Nanowire Addressing with Randomized-Contact Decoders

Eric Rachlin
John E Savage
Department of Computer Science
Brown University

Talk Outline

- Nanowire (NW) decoders and their applications.
- II. Decoding technologies.
- III. NW addressability.
- IV. The randomized-contact decoder (RCD).
- v. Performance of RCD.
- vi. Conclusions

What is a Nanowire (NW) Decoder?

- A decoder uses a small number of inputs wires to activates one of several output wires.
 - Used in crossbars, PLAs, etc...
- A nanowire decoder, mesowire (MW) inputs control NW outputs.
- Goal: Efficiently go from mesoscale (~100nm pitch) to nanoscale (~10nm pitch).

The Nanowire Decoder

 Efficient bridging between scales is best done by assembling multiple simple decoders.

Decoders share MWs.

- Each decoder has:
 - Mesoscale contact(s) for each group of NWs.
 - MWs address individual NWs within each group.

Challenges for NW Decoders

- NW addresses assigned stochastically.
 - Some NWs may not be addressable.
 - All addresses must be discovered!

 Address translation circuit (ATC) is required to map external to internal addresses.

Decoder Applications

- Crossbar memories and PLAs
 - MWs activate one NW in each dimension of crossbar.
 - NWs provide control over programmable crosspoints.
- Biological sampling
 - Antibodies are attached to NWs.
 - Charge-carrying proteins lock into antibodies.
 - NW resistance increases as proteins attach.

Our Results

- Model randomized-contact decoder (RCD) as well as faults in decoder assembly.
- Obtain analytical bounds on the probability that most, or all, NWs are addressable
- Compare RCD address translation strategies.
- Compare RCD with other types of decoders.

Talk Outline

- Nanowire (NW) decoders and their applications.
- **II.** Decoding technologies.
- III. NW addressability.
- IV. The randomized-contact decoder (RCD).
- v. Performance of RCD.
- vi. Conclusions

Uniform Nanowires

Created using nanolithography or stamping.

SNAP NWs

CVD NWs (Heath, Caltech) (Lieber, Harvard)

Must be differentiated after assembly.

NWs Differentiated During Manufacture

Modulation-doped

Misaligned NWs

Core-Shell

Aligned NWs

MW Control Over NWs

- MWs fields control NW resistances.
 - NWs can have lightly and heavily doped sections.
 - Lightly-doped NWs can be shielded in sections.
 - Fields can be intensified by high-K dielectrics.
- Binary versus modulated fields
 - In most decoders, a MW is either "on" or "off."
 - An IBM device combines multiple fields, selecting NWs based on their spatial location (IEDM'05).

Prior Work

- RCDs studied here
 - (Hogg et al IEEE Nano '06)
- Randomized mask-based decoders
 - (Beckman et al Science '05, Rachlin et al ISVLSI '06)
- IBM modulated field strength decoder
 - (Gopalakrishnan, IEDM '05)
- Grid-based decoders (such as CMOL)
 - (Likharev FPGA'06, DiSpigna IEEE Nano '06)
- Modulation-doped NW decoders
 - (DeHon et al IEEE Nano'03, Gojman et al ACM JETCS '05)
- Core-shell NW decoder
 - (Savage et al ACM JETCS '06)

Randomized-Contact Decoder

- Contacts made at random between NWs and MWs.
- When contact is made, the MW controls the NW.
 - The NW's resistance is high when the MW is on.
- Control may be incomplete, creating a possible error.

Talk Outline

14

- Nanowire (NW) decoders and their applications.
- II. Decoding technologies.
- III. NW addressability.
- IV. The randomized-contact decoder (RCD).
- v. Performance of RCD.
- vi. Conclusions

Modeling an Ideal and Non-Ideal NW Decoders

- Each NW is assigned a codeword $c = (c_1, c_2, ..., c_M)$.
 - c_i = 1 if the NW is controlled (turned off) by j^{th} MW.
 - $c_i = 0$ if the NW is unaffected by j^{th} MW.
 - $c_i = e$ if the NW is only partially controlled by j^{th} MW.
- Ideal (non-ideal) resistive model:
 - NW's resistance is low when all MWs are off.
 - c_i = 1 resistance increase = ∞ (> r_{high}) when j^{th} MW active.
 - $c_i = 0$ if resistance increase = 0 (< r_{low}) when j^{th} MW active.
 - $c_i = e$ otherwise.

