
1

A Framework for Coded Computation
Eric Rachlin and John E. Savage

Computer Science, Brown University
Providence, RI 02912-1910

Abstract— Error-correcting codes have been very successful
in protecting against errors in data transmission. Computing
on encoded data, however, has proved more difficult. In this
paper we extend a framework introduced by Spielman [14] for
computing on encoded data. This new formulation offers signifi-
cantly more design flexibility, reduced overhead, and simplicity.
It allows for a larger variety of codes to be used in computation
and makes explicit conditions on codes that are compatible with
computation. We also provide a lower bound on the overhead
required for a single step of coded computation.

I. I NTRODUCTION

When symbols are transmitted across a noisy channel, one
of the most basic approaches for protecting against errors is
to use a repetition code. Since the birth of coding theory in
the 1940’s, however, many far more efficient codes have been
discovered. Unfortunately, analogous results have not been
obtained for noisy computation.

In this paper, we consider networks of noisy computing
elements, logic gates, for example, in which each element can
“fail” independently at random with probabilityǫ. When an
element fails, it outputs an incorrect value.

In 1956, von Neumann proposed the first systematic ap-
proach to building logic circuits from noisy gates [1]. His
approach was to repeat each gater times, then periodically
suppress errors by taking many random majorities. This is very
similar to protecting transmitted data using a repetition code.
The main complication is that the majority gates can them-
selves fail. Thus, the new goal is to avoid error accumulattion
while keeping the size of majority gates constant.

Thirty years later Pippenger successfully analyzed von
Neumann’s construction [2]. He demonstrated that given a
fault-free circuit of sizeC, a fault-tolerant version of it,C′,
could be constructed of sizeO(|C| log |C|) such that for all
inputs the probability that an output ofC′ is in error is
within O(ǫ). An excellent description of this analysis can be
found in [3]. Unfortunately the analysis also suggests thatthe
constant associated with theO(log |C|) bound is large, as do
experimental results [4].

After Pippenger obtained an upper bound onr, he and
others obtained lower bounds forthe size of von Neumann
fault-tolerant circuits. Under the assumption that all gates fail
independently with probabilityǫ, the size and depth required
for repetition-based fault tolerance has been shown to be
within a constantfactor of optimal for many basic functions
(XOR for example) [5], [6], [7]. The derivation of these bounds
highlight a shortcoming of the von Neumann model. Since

This research was funded in part by NSF Grants CCF-0403674 and CCF-
0726794.

all gates can fail with probabilityǫ, the inputs and outputs
of a circuit always have probabilityǫ of being incorrect.
For a sensitive function ofN inputs, XOR for instance, each
input must be sampledO(log N) times simply toensurethat
information about its correct value reaches the output with
high probability. In other words, since the inputs to a circuit are
essentially encoded using repetition, the amount of redundancy
for a reliable encoding isΩ(log N) = Ω(log |C|).

In this paper, we consider a more general, and more realistic
model of noisy computation in which some gates can be larger,
but highly reliable (much like today’s CMOS gates), while
most gates are small, but susceptible to transient failures(an
anticipated characteristic of nanoscale technologies [8]).

In this new model, most computational steps are done using
noisy gates interspersed by a few steps in which reliable gates
are used to decode and re-encode data without errors. This
model more closely parallels data being transmitted over a
noisy channel using a reliable encoder and decoder.

As we demonstrate, thiscoded computationmodel intro-
duces a wide range of new design possibilities including new
codes. Although this model has not been extensively studied,
lower bounds on circuit size have been obtained. We will
review and generalize these bounds.

II. RELATED WORK

Linear error correcting codes have been in use since the
1950s [9]. These are codes defined over finite fields in which
the check symbols are linear combinations of the information
symbols. When the computations that need to be coded are
linear, it is known how to compute on such encoded data [10].
The problem is much more complex when the computations
are non-linear. Early work in coded computation established
simple lower bounds [11], [12], [13] (see Section IV) that
suggest the difficulty of this problem.

