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Abstract— Human behavior is powerfully guided by social 
and moral norms. Robots that enter human societies must 
therefore behave in norm-conforming ways as well. However, 
there is currently no cognitive, let alone computational model 
available of how humans represent, activate, and learn norms. 
We offer first steps toward such a model and apply it to the 
design of a norm-competent social robot. We propose a general 
methodology for such a design, from empirical identification of 
relevant norms to computational implementations of norm 
learning to thorough and iterative evaluation of the robot’s norm 
compliance by means of community feedback.  

I. INTRODUCTION 

No human community can exist without norms [1]—the 
social and moral rules of behavior that community members 
are expected to follow, for the benefit of the community as a 
whole. At a steady pace, robots are entering domains such as 
health care, education, and security, and in these domains 
robots will likewise be expected to follow the relevant social 
and moral norms. If robots do not follow such norms, they will 
be unlikely to benefit human communities, may cause damage, 
and will not be trusted. If we do require that robots follow 
social and moral norms, then we must understand and 
formalize what norms are in the human mind so that we can 
effectively design robots with the appropriate capacities to 
represent and obey such norms—in short, so that we can 
design robots with norm competence [2].  

However, we currently know very little about how humans 
represent, learn, activate, and deploy norms to guide their 
behavior. Moreover, there is scant work on how researchers 
and designers should identify the relevant norms in the first 
place. If we decide to introduce a robot as a nurse assistant, for 
example, what are the norms this robot is expected to follow? 
And from a technical standpoint, how do we implement these 
norms in a way that allow the robot to quickly apply the proper 
norms in the right context? Therefore, the goals for this paper 
are: (1) propose a framework for how to design robots with 
norm competence; (2) present new experimental paradigms 
that help identify the norms of a target domain and community 
as well as key cognitive properties of norms; (3) outline first 
steps to implement norm sets in robots and continuously 
improve these norm sets through human-robot interaction. 
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II. BACKGROUND 

A. Behavioral Science Work on Norms 
In sociology and experimental economics, the importance 

of norms has been recognized [3], but the focus there is on 
social forces “against one’s rational self-interest,” not on how 
norms operate cognitively and computationally. A sizable set 
of studies have examined the automatic activation of norms by 
context-specific cues—for example, garbage on the floor 
triggering the “don’t litter” norm [4] or the sight of a library 
triggering the “be quiet” norm [5]. But no explicit cognitive 
model has been offered to account for these and other 
properties of norms. 

People conceptualize norms primarily as prescriptions and 
prohibitions [6]. These two types of norms serve different 
functions. Prescriptions directly guide what action to perform. 
Prohibitions, by contrast, negate possible courses of action; 
they define constraints or limits but do not suggest how one 
should act. Moreover, an infinite number of prohibitions exist 
that prevent action, but even just one prescription suffices to 
promote action. These asymmetries may have a direct impact 
on how norms are cognitively represented and can be learned. 

B. Formal and Computational Work on Norms  
Two prominent research programs have dominated 

computational investigations of norms. One has long been 
dedicated to deontic logic and its variants, which formalizes 
notions of prescription and prohibition in specialized modal 
operators [7] and has recently been applied to what is called 
machine ethics [8]. This approach develops formal logics to 
arrive at morally acceptable conclusions from premises and to 
offer verification of the validity and reliability of reasoning. It 
also aims to be expressive enough to represent everyday norm 
reasoning [9]–[11]. 

The second research program grew out of work on multi-
agent systems in AI [12] and integrated insights from the social 
sciences and BDI logic into the “BOID” (Belief-Obligation-
Intention-Desire) framework [13]. Here, deontic concepts are 
combined with practical reasoning to allow for the resolution 
of conflicts between norms and desires, which are common in 
human agents. Sophisticated extensions of these formalisms 
aim to capture the interplay between cognitive properties and 
societal dynamics of norms [14] as well as the internalization 
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of norms to counteract agents’ selfishness [15]. These models 
treat norms as cognitive structures that are highly sensitive to 
context, to community members’ norm-compliant behavior, 
and their demands on each other [16].  

C. Robot Decision Making with Norm Competence 
An artificial agent with norm competence must obey its 

community’s norms when making decisions about its goal-
directed behavior. Some authors have used deontic logic to 
combine the agent’s goals and normative directives and 
resolve conflicts between them [17]. Others have criticized 
this approach because it seems to require all norms to be 
identified a priori and thus omit learning [18]. The general 
framework of Reinforcement Learning (RL) has recently 
gained prominence as it enables agents to learn the reward 
structure of their environment and to plan optimal action 
sequences that are sensitive to these rewards, even if not 
known in advance [19]. An RL framework can incorporate an 
agent’s own goals, other people’s interests, and ethical rules, 
all of which enter the agent’s reward function [18].  

