A Framework for Coded Computation

Eric Rachlin and John E. Savage
Computer Science, Brown University
Providence, Rl 02912-1910

Abstract— Error-correcting codes have been very successful all gates can fail with probability, the inputs and outputs
in protecting against errors in data transmission. Computng of a circuit always have probability of being incorrect.
on encoded data, however, has proved more difficult. In this For a sensitive function oiV inputs, XoR for instance, each
paper we extend a framework introduced by Spielman [14] for . L . ’
computing on encoded data. This new formulation offers sigifi- !nput qut be sampled)(log N) times simply toensurethat .
cantly more design flexibility, reduced overhead, and simptity. information about its correct value reaches the output with
It allows for a larger variety of codes to be used in computaton high probability. In other words, since the inputs to a direwe

and makes explicit conditions on codes that are compatible ith essentially encoded using repetition, the amount of redooy
computation. We also provide a lower bound on the overhead for a reliable encoding i§2(log N) = Q(log |C|).

required for a single step of coded computation. . . _
In this paper, we consider a more general, and more realistic

model of noisy computation in which some gates can be larger,
. INTRODUCTION but highly reliable (much like today’s CMOS gates), while
maost gates are small, but susceptible to transient fail(aes

When symbols are transmitted across a noisy channel, Oapn%icipated characteristic of nanoscale technologies [8]

of the most basic approaches for protecting against ersors’i . . .
bp P gag In this new model, most computational steps are done using

to use a repetition code. Since the birth of coding theory in
, . noisy gates interspersed by a few steps in which reliablesgat
the 1940'’s, however, many far more efficient codes have been : .
. re used to decode and re-encode data without errors. This
discovered. Unfortunately, analogous results have noh be) .
. . . model more closely parallels data being transmitted over a
obtained for noisy computation.

: . . . noisy channel using a reliable encoder and decoder.
In this paper, we consider networks of noisy computing A q trate. thisoded ati del int
elements, logic gates, for example, in which each elemant S we demonstrate, thisoded computationmodel Intro-

“fail” independently at random with probability. When an (?uges 1mlde r";nt%(_a of ngwl E}e&gn tptc:53|bll|t|(tas m_cluldlntg (r;ev(;/
element fails, it outputs an incorrect value. codes. ough this mode! has not been extensively studie

In 1956, von Neumann proposed the first systematic Jower bounds on circuit size have been obtained. We will

proach to building logic circuits from noisy gates [1]. His eview and generalize these bounds,
approach was to repeat each gatémes, then periodically
suppress errors by taking many random majorities. Thisng ve 1. RELATED WORK

similar to protecting transmitted data using a repetitiodes Linear error correcting codes have been in use since the

Thle m:;1ir_1| co?plicstion s tha} _the majq(;ity gates Canmthe_rﬂ%Os [9]. These are codes defined over finite fields in which
Selves fai '_T us, t € newgoalis to avoid error accumaatll e opeck symbols are linear combinations of the infornmatio
Wh'le_ keeping the size (,)f majority gates constant. symbols. When the computations that need to be coded are

Thirty years later _P|ppenger successfully analyze_d VQfear, it is known how to compute on such encoded data [10].
Neumann’s construction [2]. He demonstrated that given{g,e proplem is much more complex when the computations
fault-free circuit of sizeC', a fault-tolerant version of it", = 516 o jinear. Early work in coded computation estabtishe
could be constructed of siz@(|C|log|C|) such that for all simple lower bounds [11], [12], [13] (see Section V) that
inputs the probability that an output af’ is in error is suggest the difficulty of this problem.

within _O(e). An excellent description _of this analysis can be Spielman [14] has proposed a general purpose approach
found in [3]. Un_fortuna_tely the analysis also suggests thet 1, coded computation that we extend in this paper. First, he
const{mt associated with thg(log |C'|) bound is large, as do proposed that codes be used over alphabets that are sgperset
experlmeptal results [4]'. of the source data alphabets. These codes may use symbols
After P|ppenger obtained an upper bound gnhe and from a larger alphabet for check symbols. Second, he prapose
others obtalne_d Iqwer bounds ftie size _Of von Ne“maf‘” that the definition of functions over the smaller alphabetke
fault-tolerant circuits. Under the assumption that allegafail .\ yad to functions over the larger alphabet using intetjm

independently with probability, the size and depth required olynomials. Third, he proposed that data be encoded using
for repetition-based fault tolerance has been shown to gs Reed-Solomon (RS) codes.