Spielman [14] has proposed a general purpose approach
to coded computation that we extend in this paper. First, he
proposed that codes be used over alphabets that are supersets
of the source data alphabets. These codes may use symbols
from a larger alphabet for check symbols. Second, he proposed
that the definition of functions over the smaller alphabet beex-
tended to functions over the larger alphabet using interpolation
polynomials. Third, he proposed that data be encoded using
2D Reed-Solomon (RS) codes.

In Spielman’s approach, the result of computing on RS
encoded data is RS encoded data using an RS code with
smaller error correcting capability than the original code. This
overcomes the lower bounds referenced above. However, it ne-
cessitates that the newly computed data be “transcoded” back

2

to the original code so that another computational step can be
taken on data in the original format. Both the computations
and transcodings are done in a noisy environment.

The overhead of the Spielman approach is quite large.
RS codes, along with his use of processor-based hypercube
networks both introduce significant overhead. In our frame-
work we demonstrate that this overhead can be reduced.
More importantly, we describe how other codes and networks
topologies can be employed. Unlike Spielman’s approach, we
offer a much wider range of design possibilities.

III. C ODED COMPUTATION

In our general model of coded computation data is encoded,
then computations are performed on data producing results in
a potentially different code, which are mapped back to the
original code.

A. Model of Computation

Our model of computation is that of a network of basic
computing elements. These elements can be logic gates that
compute simple Boolean functions, or more complex com-
puting elements, such as full fledged processors computing
arithmetic and logic functions, such as found in hypercubes.

In this model, a single step of computation on input vectors
x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) is simply the
application of functions from a setH = {φj : F 2 7→ F |
1 ≤ j ≤ h} to pairs of inputs. Letw = (w1, w2, . . . , wk)
(instructions) identify the functions applied. Then, we denote
this operation asκ(k) and where

κ(k)(x, y, w) = (κ(x1, y1, w1), . . . , κ(xk, yk, wk))

and κ(x, y, w) = φw(x, y). When this model is applied
to circuits, F = {0, 1} and H may contain the functions
φ1(x, y) = NAND(x, y), andφ2(x, y) = x.

To perform multiple steps of computation, the output of
zt = κ(k)(x, y, w) is copied and each copy is permuted. At
the next step, new instructionsw′ are applied to permuted
data, as shown below, to compute the next value.

zt+1 = κ(k)(π1(zt), π2(z), w′)

Our computational model allows forπ1, π2, andw to vary
from step to step. The number of computations per step can
also vary, but in this paper we assume it is constant.

We note that computations by logic circuits and hypercubes
in which data is shared between processors that are adjacent
along one dimension of the hypercube fit this model. Circuits
can be limited to fanout two and “levelized” so that data moves
synchronously from one level to the next. In such circuits
gates have levell if the longest path to an external input
passes throughl − 1 gates. A wire passing through a level
is augmented by introducing a “buffer” element at that level,
thereby ensuring that wires only pass between levels.

Large reliable gates can be used to periodically decode and
re-encode data so that the probability of a transcoding error is
kept small.

B. One-Step of Coded Computation

Since the goal is to compute on encoded data and produce
encoded data as a result, for this treatment we assume that
systematic codes are used, although it is not strictly necessary.
Consequently, when there are no component failures, the
results of a computation in the absence of coding appear
explicitly in the encoded result. The challenge is to find a
way to combine the check symbols so that the results of a
computation in the absence of failures is a codeword in a
code with good error correction capability.

Let the inputsx and y to a step be encoded by a code
C with encoding functionE : F k 7→ Gn. That is,G is the
codeword alphabet.G is assumed to be a superset of the input
alphabetF , that is,F ⊆ G. Because we wish the coded results
to be systematic, that is, to contain thek unencoded results of
each step in the output codeword, we use the operatorκ(k)(x,
y, w) to combine these values.

This formulation leaves unresolved how to combine the
check symbols in the two codewords. For computations on
hypercubes Spielman [14] proposes extending the definition
of the functionκ(x, y, w) using interpolation polynomials,Φ.
We refer to these asextension polynomials, one example of
which is the interpolation ofκ(x, y, w) defined below. As we
illustrate in Section III-E, extension polynomials need not be
limited to interpolations over three variables.