However, without further differentiation, an RL agent’s 
reward function would not distinguish between others’ 
personal preferences and community-based social norms, nor 
between reward for intentions and reward for outcomes. These 
distinctions are critical for norm-guided human actions [20], 
but even sophisticated inverse reinforcement learners [21] do 
not make them. Some norm-learning frameworks allow the 
agent to distinguish widely held norms from merely 
idiosyncratic preferences by heeding the distributions of other 
agents’ behaviors [22]. One general problem of norm-learning 
RL agents is that the demonstrations and rewards they observe 
are limited, often opaque, and the norms are rarely explicitly 
stated. Arnold et al. [20] suggest that typical RL algorithms are 
too impoverished to learn moral norms and should be 
complemented by explicit representations of deontic operators 
on actions—marrying the strengths of deontic logic with those 
of machine learning.  

In sum, despite steps of progress toward building norm-
competent artificial agents, many questions remain: Where 
should the norms come from? Full specification may be too 
cumbersome; mere learning by observation is misleading. 
How should conflicts between goals and norms be resolved? 
How can agents represent the full complexity of context-
specific and community-based norms? And how do robots 
adapt to the subtle variations, exceptions, and changes of norm 
systems in social communities? 

III. BROADER PROJECT: ROBOTS WITH NORM COMPETENCE 

Our approach to equipping robots with norms combines 
social-cognitive science with artificial intelligence and 
robotics. Figure 1 illustrates the general methodology of 
developing norm competence, which can be applied to any 
robot operating in a social domain. It has four stages. (1) Norm 
identification. Once the community of deployment and the 
robot’s role are defined, empirical techniques can identify the 
relevant norms in that community for a suite of relevant 
contexts, yielding the Starting Norm Base (SNB). (2) Norm 
implementation initially occurs in a disembodied AI that holds 
the SNB and relies on context-specific and community-
sensitive decisions processes to plan its norm-abiding actions 
for specific tasks. (3) Evaluation initially consists of a Norm 

Learning Game (NLG) that the AI plays with human users, 
where a context is given, the system proposes a sequence of 
actions, and the user provides feedback on these proposals. 
This process helps the system improve its SNB to a Refined 
Norm Base (RNB). (4) Iterative rounds of Implementation and 
Evaluation follow, and capacities can be expanded. For 
example, a scene recognition module would allow the system 
to autonomously detect the context it is in (first from photos, 
then videos); a communication module would make verbal 
speech processing and synthesizing more natural and could be 
extended to processing gesture and eye gaze [23]. Further, 
NLGs will be enriched by moving to virtual reality 
environments. Here, full interaction sequences can be tested 
with a simulated robot controlled with physics engines like 
Unity 3D, thus providing a safe environment for the robot to 
explore the boundaries of its norm awareness. When 
evaluations show the robot to be reliable in obeying norms and 
trustworthy to human users, deployment of the physical robot 
in the real world can safely proceed. 

IV. SOCIAL AND MORAL NORMS: THEORY, DEFINITIONS 
Norms vary by context, community, and era; they vary by 

degrees of demand (e.g., “suggested” vs. “required”; 
“discouraged vs. “forbidden”); and they range from highly 
specific (e.g., “stretching one’s hand out for a handshake after 
the other did”) to abstract (e.g., “showing respect”). Despite 
these variations, there is a fundamental structure of norms that 
can be captured in the following working definition 
(integrating multiple proposals [4], [16], [24], [25]): 
A norm is an instruction, in a given community, to (not) perform an 
action in a given context, provided that a sufficient number of 
individuals in the community (i) demand, to a certain degree, of each 
other to follow the instruction and (ii) do in fact follow it. 

More formally, a norm N is defined by the tuple:  

 N ≔ <S, C, A, D 
f, P > . (1) 

N always exists relative to a social community S and 
relative to a context C; it operates on an action A by way of a 
deontic operator D with force parameter f (how strongly 
people demand of each other to perform, or not perform, A) 
and with a prevalence parameter P (to what extent the 
community actually obeys the norm).  In deontic logic, D has 
often been conceptualized as coming in at least two kinds: 
prescriptions and prohibitions. Some have suggested, instead, 
that D  be a continuum [26]–[28], for example ranging from -1 
for the strongest prohibitions through permissions at 0 to +1 
for the strongest prescriptions.  

 
Figure 1.  A general methodology for teaching robots norm competence. 
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One might also allow for uncertainty, such that the agent 
estimates D 

f and P parameters within some interval, [a, b ], 
potentially treated as Dempster-Shafer uncertainty [29] (see 
[22], [30] for more detail). 

We should note that particular elements of the above 
definition separate norms from related concepts. The notion 
property of deontic force separates norms from preferences or 
goals. Many people put milk in their coffee, but they do not 
demand of each other to do so, hence this action is not a norm 
but a wide-spread preference. By contrast, getting in line when 
ordering coffee in a coffee shop is a norm—that is what people 
do and demand of each other. Further, context condition C 
distinguishes norms from values. Whereas norms are 
instructions to act in a particular way, values are ideals (e.g., 
loyalty, honesty) that may be achieved by a variety of possible 
actions. Nonetheless, norms are likely to reflect or express the 
general guidance that values provide. 