within a constanfactor of optimal for many basic functions In Spielman's approach, the result of computing on RS

(xor for example) [5], [6], [7]. The derivation of these bOund%ncoded data is RS encoded data using an RS code with
highlight a shortcoming of the von Neumann model. Sing

Smaller error correcting capability than the original codleis
This research was funded in part by NSF Grants CCF-04036a4ar- overcomes the lower bounds referenced above. However, it ne
0726794. cessitates that the newly computed data be “transcoded’ bac

to the original code so that another computational step ean®. One-Step of Coded Computation

taken on datg in the origingl formr_zlt. Both the computations gjpce the goal is to compute on encoded data and produce
and transcodings are done in a noisy environment. encoded data as a result, for this treatment we assume that
The overhead of the Spielman approach is quite |arg;:ematic codes are used, although it is not strictly reecgs
RS codes, along with his use of processor-based hyperc¢fghsequently, when there are no component failures, the
networks both introduce significant overhead. In our frameagyits of a computation in the absence of coding appear
work we demonstrate that this overhead can be reducggpiicitly in the encoded result. The challenge is to find a
More importantly, we describe how other codes and networ{ﬁgﬁy to combine the check symbols so that the results of a
topologies can be employed. Unlike Spielman’s approach, Wgmputation in the absence of failures is a codeword in a

Offer a mUCh Wider range Of design pOSSIbI|ItIeS code with good error correction Capabmty
Let the inputsz and y to a step be encoded by a code
[1l. CODED COMPUTATION C with encoding functionE : F* — G". That is,G is the

. . codeword alphabet is assumed to be a superset of the input
In our general model of coded computation data is encodeflynapetr that is.F C (. Because we wish the coded results
then computations are performed on data producing results pe systematic, that is, to contain theinencoded results of

a potentially different code, which are mapped back to the,-h step in the output codeword, we use the operdfox(z;,
original code. y, w) to combine these values.

This formulation leaves unresolved how to combine the
A. Model of Computation check symbols in the two codewords. For computations on

o _hypercubes Spielman [14] proposes extending the definition

Our model of computation is that of a network of basigf the functions(x, y, w) using interpolation polynomialsg.
computing elements. These elements can be logic gates @t refer to these asxtension polynomials one example of
compute simple Boolean functions, or more complex cOMyhich is the interpolation of:(z, y, w) defined below. As we
puting elements, such as full fledged processors computifigsirate in Section I1I-E, extension polynomials need be
arithmetic and logic functions, such as found in hypercubegmited to interpolations over three variables.

In this model, a single step of computation on input vectors ap interpolation polynomial ®(r, s,t) is given below in
@ = (11,22, .., x) andy = (y1,42,..-,yk) is simply the termsof A7 (r, u, X) = ["—£ a function with value

application of functions from a setf = {¢; : F2 — F | 1 whenr —u and 0 forr £ 4 when’ € X.

1 < j < h} to pairs of inputs. Letw = (wy,ws,...,wy)
(instructions) identify the functions applied. Then, wendee ®(r.s,t) = > r(u, v, w)M(r,u,U)M(s,v, V)M (t,w,V)

this operation ag(*) and where u,v,w
k) Hereu € U, v € V, andw € W where it is assumed that
K (@, y, w) = (K1, g, wi),s - 62k, Yk w)) U,V,W C F. It follows that®(r, s, t) = x(r, s,t) whenr, s,