An interpolation polynomial Φ(r, s, t) is given below in
termsof M(r, u, X) =

∏
ρ6=u,ρ∈X

r−ρ
u−ρ

, a function with value
1 whenr = u and 0 forr 6= u whenr ∈ X .

Φ(r, s, t) =
∑

u,v,w

κ(u, v, w)M(r, u, U)M(s, v, V)M(t, w, V)

Here u ∈ U , v ∈ V , and w ∈ W where it is assumed that
U, V, W ⊆ F . It follows thatΦ(r, s, t) = κ(r, s, t) whenr, s,
andt are inU , V andW . However,Φ(r, s, t) is also defined
for r, s, andt in G. The degrees ofΦ(r, s, t) in r, s andt are
|U | − 1, |V | − 1, and |W | − 1, respectively.

One step of encoded computation, denotedE∗(x, y, w) =
Φ(n)(E(x), E(y), E(w)), is defined to be the component-wise
application of Φ(r, s, t) to the encodingsE(x), E(y) and
E(w) of x, y andw with codeC.

Φ(n)(a, b, c) = (Φ(a1, b1, c1), . . . , Φ(an, bn, cn))

E∗(x, y, w) is a codeword in a codeC∗ potentially different
from C. Fault-tolerant computation requires thatC∗ has good
error correcting capabilities. Such codes are discussed below.

Transcoding is the task of correcting errors inE∗(x, y, w)
produced by one step of computation and mapping the result
to a word close toE(κ(k)(x, y, w)). Transcoding is simplest
if C and, thusC∗, are systematic. However, transcoding can
be performed on nonsystematic codes as well. WhenC is
systematic,E∗(x, y, w) can be decoded (or simply corrected)
to directly obtain the information symbols that correspondto
κ(k)(x, y, w). In the absence of errors, these symbols can
then be re-encoded inC. However, in a noisy computation,
this approach is not fault-tolerant, since a single decoding error
could corrupt the entire transcoding process.

To provide fault-tolerance, Spielman proposes using 2D RS
codesC. Such codes are frequently used to cope with burst

3

errors. We observe that Spielman’s basic approach can be
made to work with any multidimensional linear code. In the
case of an arbitrary systematic 2D linear code, for example,
codes can be transcoded first by rows, then by columns. When
transcoding is done one dimension at a time, an error that
corrupts an entire row or column can still be corrected by
transcoding along the other dimension. This works even when
a different linear code is used in each dimension.

C. Codeword Permutations

Our model of computation requires that outputs from one
stage of a computation be copied and permuted to supply
inputs to the next stage. In a coded computation this means
that codewords must be permuted.

If a permutation applied to a codeword doesn’t return a
codeword in the same code, it will be difficult to determine the
nature of the code that results from the next computation step.
Thus, it is essential that we be able to decompose arbitrary
permutations into a series of individual permutations thatdo
not change the code. In this section, we describe how a
small set of allowable code-preserving permutations can be
composed to perform arbitrary permutations.

1) Permuting Codewords Directly:Spielman [14] has ob-
served that whenG = GF (2q), RS codes are closed un-
der permutations that correspond to data movement along
a single dimension of a hypercube. RS codes, as well as
many other codes, are also closed under cyclic shifts. Both
types of permutation are sufficiently powerful to implement
arbitrary permutations when combined with the correct choice
of Φ(r, s, t).

Many network topologies exist which implement arbitrary
permutations using a limited set of of permutations. For
example, the permutations obtained by moving data along a
common dimension of the hypercube can be composed to
sort datausing a Beneš network of back-to-back FFTs [15]
where each node implements only the switching operation
Φ(r, s, t) = rt + s(1 − t) for t ∈ {0, 1}.

If permutationsπ1 andπ2 are hypercube permutations, one
can simulate data movement through a butterfly graph(FFTs).
If π1 andπ2 are one-unit cyclic shifts, they can simulate data
movement on a shuffle exchange graph. This in turn can be
used to simulate a butterfly graph, which allows for arbitrary
data permutations [16].