We now turn to the question of how one might identify a 
community’s norm sets for specific contexts. We present two 
experimental paradigms and initial empirical results on this 
question and briefly refer to work that hints at the graded 
deontic force of norms (D 

f). We then sketch how such norm 
sets can be used to modify robot action planning. 

V. EXPERIMENTAL PARADIGMS AND RESULTS 

We developed two paradigms to experimentally assess the 
norms that are activated by a particular context [31], [32]. In 
the first, people freely generate norms associated with various 
contexts, akin to the free-listing procedure in semantic 
network and scene-categorization research [33]. In the second, 
people are presented with a number of candidate norms and, 
for a given context, have to decide whether that norm fits or 
does not fit the context. We operationalized “context” as a 
pictured scene (e.g., restaurant) in which the person occupies 
a particular role (e.g., waitress). We collected data on three 
types of norms—permissions, prescriptions, prohibitions—but 
will focus here on prescriptions and prohibitions.  

A. Norm-Generation Paradigm 
In a first study, 80 participants were recruited via 

Amazon’s Mechanical Turk. They were shown four pictures 
one at a time and asked to type, for up to 60 seconds, as many 
actions as came to mind that (a) one is “supposed to do here” 
(eliciting prescribed actions) or (b) one is “not allowed to do 
here” (eliciting prohibited actions). Each participant answered 
only one of these questions, for 4 contexts (out of 8 total). We 
refer to these prescribed or prohibited actions that people 
generated (e.g., talking, putting on sunscreen) as norms.  

Because people express the same norm in linguistic 
variants (e.g., read, read a book, read books), two research 
assistants inspected the typed norms for each of the 8 contexts 
and assigned the same norm identifier to responses with 
identical or highly similar meaning within context and norm 
type (interrater agreement > .80%). Overall, participants 
generated between 3.7 and 7.4 norms per context, with 
prohibitions eliciting on average 1.5 fewer norms than 
prescriptions (Figure 2). We computed consensus scores for 
each generated norm (how many participants wrote down that 
norm for the given context), and we rank ordered the top 10 
most consensual norms for each scene and norm type.  

 
Figure 2.  Average number of prescription and prohibition norms that 

participants generated for eight contexts (time limit: 60 seconds). 

As Figure 3 illustrates, prescriptions displayed higher 
consensus than prohibitions, and overall consensus declined 
rapidly. This declining consensus is almost certainly a result 
of the unconstrained nature of the task, in which people are 
free to report a wide range of applicable norms for each 
context. In fact, we will see in the second paradigm that these 
consensus values are likely to be very conservative estimates 
of true consensus. 

Of great interest was the degree of context-specificity of 
norms across the eight contexts. For each context, we 
determined how often one of its 10 most consensual norms was 
also mentioned in one or more other contexts as a top-10 norm. 
For prohibitions, 37 out of the 80 norms across eight contexts 
(46%) were unique—they appeared in only a single context. 
Of the remaining norms, 16 appeared in one other context (8 
pairs), 12 in two others (4 triplets), two in three other contexts 
(2 quadruplets), and one in four other contexts. The average 
number of other contexts in which any given prohibition 
reappeared was 1.05 (possible range 0 to 7).  For prescriptions, 
context-specificity was even higher, with 70 out of the 80 
generated norms (87.5%) appearing uniquely in only a single 
context. The remaining prescriptions appeared in one other 
context (5 pairs), and the average number of contexts in which 
any given prescription reappeared was 0.125.  

 

Figure 3.  Norm generation consensus (with standard errors) for 
prescriptions and prohibitions, averaged across eight contexts and ordered 

by level of consensus. Consensus is the percentage of participants who 
wrote down the same norm for a given context.  
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Figure 4.  Proportion of participants who detected local (context-specific) 

and nonlocal norms as applicable to a particular context, averaged across 
four contexts.  Drawn bars are +/- 1 standard error. 

B. Norm-Detection Paradigm 
The second experimental paradigm presents participants 

with one context at a time (activated by a picture) and 
introduces a series of actions that, in this context, may or may 
not be prescribed (in one experimental condition) or prohibited 
(in another condition). Participants indicate by pressing a Yes 
or No key whether a given action is indeed prescribed/ 
prohibited. For each context, participants see 14 actions: half 
are top-7 norms generated in the previous study for that 
context (“local” norms) and the other half are top-7 norms 
from other contexts (“nonlocal”). The proportion of people 
who designate a given norm as applicable to a specific context 
indexes prevalence. The difference between these detection 
rates for local and nonlocal norms indexes context-sensitivity.  