g andt are inU, V- andW. However,®(r, s,t) is also defined
for r, s, andt in G. The degrees ob(r, s,t) in r, s andt are
|U| -1, |V] -1, and|W| — 1, respectively.
To perform multiple steps of computation, the output o (g))ne step of encoded c_ompgtatlo,rdenotedE (. y, w) -
(k) : : . (E(x),E(y), E(w)), is defined to be the component-wise
z; = k¥ (x,y,w) is copied and each copy is permuted. A licati ‘o o th dinasy ja d
the next step, new instructions’ are applied to permuted %pp |caf|on 0 (g’s’)'tho de gnco ingst(x), E(y) an
data, as shown below, to compute the next value. (w) of #, y andw with codeC.
(I)(n) (aa ba C) = ((I)(ala bla cl)7 ceey (I)(anv bnv Cn))

and k(z,y,w) = ¢u(x,y). When this model is applie
to circuits, F = {0,1} and H may contain the functions

¢1(x,y) = NAND(z,y), and ¢a(z,y) = .

Ziy1 = K)(k) (71'1 (Zt), 7T2(Z), ’LU/)
E*(z,y,w) is a codeword in a codé™ potentially different

Our computational model allows far;, 72, andw to vary from C. Fault-tolerant computation requires t@t has good
from step to step. The number of computations per step caior correcting capabilities. Such codes are discusskivbe
also vary, but in this paper we assume it is constant. Transcoding is the task of correcting errors if* (x, y, w)

We note that computations by logic circuits and hypercubpsoduced by one step of computation and mapping the result
in which data is shared between processors that are adjaterd word close ta (k) (x, y, w)). Transcoding is simplest
along one dimension of the hypercube fit this model. Circuiis C' and, thusC*, are systematic. However, transcoding can
can be limited to fanout two and “levelized” so that data novére performed on nonsystematic codes as well. Wheis
synchronously from one level to the next. In such circuitsystematicE*(x, y, w) can be decoded (or simply corrected)
gates have level if the longest path to an external inputto directly obtain the information symbols that corresponmd
passes through— 1 gates. A wire passing through a levek®) (z,y, w). In the absence of errors, these symbols can
is augmented by introducing a “buffer” element at that levethen be re-encoded i6. However, in a noisy computation,
thereby ensuring that wires only pass between levels. this approach is not fault-tolerant, since a single deapdimor

Large reliable gates can be used to periodically decode aswlld corrupt the entire transcoding process.
re-encode data so that the probability of a transcoding &ro To provide fault-tolerance, Spielman proposes using 2D RS
kept small. codesC. Such codes are frequently used to cope with burst

errors. We observe that Spielman’s basic approach can daa, we can first decode the rows, applf) to the encoded
made to work with any multidimensional linear code. In theolumns, then re-encode the rows. We still appl§p) directly
case of an arbitrary systematic 2D linear code, for exampte,encoded columns, but we avoid applying it to encoded rows.
codes can be transcoded first by rows, then by columns. Whs a result, the row code can be any linear code we choose.
transcoding is done one dimension at a time, an error that

corrupts an entire row or column can still be corrected tﬁ Comparison with Exisiting Models

transcoding along the other dimension. This works even when _
a different linear code is used in each dimension. The above model for coded computation captures the

essence of the von Neumann [1] and Spielman [14] models. In
. the von Neumann model data at gates and gates themselves are
C. Codeword Permutations replicatedr times and the results computedmajority gates

Our model of computation requires that outputs from or@'® introduced, one for each copy of the original gate. Their
Stage of a Computation bhe Copied and permuted to Supwuts are pseUdO'randomly selected subsets of the OlﬂpUtS
inputs to the next stage. In a coded computation this meaife copies. These gates help to avoid error accumulatjon [2
that codewords must be permuted. Spielman’s model is thé-dimensional hypercube in which

If a permutation applied to a codeword doesn't return gach processor receives an independent instruction stream
codeword in the same code, it will be difficult to determine thand processors alternate between communication with their
nature of the code that results from the next computatign stélieghbor(s) and performing local computations. Compoitesti
Thus, it is essential that we be able to decompose arbitr&# other parallel machine models can be mapped to the hyper-
permutations into a series of individual permutations that cube efficiently. Spielman assumes that data moves between
not change the code. In this section, we describe howPEOCessors along one dimension of the hypercube on each time
small set of allowable code-preserving permutations can B€p- The operation; performed by a processor is determined
composed to perform arbitrary permutations. by its instruction and the processor design.