2) Permuting during Transcoding:When 2D linear codes
are used, arbitrary permutations of either rows or columns
can be realized during transcoding. Recall that transcoding
involves decoding and re-encoding data in each row followed
by that in each column. After just the rows (or columns)
have been decoded, however, the encoded columns (or rows)
remain. These encoded columns (or rows) can be reordered
before re-encoding takes place. This operation is sufficiently
powerful to simulate hypercube-style data movement and, as
a result, allows us to consider linear codes that are not closed
under a specific set of permutations.

This important observation also allows us to use codes that
don’t allow for the direct application ofΦ(n) described in
Section III-B. Instead of applyingΦ(n) directly to the encoded

data, we can first decode the rows, applyΦ(n) to the encoded
columns, then re-encode the rows. We still applyΦ(n) directly
to encoded columns, but we avoid applying it to encoded rows.
As a result, the row code can be any linear code we choose.

D. Comparison with Exisiting Models

The above model for coded computation captures the
essence of the von Neumann [1] and Spielman [14] models. In
the von Neumann model data at gates and gates themselves are
replicatedr times and the results computed.r majority gates
are introduced, one for each copy of the original gate. Their
inputs are pseudo-randomly selected subsets of the outputsof
gate copies. These gates help to avoid error accumulation [2].

Spielman’s model is thed-dimensional hypercube in which
each processor receives an independent instruction stream
and processors alternate between communication with their
nieghbor(s) and performing local computations. Computations
on other parallel machine models can be mapped to the hyper-
cube efficiently. Spielman assumes that data moves between
processors along one dimension of the hypercube on each time
step. The operationφi performed by a processor is determined
by its instruction and the processor design.

E. Examples of Extension Polynomials

If coded computation is to be done with a circuit and each
of the gate operations is aNAND, the instruction word is
constant and the input alphabet isF = GF (2). Thus, the
extension polynomial, which doesn’t depend on the instruc-
tion, is Φ(r, s) = (1− rs). OverGF (2) it has the same value
as NAND. If the gates consist of bothNAND and buffer gates,
the extension polynomialΦ(r, s, z) = (1 − rs)z + r(1 − z)
returns the value of either theNAND of the two inputs when
the instruction isz = 1 or the first of the two inputs when it
is z = 0 andr ands are variables overGF (2).

Extension polynomials need not have one variable for each
input and instruction. For example, when the basisΩ of
Boolean operations includesAND, OR andNOT, the extension
polynomialΦ(r, s, z1, z2) = rsz1z2 +(r+s+rs)z1(1−z2)+
(1 − r)(1 − z1)(1 − z2) returnsAND when z1 = z2 = 1, OR

when z1 = 1 and z2 = 0, and NOT on r when z1 = z2 = 0,
where addition and multiplication are overGF (2), that is,
addition is XOR and multiplication isAND. This polynomial
allows binary codes to be used instead of requiring that codes
be over large fields.

If coded computation is done with hypercubes, the extension
polynomial depends on the processors employed. Complex
processors may require very high degree extension polyno-
mials. However, high degree polynomials can be implemented
through successive applications of low degree polynomials,
thereby minimizing their overhead.

F. Encoding with Linear Codes

The result of composing an extension polynomialΦ(r, s, t)
component-wise with codewordsE(x), E(y), andE(w) in C
generates a word in a new codeC∗ denotedE∗ : G3k 7→ Gn.
Our objective is to determine the properties of the codeC∗.

4

Let the codeC be linear with generator matrixM . Then,
E(x) = xM , E(y) = yM , andE(w) = wM whereM is
a k × n generator matrix overG and x is in F k. Let B0 =
{b1, b2, . . . , bk} be thebasis n-vectors of matrix M . Then,

E(x) =

k∑

i=1

xibi and E(x)j =

k∑

i=1

xibi,j

When Φ(r, s, t) is applied component-wise to the encoded
inputs, it produces the encoded outputE∗(x, y, w) whosejth
component is given below.