In an initial study (n = 100), we asked participants to detect 
prescription or prohibition norms for four contexts (each norm 
type was probed in multiple ways, such as “forbidden” and 
“not allowed” for prohibitions). As Figure 4 shows, people 
nearly unanimously recognized the local prescription norms as 
applicable to their context, indicating high levels of consensus; 
people rejected the nonlocal norms half of the time. For 
prohibitions, this local-nonlocal difference was statistically 
significant but much weaker. Local prohibitions were detected 
less reliably, and nonlocal prohibitions differentiated less 
clearly, than the corresponding prescriptions.  

 
Figure 5.  Reaction times in milliseconds for detecting local (context-
specific) and nonlocal norms as being applicable to a particular context, 

averaged across four contexts. Drawn bars are +/- 1 standard error. 

We also measured reaction times of recognizing local and 
nonlocal norms for their context. Figure 5 shows that people 
were fast in detecting context-specific prescription norms, and 
substantially faster than for nonlocal norms. This speed 
advantage was not present for prohibition norms. People were 
generally much slower at detecting prohibitions and no faster, 
even slightly slower, for local than nonlocal prohibitions.  

To summarize, we presented two experimental paradigms 
to identify norms that a community perceives to be prevalent 
and applicable to particular contexts. Though consensus in the 
generation paradigm was high for only some norms, consensus 
in the detection paradigm was high throughout. Context 
specificity was very strong in both paradigms. Significant 
differences between norm types emerged. Prescriptions were 
generated in higher numbers, displayed greater consensus, 
showed higher context sensitivity, and were activated faster 
than prohibitions. Prescriptions thus appear to be readily on 
people’s mind when they encounter a given context. Applied 
to robot design, we may conclude that a robot must know the 
prescriptions for any context it finds itself in, because these 
norms could efficiently guide the robot’s behavior and because 
people would immediately think of such prescriptions (and 
impose them on the robot) when entering the context. 

C. Graded Deontic Force 
We also briefly mention our ongoing efforts to develop 

reliable and intuitive measures of deontic force. Several 
studies found that people agree substantially on a vocabulary 
of deontic force—a set of ordered terms that denote weak to 
strong prescriptions and weak to strong prohibitions [34] (see 
Figure 6). These linguistic markers could be used in norm 
generation and detection paradigms to identify norms of 
particular deontic force, such as all actions in a certain context 
that are “required” (D 

f high) vs. “suggested” (D 
f low). New 

work is also needed that relates degrees of deontic force to 
perceived prevalence, consensus, and speed of activation.  

We should close by emphasizing that, for any given robot 
deployment, the introduced experimental paradigms are not 
the only sources of the relevant community’s norms. For 
example, to develop a nurse assistant robot, one would also 
consult nursing training materials, hospital manuals, and 
interview various stakeholders. The goal here is not a complete 
and final norm catalogue but a Starting Norm Base. 
Refinements are discussed in the following sections. 

 
Figure 6.  Vocabulary of graded deontic force in prescriptions (top 5)  
and prohibitions (bottom 5), with means and 95% confidence intervals 

around those means on scales of rated strength of expression.  
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VI. NORM IMPLEMENTATION 

We now sketch an implementation of a norm-competent 
robot. We use a simple Markov Decision Process (MDP) as 
the starting point and then expand it to support norm 
competence.  

A. Selfish Goal Pursuit 
A Markov Decision Process (MDP) consists of a set of 

states, S, a set of actions, A, and a transition function, which 
describes the probabilities of the agent moving from any one 
state, s, to any other state, s', by taking action a: Pa = Pr(s' | s,a). 
These transitions come with rewards specified in a reward 
function, Ra (s,s' ). A policy π is then sought that tells the agent 
what action to take in any given state so that the resulting 
action path through the state space maximizes the agent’s 
cumulative rewards (sometimes discounted over time). We 
could use an MDP to have a robot perform a certain task 
optimally by providing it with a set of actions, which put it in 
a set of states, and we set up the rewards such that the robot 
always ends up in state sg, the state in which the task is 
accomplished. Optimality might mean that it ends up in sg in 
the shortest amount of time, on the shortest path, with the least 
amount of energy use. A strict MDP robot is the ultimate 
rationally selfish agent. It moves through state space by 
choosing actions that maximize its rewards, and the value of 
each action a is entirely determined by the reward of the state 
transition s→s' that the action achieves. For such an agent, the 
end entirely justifies the means.  

B. Norm-Competent Goal Pursuit 
A norm-competent robot is not merely selfish [15]. Norms 

give value to actions above and beyond the rewards those 
actions confer on the individual agent. For example, norms 
favor actions that have positive outcomes for the community, 
even if they come with a cost for the individual—that is, norms 
are prosocial. Norms also favor actions that other community 
members have performed in the past—that is, norms maintain 
customs and traditions. Such a consideration of other people’s 
history directly violates the Markov property of an MDP, in 
which decisions are solely based on the system’s current state. 
Building the agent’s or others’ past actions into the state 
representation would quickly lead to computational explosion.  