1) Permuting Codewords DirectlySpielman [14] has ob-
served that wherG = GF(27), RS codes are closed un-E. Examples of Extension Polynomials
der permutations that correspond to data movement alon
a single dimension of a hypercube. RS codes, as well
many other codes, are also closed under cyclic shifts. Boé
types of permutation are sufficiently powerful to implemergx
arbitrary permutations when combined with the correct choi

of o(r, s, ¢). . . L .. __asNAND. If the gates consist of botkanD and buffer gates,
Many network topologies exist which implement arbltrar)(he extension polynomiab(r, s, z) = (1 — rs)z + (1 — z)

permutations using a_Iimited s_et of of pe_rmutations. F%turns the value of either thheanD of the two inputs when
example, the permutations obtained by moving data alonqr?e instruction isz = 1 or the first of the two inputs when it
common dimension of the hypercube can be composed -%0

9 coded computation is to be done with a circuit and each
the gate operations is BAND, the instruction word is
nstant and the input alphabet 8 = GF(2). Thus, the
tension polynomial, which doesn’t depend on the instruc-
tion, is ®(r, s) = (1 —rs). OverGF'(2) it has the same value

q : Bened K of back-to-back FETs 1187 = — 0 andr ands are variables oveZF(2).
sort datausing a Benes network of back-to-bac s Extension polynomials need not have one variable for each

where each node implements only the switching operati%ut and instruction. For example, when the baSisof
@(r,s,t) =1t +s(1—1) for ¢ € {0,1}. , Boolean operations includesip, OrR andNOT, the extension
If permutationsr; andm, are hypercube permutations, on%olynomialtb(r 5,21, 22) = 182120 + (14 5+78)21 (1 — 22) +
can simulate data movement through a butterfly gi@#rs) | _ (1 — 21)7(17— ;2) retumSAND whenz; — z, = 1, OR
If 71 andmy are one-unit cyclic shifts, they can simulate da%en z =1 andz, = 0, andNOT on whenz; = 2z, = 0
movement on a shuffle exchange graph. This in turn can ’ '

4 imul b i b which all ; i ere addition and multiplication are ovéF(2), that is,
used to simu gte a buttertly graph, which allows for arbytraraddition isXOR and multiplication iSAND. This polynomial
data permutations [16].

_ ;) . allows binary codes to be used instead of requiring that £ode
2) Permuting during TranscodingWhen 2D linear codes o gyer large fields

are used, arbltrary permutatlons. of either rows or COIum_nSIfcoded computation is done with hypercubes, the extension

can be reahzeq during transcodmg. Repall that trans@d'ﬂolynomial depends on the processors employed. Complex

involves _decodmg and re—encodl_ng data in each row fonowgocessors may require very high degree extension polyno-

by that in each column. After just the rows (or columnsl,iqg However, high degree polynomials can be implemented

have _been decoded, however, the encoded columns (or rops ugh successive applications of low degree polynomials
remain. These encoded columns (or rows) can be reorde{ﬁgreby minimizing their overhead.

before re-encoding takes place. This operation is suffiigien

powerful to simulate hypercube-style data movement and, as _ o

a result, allows us to consider linear codes that are noedlod~ Encoding with Linear Codes

under a specific set of permutations. The result of composing an extension polynon®t, s, ¢)
This important observation also allows us to use codes tl@mmponent-wise with codewords(x), E(y), andE(w) in C

don’t allow for the direct application oo™ described in generates a word in a new cod& denotedE* : G3¢ — G™.