E∗(x, y, w)j = Φ(
k∑

i=1

xibi,j,
k∑

i=1

yibi,j ,
k∑

i=1

wibi,j)

SinceΦ(r, s, t) is a multivariate polynomial, it contains prod-
ucts of powers ofr, s, and t plus a constant term. Let
a ∧ b = (a1 ∗ b1, a2 ∗ b2, . . . , am ∗ bm) denote theparallel
product of basis vectors whereai ∗ bi is multiplication in the
field G. Then, the output codewordC∗ can be expressed as a
linear combination of the parallel product of powers of basis
vectors inB0. The maximum degree of these products is the
sum of the degrees ofΦ(r, s, t) in r, s, andt.

G. Polynomial Input Codes

Spielman [14] has proposed using two-dimensional Reed-
Solomon (RS) codes as the basic codeC. Before introducing
these codes, we consider one-dimensional RS codes.

An [n, k, d]q code has block lengthn, k information sym-
bols, minimum distanced, and code alphabet of sizeq. A stan-
dard[n, k, d]|G| RS code is defined by polynomials. Given the
k source valuesa = (a0, a1, . . . , ak−1) from the finite fieldG
the corresponding codeword(c0, c1, . . . , cn−1) is obtained by
evaluating the polynomialpa(u) = a0+a1u+· · ·+ak−1u

k−1

at n elements ofG wherek < n. That is,cj = pa(gj) where
g1, g2, . . ., gk are elements of the fieldG. It is easy to show
that RS codes have minimum distanced = n − k + 1.

The extended RS codes are defined by the evaluation of
one-dimensional interpolation polynomials. The interpolation
polynomial p̃a(u) is defined to have valueaj on gj, that is,
aj = p̃a(gj). The extended RS codes are systematic.

The result of a coded computation using the extension
polynomialΦ(r, s, t) is the word obtained by evaluating the
polynomialΦ(p̃x(u), p̃y(u), p̃w(u)) at n elements ofG. The
resultant words are codewords in an extended RS codeC∗

defined by a polynomial of degree(|U |+|V |+|W |−3)(k−1)
of length n. Thus, the minimum distance of this code is
d∗ = n − (|U | + |V | + |W | − 3)(k − 1) + 1 and the
resultant code is an[|G|, 3(k − 1), d∗]|G| code. Clearly, the
code has error correction capability only ifd∗ ≥ 3 or k ≤
(n − 2)/(|U |+ |V | + |W | − 3).

A 2D RS code can be defined in a similar way, except by
evaluating a polynomialp of two variables at elements ofG2.
A simpler approach, however, is to define these codes as one
would define any 2D linear code. This is a code in which
information symbols are arranged in a grid, and rows then
columns are encoded. Since the code is linear, encoding the
columns first, then the rows, will also produce the same code.

It is also acceptable if the rows and columns are encoded using
different linear codes.

As an alternative to RS codes one can employ Reed-Muller
(RM) codes. Like RS codes, RM codes are also defined by
evaluating a polynomial. Instead of a one-dimensional, degree-
d polynomial, pa(u), over an arbitrary fieldG, (r, m)-RM
codes are formed by evaluating ar-dimensional, degree-m
polynomial,pa(u1, ..., ur) overGF (2)r. Like RS codes, these
codes are linear since each degreed polynomial is of the
form pa(u1, ..., ur) =

∑
aipi(u1, ..., ur), where eachpi is the

product of at mostm variables. The codeword corresponding
to pa(u1, ..., ur) is the value of the polynomial at all points in
GF (2)r. The minimum distance of this codes is2r−m [17].

Similar to RS codes, RM codes allow for applications of a
polynomialΦ. For example, when the parallel product is taken
of two codewords in an(r, m)-RM codeit yields an (r, 2m)-
RM code.Unlike RS codes, RM codes allowΦ to be realized
as bitwise operations. Both classes of codes are closed under a
wide range of permutations, for example, those corresponding
to data movement on a hypercube.

H. Families of Parallel Product Codes

RS and RM codes allow us to apply a polynomial function
to each position of codewords. Other families of codes based
on polynomials allow for this operation as well. By performing
parallel multiplication of basis vectors, we can construct
many families of linear codes that meet this requirement. We
present our construction below, then highlight its connection
to existing codes.