To accommodate norm competence the robot’s decision 
making system would have to decompose the reward function 
so that actions would have value irrespective of the states they 
bring about. In some models, norms are leveraged to prune the 
state space by ignoring states that violate known norms [35]. 
However, if potential states S' caused by A are unknown, the 
system may be paralyzed or make many mistakes. By contrast, 
because norms specifically instruct the agent to perform 
actions, a norm-competent decision maker can choose a norm-
guided action even when the resulting s' is unknown and the 
agent never received any reward for performing a. That is, the 
agent trusts the social community that compliance with a norm 
will lead to an acceptable (though unknown) outcome.  

Norms can also add value to specific variants of actions 
whose outcomes may (at least at first glance) be equally 
rewarding. For example, delivering information politely is 
more valued than delivering it bluntly, even if in both cases the 
resulting outcome of “information delivered” (and its reward) 

are identical. One might counter by saying that the recipient of 
politely delivered information will be happier than the 
recipient of bluntly delivered information, which changes the 
reward function. However, such an approach not only 
presupposes the distinction between psychological and world 
states (a nontrivial addition), it also assumes that the reward 
function would be tuned to others’ psychological states, 
another nontrivial addition. Following a norm system does not 
require such tuning because norm-favored actions have value 
even without knowledge of their valued consequences. 

People may expect even more sophistication from a norm-
competent robot: Such a robot would not only avoid violating 
norms but would know when violating a norm is acceptable—
e.g., when a moderate prohibition may be violated to comply 
with a strong prescription (e.g., lying to save someone’s life). 
This demand for norm tradeoffs requires the robot to take into 
account the graded deontic force of all norms relevant to the 
context. The robot would choose an action that achieves the 
set goal sg but would do so with minimal norm violation costs 
[28], [36]. The system may still have a hard threshold, such as 
D 

f < 0.5, below which the robot needs to consult with a 
supervisor before making any norm tradeoffs.  

C. Reconciling Goals and Norms 
A norm-competent robot relying on an enriched MDP must 

also meet another challenge: the tension between being 
optimal in a selfish goal-pursuing sense (e.g., fast and 
efficient) and being socially appropriate in a norm-abiding 
sense (e.g., polite, fair). To resolve such conflicts, the value of 
goals and norms must be commensurable in some way. We 
know that people somehow find a common scale on which 
they perform value trade-offs and therefore resolve goal-norm 
conflicts; how could a robot acquire such a common scale?  

One approach is to build norm considerations into the 
reward function and thus measure them in units of reward. 
However, rewards for efficient goal pursuit are often 
straightforwardly measurable (e.g., time or energy saved) 
whereas rewards for norm compliance are often merely 
represented (e.g., an action has symbolic value, even if one has 
never observed that it actually provided value to someone 
else). Moreover, rewards for goal pursuit stem from stationary 
distributions, where, say, the meaning of saving 1 kwh is 
knowable and does not change. By contrast, rewards for norm 
compliance are nonstationary: they are often underspecified, 
may be reevaluated in novel situations, and may change over 
time in unexpected ways. The agent must be able to adjust to 
such changes without inflating state space and falling into 
computational intractability. Even if it can, that still leaves the 
problem of commensurable reward assignments unsolved.  

We suggest the opposite approach: to subsume rational 
goal efficiency considerations under the normative framework 
and learn from community members how optimal efficiency 
and social appropriateness are balanced against each other. 
Thus, the common currency is deontic force. Efficiency 
considerations (e.g., of time or energy use) can be framed as 
normative demands on the robot’s behavior, and each demand 
has a certain degree of deontic force—how important it is for 
the robot to be fast or to use limited amounts of energy, 
compared to being polite, interrupting the main task to answer 
a question, etc.  



  

If deontic force D 

f [-1; 1] is the degree to which a norm 
imposes itself on an action, then “Be efficient” could be one of 
these norms (e.g., with D 

f = 0.3, a mild prescription). Planning 
then becomes an attempt to optimally satisfy as many norms 
as possible (including the standard goals of any MDP), but 
with keen attention to the norms’ deontic force and the goal to 
minimize norm-violation costs. In this process, however, the 
agent would not receive rewards for merely complying with 
norms, because we need to avoid accrual of infinite rewards 
for the countless prohibitions the agent is not violating (e.g., 
the countless ways to crash into objects); it would incur costs 
by violating prohibitions or failing to obey prescriptions.  

D. The Starting Norm Base (SNB) 
Our framework incorporates empirically identified norms 

in the Starting Norm Base (SNB), but the SNB must be 
updated in dynamic learning processes throughout evaluation 
and deployment. We now describe some of the properties of 
an SNB and likely challenges in its implementation. 