Section I1I-B. Instead of applying(™ directly to the encoded Our objective is to determine the properties of the co6tie

Let the codeC' be linear with generator matrix/. Then, Itis also acceptable if the rows and columns are encoded usin
E(x) = xM, E(y) = yM, and E(w) = wM where M is different linear codes.
a k x n generator matrix ove€; andx is in F*. Let By = As an alternative to RS codes one can employ Reed-Muller
{b1,bs,...,b;} be thebasisn-vectors of matrix M. Then, (RM) codes. Like RS codes, RM codes are also defined by
& & evaluating a polynomial. Instead of a one-dimensionalrelg
E(z) = inbi and E(z); = Zwibij d polynomial, pg (u), over an arbitrary fieldz, (r,m)-RM
B k codes are formed by evaluating radimensional, degree:
olynomial,pq (u1, ..., u,) overGF(2)". Like RS codes, these
odes are linear since each degregolynomial is of the
formpa (w1, ..., ur) =3 a;pi(uq, ..., ur), Wwhere each; is the
product of at mosin variables. The codeword corresponding
k k k to pa(u1, ..., u,) is the value of the polynomial at all points in
E*(x,y,w); = > wibij, > yibij, »_ wibi ;) GF(2)". The minimum distance of this codesds~" [17].
i=1 i=1 i=1 Similar to RS codes, RM codes allow for applications of a
Since®(r, s, t) is a multivariate polynomial, it contains prod-polynomial®. For example, when the parallel product is taken

ucts of powers ofr, s, and ¢ plus a constant term. LetOf two codewords in artr,m)-RM codeit yields an (r, 2m)-
aAb = (a;*by,as * by, ..., an * by,) denote theparallel RM code.Unlike RS codes, RM codes allo® to be realized

product of basis vectors where; « b; is multiplication in the as bitwise operations. Both classes of codes are closed ande
field G. Then, the output codeword* can be expressed as avide range of permutations, for example, those correspgndi
linear combination of the parallel product of powers of basto data movement on a hypercube.

vectors inBy. The maximum degree of these products is the

sum of the degrees d@b(r, s, t) in r, s, andt.

i=1
When ®(r, s,t) is applied component-wise to the encodeg

inputs, it produces the encoded outfiit(x, y, w) whosejth
component is given below.

H. Families of Parallel Product Codes

RS and RM codes allow us to apply a polynomial function
to each position of codewords. Other families of codes based

Spielman [14] has proposed using two-dimensional Reegly holynomials allow for this operation as well. By perfongi

Solomon (RS) codes as the basic cadeBefore introducing parajiel multiplication of basis vectors, we can construct
these codes, we consider one-dimensional RS codes. many families of linear codes that meet this requirement. We

An [n, k,d], code has block length, & information sym- hresent our construction below, then highlight its conioect
bols, minimum distancé, and code alphabet of sizeA stan- ;5 existing codes.

dard[n, k, d];| RS code is defined by polynomials. Given the
k source values = (ag, a1, ..., ax—1) from the finite fieldG
the corresponding codewo(dy, c1, . .., c,—1) is obtained by
evaluating the polynomialg (uv) = ag+aju+---+ap_juF—?
atn elements ol wherek < n. That is,c; = pa(g;) where
g1, 92, -- -, gi are elements of the field. It is easy to show
that RS codes have minimum distante- n — k& + 1.

The extended RS codes are defined by the evaluation of
one-dimensional interpolation polynomials. The integtioin
polynomial pq (u) is defined to have value; on g;, that is, _
a; = pa(g;). The extended RS codes are systematic. It is straightforward to show thaB;| < (|Bo|+1)". Itis also

The result of a coded computation using the extensiéffaightforward to show that if a codewords belongsCto
polynomial ®(r, s, ¢) is the word obtained by evaluating thethen application of a degree polynomial, ®(r, s, t), results
polynomial ® (i (u), py (u), frw(u)) atn elements of5. The in a codeword inC;1,,—1. This result applies to extension
resultant words are codewords in an extended RS «@tle Polynomials in more than three variables.
defined by a polynomial of degréd/|+|V|+|W|—3)(k—1)
of length n. Thus, the minimum distance of this code is
d =n—- (U +|V|+ W] -3)(k—-1) +1 and the
resultant code is afiG|,3(k — 1),d"] ;¢ code. Clearly, the ~ Given how successful error correcting codes have been
code has error correction capability onlydf > 3 or k < against data transmission errors, their use in computation
(n—=2)/(|U|+ V] + |W]| - 3). seems natural. Some early lower bounds suggested that this

A 2D RS code can be defined in a similar way, except byas difficult, and that under somewhat restrictive assuongti
evaluating a polynomigh of two variables at elements 6. one cannot do better than simple gate repetition.

