoders. We specify criteria de-
coders must satisfy and describe codes that meet these cri-
teria. We also introduce balanced Hamming distance which
characterizes fault-tolerant decoders. To illustrate theutil-
ity of our work, we derive a bound on the number of MWs
required to create a fault-tolerant random contact decoder.
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