The SNB can be thought of as a cube of contexts C ´ 
actions A ´ deontic operators D 

f, where each cell in the cube 
is a norm Nk that maps a particular action to a particular 
context under a particular deontic force (see Fig. 7): 

 Nk = Ci ⟼	D 
f (Aj) (2) 

We define a Norm Set for a given context Ci as one slice of 
the cube, containing norms that assign deontic force values to 
a subset of actions in the robot’s repertoire. Numerous other 
actions in the repertoire will remain unmapped and therefore 
be treated as irrelevant for the given context. This notable 
parsimony is modeled after the human experimental results 
(see Section V) in which a limited set of relatively unique 
action norms was activated by specific contexts. In the robot, 
each context-specific Norm Set can be implemented as a 
separate MDP, following a recently proposed modular 
approach [37]. During action planning, the robot will navigate 
through a sequence of contexts, so the modular MDPs may be 
organized hierarchically as Abstract MDPs [38].  

Because activating context-specific norm sets is an 
essential element in norm competence, the robot must identify 
the context it is in. Thus, one of the major challenges of 
implementing a norm-competent robot is to equip it with 
context identification capacities discussed next. 

 
Figure 7.  Simplified norm cube: Each cell displays a norm Nk  
that maps a particular action Aj to a particular context Ci under  

a deontic force D f. In reality, D f values lie on a continuum,  
and many more actions and contexts exist. 

E. Context Identification 
To start out, we define a dozen or so broader contexts 

(e.g., nurse break room, hallway, patient room) and enable the 
robot to infer these contexts from photos or videos, which 
may be accomplished by the higher layers of a Convolutional 
Neural Network [39]. Such initial context categories will then 
activate the context-relevant norm set from the SNB. 
However, a deeper analysis of specific scene features and 
objects is necessary to distinguish variants of these broader 
contexts, such as entering-patient-room-when-patient-alone 
vs. …-when-doctor-present vs. …-when-visitor-present. 
These variants will share many elements in their respective 
norm sets but also activate some distinct norms. A number of 
the context variants, their distinguishing features, and their 
specific norm sets can be predefined and added to the Starting 
Norm Base. However, the robot will have to learn new context 
variants as well, especially as it acts in those contexts.  

For example, for a nurse assistant robot, the following 
norm will be useful: “When in a patient’s room (C5), be quiet 
(A10).” But later the robot may learn several new norms, such 
as “When in a patient’s room (C5) & the patient asks a 
question (C10), answer the question (A15).” Or, “When in a 
patient’s room (C5) & delivering medication (C8), announce 
yourself (A20).” There are numerous formal ways to integrate 
such superficially contradictory norms, but they all come 
down to identifying context variants—here, variants of being 
in the patient’s room, which can be represented as 
conjunctions of features or as nested conditionals. Over time, 
the robot will accumulate a context catalogue, greatly 
expanding and refining its initial context categories. 

VII. LEARNING AND EVALUATION  
The last phase of the proposed methodology of designing 

norm-competent robots is to have users interact with an SNB-
equipped robot and help it advance, through guided feedback, 
toward a Refined Norm Base (RNB). These interactions will 
take place in the earlier mentioned Norm-Learning Games—
human-robot interaction studies that test and improve the 
system’s norm competence. Initially these experiments will be 
text-based and have constrained communicative channels, but 
we are also creating a more open-ended virtual-reality format.  

In the Norm-Learning Game (NLG), a robot equipped with 
a predefined SNB proposes an action plan for a task it is 
assigned, and human teachers (sampled from the community 
of deployment) give the robot feedback about the normative 
appropriateness of its action proposals (Fig. 8). Because the 
interaction takes place in safe virtual space (text-based or VR), 
the robot can afford to make mistakes, and the human teachers 
correct them without fear of harm. This safe setting is 
important for mastering prohibitions, which are difficult to 
learn from observation (a norm-compliant community will not 
commit many prohibition violations), and human teachers are 
more likely to teach prescriptions than prohibitions (as results 
in Section V. suggest). The safe offline setting also allows the 
robot to analyze patterns of feedback from the entire set of 
human teachers, point out inconsistencies it noticed, and ask 
for clarification. The NLG may thus provide human teachers 
with opportunities to reflect on limitations, biases, or 
contradictions in their own norm system and perhaps bring 
those up for discussion in the community. 