NW Addressability

- A NW is "addressed" if its resistance is low and the combined resistance of all other NWs is high.
- Example
 - $c_1 = (1, 0, 1), c_2 = (0,0,1), c_3 = (0,1,1)$
 - 1s of c_1 and c_3 contain 1s of c_2 .
 - c_2 off $\Rightarrow c_1$ off.
 - \boldsymbol{c}_2 off $\Rightarrow \boldsymbol{c}_3$ off.
 - Can only individually address a codeword if it is not implied by another codeword.

Individually Addressable NWs in Ideal Decoders

- A NW n_i is individually addressable (i.a.) if a MW input $\mathbf{a} = (a_1, a_2, ..., a_M)$ exists such that n_i is addressed.
- (1, 0, 1,0), (0,1,0,1) and (0,1,1,0) are all i.a. assuming no other codewords are present.
- In ideal model, an i.a. NW with codeword c is addressed by $a = \overline{c}$ (Boolean complement).

Best Case Addressability

- A k-hot code contains all codewords with exactly k 1s in their M positions.
- Given M MWs, the set of [M/2]-hot NWs has the largest number of i.a. NWs (Rachlin et al, ISVLSI '06).
- Independent random contacts prevent the use of k-hot codes.

Talk Outline

- Nanowire (NW) decoders and their applications.
- II. Decoding technologies.
- III. NW addressability.
- v. The randomized-contact decoder (RCD).
- v. Performance of RCD.
- vi. Conclusions

Background on Randomized- Contact Decoder (RCD)

- Kuekes and Williams 2001 patent.
- Hoggs, et al (IEEE Trans. Nano, March 2006)
 - Focuses on simulation and empirical analysis
- Our contributions
 - Tight probabilistic analysis of RCD.
 - Bounds on the effect of errors.
 - Comparison of addressing strategies.

RCD Model

- g contact groups, w NWs per group
- N = gw
- N_a = number of individually addressable NWs

RCD Model (continued)

- M number of MWs.
- $p = \text{probability } c_i = 1.$
- $q = \text{probability } c_j = 0.$
- $r = 1-p-q = \text{probability } c_j = e$.
 - When errors occur, MW control is uncertain.
- Goal: Given "addressing strategy", p and q, find M so N_a NWs are i.a. w/ high probability.

Three Decoder Addressing Strategies

- All Wires Addressable (AWA)
 - In every contact group all wires are i.a.
- All Wires Almost Always Addressable (AWA³)
 - Only use contact groups in which all wires are i.a.
- Take What You Get (TWYG)
 - Use all i.a. NWs in all contact groups.
- Given N_a, w, g and M we can estimate the area of the ATC, crossbar and MWs for each strategy.

Address Translation

24

 Address translation circuit (ATC) maps fixed external addresses to random internal ones.

 N_a words in ATC, each of $(M + \sigma)$ bits

- σ = 0 for AWA
- $\sigma \approx 0$ for AWA³
- $\sigma = \log_2 g$ for TWYG

Talk Outline

- Nanowire (NW) decoders and their applications.
- II. Decoding technologies.
- III. NW addressability.
- IV. The randomized-contact decoder (RCD).
- v. Performance of RCD.
- vi. Conclusions

Challenges

- Our goal is to determine the number of i.a.
 NWs, N_a, given M, p, q, g and w.
- Whether or not a NW is i.a. depends on the other randomly assigned codewords in the NW's contact group.
- We want to bound the number of i.a. NWs with high probability, not just find the mean.

Methods for Bounding N_a

Chebyshev's inequality:

$$P(|x - E[x]| \ge k \sqrt{Var[x]}) \le 1/k^2$$

- Uses mean and variance in number of i.a.
 NWs in each contact group.
- Used for Take What You Get.
- Principle of Inclusion/Exclusion
 - $P(A_1) + P(A_2) P(A_1 \cap A_2) \le P(A_1 \cup A_2) \le P(A_1) + P(A_2)$
 - Used for AWA and AWA³.