1) To define a family of codes, begin with an initial
linear codeC0 over a fieldF . SinceC0 is linear, each
codeword is a linear combination of basis vectorsB0.

2) Let∧(B0) be the set of all possible parallel products of
pairs of basis vectors inB0.

3) We use the parallel product operation to construct a
family of codes. LetBi = ∧(Bi−1)

⋃
Bi−1 and let

Ci be the code consisting of all linear combinations of
vectors inBi.

It is straightforward to show that|Bi| ≤ (|B0|+1)i. It is also
straightforward to show that if a codewords belongs toCi,
then application of a degreem polynomial,Φ(r, s, t), results
in a codeword inCi+m−1. This result applies to extension
polynomials in more than three variables.

IV. L OWER BOUNDS

Given how successful error correcting codes have been
against data transmission errors, their use in computation
seems natural. Some early lower bounds suggested that this
was difficult, and that under somewhat restrictive assumptions,
one cannot do better than simple gate repetition.

In a single stepE∗(x, y, w) = Φ
(n)(x, y, w) is computed.

If for each value ofj, wj denotes⊕ (XOR), addition over
GF (2), the computation is easily encoded by a linear error
correcting code overGF (2) with encoding functionEL. Then
E∗(x, y, w) = EL(x)⊕EL(y) where⊕ denotes vectorXOR.

5

In this caseC∗ andC are the same and a subsequent transcod-
ing step is unnecessary. This holds true if each instructionis
the XOR of the complement of one or both of its inputs.

Consider computations in which each operation is ofAND-
type, that is, it is theAND with complementation on one or
both inputs or the output. When the codesC andC∗ are the
same, the following holds.

Theorem IV.1 ([13]) Let C be an [n, k, d]2 code. When two
codewords inC are combined component-wise with anAND-
type Boolean operation and the resultant codeC∗ = C, then
n ≥ kd. That is,C is no more efficient than simply repeating
each symbold times.

This lower bound demonstrates that you can’t do better than
a repetition code whenΦ(r, s, t) is applied with no transcod-
ing. It does not, however, take into account the possibilityof
applying a function of more than one symbol per codeword.
The next theorem considers the case which the code alphabet
is non-binary and each output can be a function of up to
c components of each codeword. The result shows that the
lower bound onn of Theorem IV.1 can only be decreased by
increasingc or |G|.

Theorem IV.2 Let C be an [n, k, d]|G| code and letE :
Gn 7→ Gn be its encoding function. LetT : G2n 7→ Gn

compute the encoding of the component-wiseAND of two
k-tuples from the encodings of these two tuples. That is,
T (E(x), E(y)) = E(x ∧ y). If each output ofT , Ti, is
a function of at mostc symbols ofE(x) and E(y)), the
inequalityn ≥ kd/(c log2 |G|) must hold.

Proof: Let T (α, β)i denote theith component of
T (α, β). By assumptionT (α, β)i depends on at mostc
components ofα and ofβ. Let S(i) denote these components
of α. Then,|S(i)| ≤ c.

Let 1r be ak-tuple in which all components are 0 except
for the rth which has value 1. Also, let0 be thek-tuple in
which all components are 0.

By definition, T (E(x), E(1r)) = E(1r) or E(0) depend-
ing on whetherxr = 1 or xr = 0.

Let ζr
i (E(x)) = T (E(x), E(1r))i denote theith compo-

nent of T (E(x), E(1r)). ζr
i (E(x)) depends on|S(i)| com-

ponents ofx. By assumption,|S(i)| ≤ c.

Because the code has minimum distanced, there are at least
d positions at which the codewordsE(1r) andE(0) differ. Let
I(0, r) denote these positions. Observe that for eachr, we can
selecti in I(0, r) and computeζr

i (E(x)). Sinceζr
i (E(x)) =

Ei(0) if and only if xr = 0, knowing ζr
i (E(x)) reveals the

value ofxr.

Let ES(i)(x) denote the components ofE(x) in positions
S(i), |S(i)| ≤ c. It follows thatES(i)(x) ∈ Gc.