  

 
Figure 8.  The main components of the Norm Learning Game 

There are at least three mistakes a robot can make in the 
NLG. First, it may misidentify the context it is in or fail to 
distinguish between two variants of a context. To correct this 
error, the teacher can label the current context and perhaps 
identify diagnostic features of this context; or the robot can 
learn to associate the newly learned context label with features 
present at the time. Second, the robot may activate an 
incomplete norm set for a given context. To correct this error, 
the teacher can tell the robot about additional norm-governed 
actions that apply to the context (e.g., “When picking up pain 
medication you need to ask for the chief physician’s 
permission”). Third, the robot may assign an incorrect deontic 
force to an activated norm. Such an error will be detected when 
the robot prioritizes one action (e.g., entering a patient’s room 
when the door is open) while the relevant norm set contains a 
higher-priority action (e.g., self-announcing). The human 
teacher will provide at least ordinal information (e.g., 
suggesting that the proposed action is worse than the 
alternative one) and might even express specific deontic force 
values within a vocabulary of graded terms (see Fig. 6). In each 
case, the robot learns to adjust force values while keeping both 
actions (the proposed and the alternative) in its norm set for 
the given context. (Note that prioritization is often akin to “do 
X before Y,” which will require an expressive form of action 
representation such as linear temporal logic [36].) 

The initial simplified version of the NLG contains three 
constraints. First, to simplify context detection (e.g., from 
visual features), the teacher verbally places the robot in a 
particular starting context. A nurse assistant robot may be told, 
“You are at the front desk and the supervising nurse asks 
you…,” followed by a specific task assignment, “…to deliver 
Ms. Jones’ medication to her room.” By directly providing the 
initial context, the teacher and robot learner can focus on 
refining the robot’s norm sets. Second, to simplify learning 
new norms, the robot’s total action repertoire is limited, and 
the user append actions to a norm set by selecting ones from 
the repertoire. Third, to limit the demands on the system’s 
natural language processing abilities, the human teacher’s 
feedback will come in the form of specific feedback types—
e.g., introducing a new context variant, adding a norm to a 
context, or changing a norm’s deontic force.  

In subsequent, more open-ended forms of the NLG, the 
robot will combine multi-modal input into inferences about the 
current context it is in; it will learn new action concepts that 
were not even in its action repertoire (e.g., composed of 
familiar primitives [39]); and it will interpret the user’s 
feedback as the appropriate kind of correction—e.g., of 
context identification (“No, we aren’t in the patient room”), 
norm addition (“Here, you also have to…”), or deontic force 
adjustment (“It’s more important to…”).  

A text-based NLG, though useful, does not fully capture 
the complex visuospatial information relevant to context and 
norm identification. To provide the human teacher with 
environments that are still safe but contain rich features and 
are more scalable, we are also developing a Virtual Reality 
(VR) version of the NLG. Game engines like Unity3D [40] 
allow us to implement high-quality physics simulations and 
use object meshes for realistic scenes, such as hospital 
hallways and patient rooms. Initially, people will be in the 
observer perspective, watching a robot perform various actions 
in the scenes. Using VR-Head-Mounted Displays (VR-
HMDs), people can freely move their head and interact with 
the 3D environment and recognize subtle context shifts. The 
robot’s action is simulated with VR-robot middleware like 
ROS Reality [41], and its “cognition” (norm sets, action 
repertoire) can be ported from the initial text-based learning 
game to the 3D environments. Expanded NLP components 
will allow the human teacher to give the robot feedback with 
naturally expressed language. VR also enables expanded 
context-detection challenges, such that virtually presented 
scene features become inputs to the robot’s own ability to 
identify the context it is in.  

VIII. SUMMARY 
After defining and conceptualizing social-moral norms, we 

proposed a methodology for designing a norm-competent 
robot. Using empirical results on central properties of human 
norm structures, we introduced one possible computational 
implementation: a hybrid model of predefined and learned 
norms and goals. Significantly expanding an MDP approach, 
we sketched a robot with capacities for context detection, norm 
activation, and action guidance by norm constraints. We 
suggested a common currency for goal pursuit and norm 
compliance and outlined a Norm Learning Game that allows 
the robot to refine its starting norm base through iterative 
community feedback in a safe VR environment. A full test of 
this model is yet to come, but we believe to have provided a 
cognitively realistic, computationally tractable, and practically 
applicable model of robot norm competence.  

REFERENCES 
[1] M. Hechter and K.-D. Opp, Eds., Social norms. New York, NY: 

Russell Sage Foundation, 2001. 
[2] B. F. Malle, P. Bello, and M. Scheutz, “Requirements for an artificial 

agent with norm competence,” in Proceedings of 2nd ACM conference 
on AI and Ethics (AIES’19), New York, NY, 2019, pp. 21–27, doi: 
10.1145/3306618.3314252. 

[3] E. Krupka and R. A. Weber, “The focusing and informational effects 
of norms on pro-social behavior,” Journal of Economic Psychology, 
vol. 30, no. 3, pp. 307–320, Jun. 2009, doi: 
10.1016/j.joep.2008.11.005. 