Bounds on Addressable NWs Using Chebyshev's Inequality

Theorem Let $\alpha = 16\epsilon^{-1}/g$. With probability at least 1- ϵ , RCD with N = gw NWs has at least $N_a = 3/4 N(\alpha+1)/(\alpha+2)$ i.a. NWs if $M \ge \ln(N(2+\alpha))/(-g \ln(1-pq))$

- α = 8 is a reasonable value.
- Bound on M reflects errors if r = 1 (p+q) > 0.

Bounds on Addressable Wires Using Exclusion/Inclusion

Theorem In a simple RCD minimum value of *M* such that all NWs are addressable with probability 1-ε satisfies following lower bound

$$\frac{\ln(N(N-1)/2\epsilon)}{-\ln(1-pq)} \le M \le \frac{\ln(N(N-1)/\epsilon)}{-\ln(1-pq)}$$

when
$$M \ge \max\left(pq\min(p,q)^{-1}, \frac{\ln(10N(N-1))}{-\ln(1-pq)}\right)$$

Again, bound reflects errors if (p + q < 1).

Memory Area Estimates

• Area = $\rho N_a (M+\sigma) + \lambda_{meso}^2 g \log_2 g + (M \lambda_{meso} + N \lambda_{nano})^2$

- λ_{meso} = meso feature size, λ_{nano} = nano feature size
- ρ = area of CMOS bit
- Let $\lambda_{meso} = 10 \lambda_{nano}$, $\rho = 100 \lambda_{nano}^2$

Comparison of Addressing Strategies

- **Objective:** about $N_a = 1,000$ addressable NWs.
- Assuming error-free comparisons (p + q = 1, r = 0), strategies when w = 8:
 - AWA: $N_a = 1,024$, M = 47, N = 1,204, $\sigma = 0$
 - AWA³: $N_a = 1,024$, M = 30, N = 1,064, $\sigma \approx 0$
 - TWYG: $N_a = 1,080$, M = 16, N = 1,600, $\sigma = 8$
- AWA³ clearly dominates AWA.

Area Comparisons Between AWA³, TWYG

- Compare using Area_{ATC} + Area_{XBar}, ignoring the smaller Area_{std dcdr} term.
 - Area_{ATC} = $100N_a (M + \sigma) \lambda_{nano}^2$
 - Area_{XBar} = $(10M + N)^2 \lambda_{nano}^2$
- Parameters
 - AWA³: $N_a = 1,024$ for M = 30, g = 133, $\sigma \approx 0$
 - TWYG: $N_a = 1,080$ for M = 16, g = 200, $\sigma = 8$
- Both methods use about the same area but AWA³ is somewhat better than TWYG.

Tighter Bounds for TWYG

- TWYG analysis is less precise than other two
 - Distribution of N_a is close to Gaussian, which is not captured by Chebyshev's inequality.
 - Fewer than 10 standard deviations would suffice.
- Simulation shows that M ≈ 10 suffices!
 - At M = 10, TWYG is best strategy.

TWYG: Random Contact vs. Differentiated NW Decoders

- RCD
 - $N_a = 1,080$ for M = 16, g = 200, w = 8.
- Differentiated NW Decoder
 - M/2-hot NWs (with .8 penalty for misalignment)
 - $N_a = 1,033$ for M = 8, g = 180, w = 8.
 - Core-shell NWs (no misalignment, but larger NWs)
 - $N_a = 1,013$ for M = 12, g = 190, w = 8.
- RCD competitive (*M* is reasonable).

- Effect of partial contacts measured by r = 1-(p+q)
- Number of MWs for Take What You Get:
 M ≥ In(N(2 + α))/(-g In(1 pq))
- The effect of errors is to change M by factor of $S = \ln(3/4) / \ln(1 (1 r)^2/4)$ when p = q.

r	ß
.1	1.27
.2	1.65
.4	3.05

Conclusions

- Of 3 strategies TWYG is superior.
 - Analysis shows M can be small.
 - AWA³ is a close second, much better than AWA.
- RCD decoder can tolerate faults efficiently.
- RCD is competitive with other NW decoders.
 - It may be easier to implement than other methods.
- Codeword discovery is still an open problem!