A simpler approach, however, is to define these codes as onén a single steg* (x, y, w) = ®(™ (z, y, w) is computed.
would define any 2D linear code. This is a code in whiclf for each value ofj, w; denotes® (XOR), addition over
information symbols are arranged in a grid, and rows the&rF’(2), the computation is easily encoded by a linear error
columns are encoded. Since the code is linear, encoding terecting code ovef F'(2) with encoding functiorE,. Then
columns first, then the rows, will also produce the same codé*(x,y, w) = Fr(x)® EL(y) where® denotes vectoxOR.

G. Polynomial Input Codes

1) To define a family of codes, begin with an initial
linear codeCy over a fieldF'. Since(y is linear, each
codeword is a linear combination of basis vect®s

2) LetA(By) be the set of all possible parallel products of
pairs of basis vectors if.

3) We use the parallel product operation to construct a

family of codes. LetB, = A(B;—1)JBi;—1 and let

C; be the code consisting of all linear combinations of

vectors inB;.

IV. LOWERBOUNDS

In this caseC* and(' are the same and a subsequent transcdak counted two ways:
ing step is unnecessary. This holds true if each instrudggon

k n
the XOR of the complement of one or both of its inputs. Q= Z 11(0,r)| = Z |R;|
Consider computations in which each operation iaRb- r=1 i=1

type, that is, it is theanD with complementation on one or gjce we knowZ(0,7)| > d, and|R;| < clog, |G|, we have

both inputs or the output. When the codésandC* are the ., cnlog, |G], the desired bound. -

same, the following holds. The argument of this proof applies to anynND-like”
function such asNAND, OR, or NOR and to any Boolean

Theorem IV.1 ([13]) Let C' be an[n, k, d]> code. When two functions of two or more variables that are “partially séusj’

codewords inC' are combined component-wise with AND- meaning they can made independent as well as dependent on

type Boolean operation and the resultant cade = C, then some variable by choice of values for the remaining vargble

n > kd. That is,C is no more efficient than simply repeating

each symboll times. V. CONCLUSIONS

Thlstl_i)_wer b(()jund:eﬂr)nonstrat_es thalt_ y(;)u (_:tz;\]ntd? betterdthanWe have outlined a framework for fault-tolerant coded
a repetition code whe(r, s,) is applied with no transcod- computation. It extends an approach introduced by Spielman

ing.llt. doesfnot, .howiver, tak(:] into accounl; tklle possi(;)di‘ty Hut offers significantly more design flexibility, reducedeov
applying a function of more than one symbol per codewor ead, and simplicity. Coded computation has the poterdial t

The next theorem considers the case which the code alpha&ﬁberform the performance of the repetition-based model.

gur approach is based on applying extension polynomials to
Srallel product codes and simulating the data movemeps ste
¥equired for arbitrary computations by composing a fixed set
of permutations permitted by the transcoding process.

is non-binary and each output can be a function of up

¢ components of each codeword. The result shows that

lower bound om of Theorem IV.1 can only be decreased b
increasinge or |G|.

Theorem IV.2 Let C' be an [n,k,d]g code and lett :
G™ — G" be its encoding function. Lt : G** — G"
compute the encoding of the component-wised of two [1]
k-tuples from the encodings of these two tuples. That is,
T(E(x),E(y)) = E(xz A y). If each output ofT’, T;, is [2
a function of at most symbols ofE(x) and E(y)), the 3]
inequalityn > kd/(clog, |G|) must hold.

Proof: Let T(a,3); denote theith component of [
T(a,B). By assumptionT(«, 3); depends on at most
components o&x and of 3. Let S(i) denote these components[5]
of a. Then,|S(i)| <ec.