Let Ri denote the values ofr such thati ∈ I(0, r). Knowing
ES(i)(x) revealsxr for any r ∈ Ri. SinceES(i)(x) takes
at most|G|c possible values and each variablexr takes two
values,2Ri ≤ |G|c or |Ri| ≤ c log |G|.

Pairs(r, i) satisfyingr ∈ Ri if and only if i ∈ I(0, r) are
called linked pairs. The total number of linked pairs,Q, can

be counted two ways:

Q =

k∑

r=1

|I(0, r)| =

n∑

i=1

|Ri|

Since we know|I(0, r)| ≥ d, and |Ri| ≤ c log2 |G|, we have
kd ≤ cn log2 |G|, the desired bound.

The argument of this proof applies to any “AND-like”
function such asNAND, OR, or NOR and to any Boolean
functions of two or more variables that are “partially sensitive,”
meaning they can made independent as well as dependent on
some variable by choice of values for the remaining variables.

V. CONCLUSIONS

We have outlined a framework for fault-tolerant coded
computation. It extends an approach introduced by Spielman
but offers significantly more design flexibility, reduced over-
head, and simplicity. Coded computation has the potential to
outperform the performance of the repetition-based model.
Our approach is based on applying extension polynomials to
parallel product codes and simulating the data movement steps
required for arbitrary computations by composing a fixed set
of permutations permitted by the transcoding process.

REFERENCES

[1] John von Neumann. Probabilistic logics and the synthesis of reliable or-
ganisms from unreliable componets. In C. E. Shannon and J. McCarthy,
editors,Automata Studies, pages 43–98, 1956.

[2] Nicholas Pippenger. On networks of noisy gates. InProcs. 26th IEEE
FOCS Symposium, pages 30–38, 1985.

[3] Peter Gacs. Reliable computation. Technical report, Department of
Computer Science, Boston University, 2005.

[4] Jie Han, J. Gao, P. Jonker, Yan Qi, and J.A.B. Fortes. Toward hardware-
redundant, fault-tolerant logic for nanoelectronics.IEEE Design and Test
of Computers, 22(4):328–339, July-Aug. 2005.

[5] N. Pippenger, G.D. Stamoulis, and J.N. Tsitsiklis. On a lower bound
for the redundancy of reliable networks with noisy gates.Information
Theory, IEEE Transactions on, 37(3):639–643, May 1991.

[6] Gacs and Gal. Lower bounds for the complexity of reliableboolean
circuits with noisy gates.IEEETIT: IEEE Transactions on Information
Theory, 40, 1994.

[7] William S. Evans. Information theory and noisy computation. Technical
Report TR-94-057, Berkeley, CA, 1994.

[8] André DeHon. Law of large numbers system design. In Sandeep K.
Shukla and R. Iris Bahar, editors,Nano, Quantum and Molecular
Computing: Implications to High Level Design and Validation, pages
213–241. Kluwer, 2004.

[9] R. W. Hamming. Error detecting and error correcting codes. Bell Syst.
Techn. J., 29(2):147–160, 1950.

[10] C. Hadjicostis and G. Verghese. Fault-tolerant linearfinite state ma-
chines, 1999.

[11] Peter Elias. Computation in the presence of noice.IBM J. Res. Develop.,
2:346–353, 1958.

[12] W. W. Peterson and M. O. Rabin. On codes for checking logical
operations.IBM Journal of Research and Development, 3(2):163–168,
1959.

[13] S. Winograd. Coding for logical operations.IBM Journal of Research
and Development, 6(4):430–436, 1962.

[14] Daniel A. Spielman. Highly fault-tolerant parallel computation. InProcs.
37th IEEE FOCS Symposium, pages 154–163, 1996.

[15] V. E. Beneš. Permutation groups, complexes, and rearrangeable multi-
stage connecting networks.Bell Syst. Techn. J., 43:1619–1640, 1964.

[16] H. S. Stone. Parallel processing with the perfect shuffle. IEEE Trans.
Computers, C-20:153–161, 1971.

[17] Jacobus H. van Lint.Coding Theory. Springer-Verlag, Lecture Notes in
Mathematics, Berlin, 1973.

