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The Nanowire

• Nanoscale computing requires nanoscale
wires (NWs) and nanoscale devices.

• Sets of parallel NWs have been produced.

• Devices will reside at NW intersections.

• To control these devices, we must gain
control over individual NWs.
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NW Technologies

SNAP NWs
(Heath, Caltech)

CVD NWs
(Lieber, Harvard)

Copolymer
Directed Growth
(Stoykovich, UW)
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The Crossbar

The crossbar is currently
the most feasible nano-
scale architecture.

By addressing individual
NWs, we can control
programmable molecules
at NW crosspoints.

Crossbars are a basis for
memories and circuits.
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Nanowire Control
• Mesoscale contacts apply a potential along the

lengths of NWs.

• Mesoscale wires (MWs) apply fields to across
NWs, some of which form FETs.

• NW/MW junctions can form FETs using a
variety of technologies:

⇒ Modulation-doping

⇒ Random Particle deposition

⇒ Masking NWs with dielectric material
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Simple NW Decoders
• A potential is applied along the NWs.

• M MW inputs control N NW outputs.
Each MW controls a subset of NWs.

• When a MW produces a field, the current
in each NW it controls is greatly reduced.

• Each MW “subtracts” out subsets of NWs.
This permits M << N.

• Decoders are assembled stochastically and
become difficult to produce as N is large.
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Composite Decoders

• A composite decoder uses
multiple simple decoders
to control many NWs.

• The simple decoders share
MW inputs.

• This space savings allows
for mesoscale inputs.
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Ideal Decoders

• To analyze a decoder, we must model how
MWs control NWs.

• In an ideal decoder, a MW’s electric field
completely turns off the NWs it controls.
Other NWs are unaffected.

• This model is accurate if the FETs formed from
MW/NW junctions have high on/off ratios.
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Binary Codewords

• In an ideal decoder, we associate an M-bit
codeword, ci, with each NW, ni.

• The jth MW controls the ith NW if and
only if the jth bit of ci, cij, is 1.

• We also represent the decoder’s input as
an M-bit binary vector, A.

• ni carries a current if and only if A•ci = 0.
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Codeword Assignment

• Decoders are assembled stochastically.

• Codewords are assigned to NWs
according to a probability distribution.

• This distribution is a way of comparing
decoding technologies.

⇒ With no misalignment, modulation-doping
is at least as good as particle deposition.
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Codeword Interaction

• If cbj = 1 where caj = 1, ca implies cb.
Inputs that turn of na turn off nb.

• A set of codewords, S, is addressable
if some input turns off all NWs not in S.

• S = {ci} is addressable if and only if no
codeword implies ci. S is addressed with
input A = ci.
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Decoders for Memories
• A B-bit memory maps B addresses to B

disjoint sets of storage devices.

• A D-address memory decoder
addresses D disjoint
subsets of NWs.

• Equivalently, the decoder 
contains D addressable 
codewords.
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Resistive Decoders

• Decoders that rely on FETs are not ideal.

• MWs carrying a field increase each NW’s
resistance by some amount.

• In a resistive decoder, codewords are
real-valued. In real-valued codeword ri, rij is
the resistance induced in ni by the jth MW.

• On input A, ni’s resistance is rbase + A•ri.
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Ideal vs. Resistive
• In a resistive memory decoder the

addressed NWs must output more
current than the other NWs.

• Consider 1-hot codewords:

⇒ The addressed wire has resistance < rbase + Mrlow

⇒ Remaining wires have resistance > (rbase + rhigh)/N

• We require that rhigh >> MNrlow and Nrbase

• If rij ≤ rlow, cij = 0.
• If rij ≥ rhigh, cij = 1.
• If rlow < rij < rhigh, cij is an error.
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Ideal Decoders with Errors
• To apply the ideal model to resistive

decoders, consider binary codewords
with random errors.

• If cij = e, the jth MW increases ni‘s
resistance by an unknown amount.

• Consider input A such that the jth MW
carries a field. A functions reliably if a
MW for which cik = 1 carries a field.
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Balanced Hamming Distance

• Consider two error-free codewords, ca and cb.
Let |ca - cb] denote the number of inputs for
which caj = 1 and cbj = 0.

• The balanced Hamming distance (BHD)
between ca and cb is 2•min(|ca - cb], |cb - ca]).

• If ca and cb have a BHD of 2d + 2 they can
collectively tolerate up to d errors.
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Fault-Tolerant Random
Particle Decoders

• In a particle deposition decoder, cij = 1 with
some fixed probability, p.

• If each pair of codeword has a BHD of at
least 2d + 2, the decoder can tolerate d
errors per pair.

• This holds with probability > 1- f  when
(d + (d2 + 4 ln(N2/f ))1/2)2

4p(1 - p)M >
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Codeword Discovery
• Random codewords must be discovered to

map memory addresses to decoder inputs.

• Input A’ contains A if A’j = 1 where Aj = 1.

• If ci is addressable, A = ci produces a current,
but inputs containing A do not.

• By testing if inputs produce currents, the
codewords in an error-free decoder are
discovered without nanoscale measurement.
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Codeword Discovery
with Errors

• If errors are present, we cannot just test
for the presence or absence of current.

• If inputs A and B both produce sufficiently
large currents, we can be certain that both
address some NW.

• If their union produces a small current, the
inputs address distinct codewords.
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Conclusion
• Stochastically assembled decoders can

reliably control NWs even if errors occur.

• Our decoder model applies to many viable
technologies. It provides conditions that a
decoder must be meet.

• Discovery algorithms verify that a decoder
functions properly without requiring
nanoscale measurements.