Let 1,. be ak-tuple in which all components are 0 except|e]
for the rth which has value 1. Also, ldd be thek-tuple in
which all components are 0.

By definition, T'(E(x), E(1,)) = E(1,) or E(0) depend-

(7]

REFERENCES

John von Neumann. Probabilistic logics and the synthetreliable or-
ganisms from unreliable componets. In C. E. Shannon and Calay,
editors, Automata Studiespages 43-98, 1956.

Nicholas Pippenger. On networks of noisy gates.Phocs. 26th IEEE
FOCS Symposiunpages 30-38, 1985.

Peter Gacs. Reliable computation. Technical reportpdbenent of
Computer Science, Boston University, 2005.

Jie Han, J. Gao, P. Jonker, Yan Qi, and J.A.B. Fortes. Tawmardware-
redundant, fault-tolerant logic for nanoelectroniiSEE Design and Test
of Computers22(4):328-339, July-Aug. 2005.

N. Pippenger, G.D. Stamoulis, and J.N. Tsitsiklis. Onowér bound
for the redundancy of reliable networks with noisy gatésormation
Theory, |IEEE Transactions 9137(3):639-643, May 1991.

Gacs and Gal. Lower bounds for the complexity of reliableolean
circuits with noisy gateslIEEETIT: IEEE Transactions on Information
Theory 40, 1994.

William S. Evans. Information theory and noisy compigat Technical
Report TR-94-057, Berkeley, CA, 1994.

[8] André DeHon. Law of large numbers system design. In 8apdK.

ing on whetherr,. =1 or z,. = 0.]

Let {/(E(x)) = T(E(x), E(1,)); denote theith compo-
nent of T'(E(x), E(1,)). ¢/ (E(x)) depends onS(#)| com-
ponents ofx. By assumption|S(i)| < c.

Because the code has minimum distadgthere are at least [10]
d positions at which the codeword¥(1,.) and£(0) differ. Let 1,
1(0,r) denote these positions. Observe that for egake can
select: in I1(0,r) and comput&! (E(x)). Since¢! (E(x))
E;(0) if and only if 2, = 0, knowing ¢/ (E(x)) reveals the
value ofz,.

Let £5()(x) denote the components @ (x) in positions
S(i), |S(i)| < c. It follows that ES®)(z) € Ge.

Let R; denote the values efsuch that € 1(0,r). Knowing
B0 (x) revealsz, for any r € R;. Since E°()(z) takes
at most|G|© possible values and each variable takes two
values,2% < |G|¢ or |R;| < clog|G].

Pairs(r,7) satisfyingr € R; if and only if i € I(0,r) are
calledlinked pairs. The total number of linked pairg), can

El

[12]

[13]
[14]
[15]
[16]

[17]

Shukla and R. Iris Bahar, editordyano, Quantum and Molecular
Computing: Implications to High Level Design and Validatigpages
213-241. Kluwer, 2004.

R. W. Hamming. Error detecting and error correcting cdgell Syst.
Techn. J.29(2):147-160, 1950.

C. Hadjicostis and G. Verghese. Fault-tolerant linéaite state ma-
chines, 1999.

Peter Elias. Computation in the presence of noiBd/ J. Res. Develop.
2:346-353, 1958.

W. W. Peterson and M. O. Rabin. On codes for checkingchlgi
operations.IBM Journal of Research and Developme8¢2):163-168,
1959.

S. Winograd. Coding for logical operation$8M Journal of Research
and Development6(4):430-436, 1962.

Daniel A. Spielman. Highly fault-tolerant parallel oputation. InProcs.
37th IEEE FOCS Symposiymages 154-163, 1996.

V. E. BeneS. Permutation groups, complexes, and argaable multi-
stage connecting network8ell Syst. Techn. J43:1619-1640, 1964.
H. S. Stone. Parallel processing with the perfect sauffEEE Trans.
Computers C-20:153-161, 1971.

Jacobus H. van LintCoding Theory Springer-Verlag, Lecture Notes in
Mathematics, Berlin, 1973.