[4] R. B. Cialdini, C. A. Kallgren, and R. R. Reno, “A focus theory of 
normative conduct: A theoretical refinement and reevaluation of the 
role of norms in human behavior,” in Advances in Experimental 

$FWLRQ�3URSRVDO

+XPDQ�)HHGEDFN

DGGBDFWLRQ
�$��ŀ�DVNBQXUVH�

UDLVHBGHRQWLFB
IRUFH�1������

DGGBFRQWH[W
�GRRUBRSHQ�&����

DGGBQRUP�&��$��

VHDUFKBPHGLFLQH�$��

SLFNBXSBPHGLFLQH�$��

LJQRUHBTXHVWLRQV�$��

���

1RUP�$FWLYDWLRQ

1��,)�GRRUBFORVHG�7+(1�����NQRFN�

1��,)�REVWDFOH�7+(1�����VORZBGRZQ��

1��,)�TXHVWLRQHG�7+(1�����JUHHW��

���

ORFDWLRQ� 
WLPH� 
REMHFWV� 
JRDO� ���������

&RQWH[W�
,GHQWLILFDWLRQ



  

Social Psychology, vol. 24, M. P. Zanna, Ed. San Diego, CA: 
Academic Press, 1991, pp. 201–234. 

[5] H. Aarts and A. Dijksterhuis, “The silence of the library: 
Environment, situational norm, and social behavior,” Journal of 
Personality and Social Psychology, vol. 84, no. 1, pp. 18–28, Jan. 
2003, doi: 10.1037/0022-3514.84.1.18. 

[6] R. J. Janoff-Bulman, S. Sheikh, and S. Hepp, “Proscriptive versus 
prescriptive morality: Two faces of moral regulation.,” Journal of 
Personality and Social Psychology, vol. 96, no. 3, pp. 521–537, 2009, 
doi: 10.1037/a0013779. 

[7] P. McNamara, “Deontic logic,” in Handbook of the History of Logic, 
vol. 7, D. M. Gabbay and J. Woods, Eds. North-Holland, 2006, pp. 
197–288. 

[8] M. Anderson and S. L. Anderson, Eds., Machine ethics. New York, 
NY: Cambridge University Press, 2011. 

[9] T. Ågotnes, W. V. D. Hoek, J. A. Rodriguez-Aguilar, C. Sierra, and 
M. Wooldridge, “On the logic of normative systems,” in Proceedings 
of the Twentieth International Joint Conference on Artificial 
Intelligence (IJCAI ’07), M. Veloso, Ed. Palo Alto, CA: AAAI Press, 
2007, pp. 1181–1186. 

[10] G. Governatori and A. Rotolo, “BIO logical agents: Norms, beliefs, 
intentions in defeasible logic,” in Normative Multi-agent Systems, G. 
Boella, L. van der Torre, and H. Verhagen, Eds. Dagstuhl, Germany: 
Internationales Begegnungs- und Forschungszentrum für Informatik 
(IBFI), Schloss Dagstuhl, Germany, 2007. 

[11] L. M. Pereira and A. Saptawijaya, “Modelling morality with 
prospective logic,” International Journal of Reasoning-based 
Intelligent Systems, vol. 1, no. 3/4, pp. 209–221, 2009, doi: 
10.1504/IJRIS.2009.028020. 

[12] M. J. Wooldridge, An introduction to multiagent systems, 2nd ed. 
Chichester, U.K: John Wiley & Sons, 2009. 

[13] J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre, 
“The BOID Architecture: Conflicts between beliefs, obligations, 
intentions and desires,” in Proceedings of the Fifth International 
Conference on Autonomous Agents, New York, NY, 2001, pp. 9–16, 
doi: 10.1145/375735.375766. 

[14] R. Conte, G. Andrighetto, and M. Campenni, Minding norms: 
Mechanisms and dynamics of social order in agent societies. New 
York, NY: Oxford University Press USA, 2013. 

[15] G. Andrighetto, D. Villatoro, and R. Conte, “Norm internalization in 
artificial societies,” AI Communications, vol. 23, no. 4, pp. 325–339, 
Dec. 2010. 

[16] G. Andrighetto, C. Castelfranchi, E. Mayor, J. McBreen, M. Lopez-
Sanchez, and S. Parsons, “(Social) norm dynamics,” in Normative 
multi-agent systems, vol. 4, G. Andrighetto, G. Governatori, P. 
Noriega, and L. W. N. van der Torre, Eds. Dagstuhl, Germany: 
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, pp. 135–
170. 

[17] K. Arkoudas, S. Bringsjord, and P. Bello, “Toward ethical robots via 
mechanized deontic logic,” in Machine Ethics: Papers from the AAAI 
Fall Symposium 2005, vol. FS-05-06, 2005, pp. 17–23. 

[18] D. Abel, J. MacGlashan, and M. L. Littman, “Reinforcement learning 
as a framework for ethical decision making,” 2016. 

[19] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and 
acting in partially observable stochastic domains,” Artificial 
Intelligence, vol. 101, no. 1, pp. 99–134, May 1998, doi: 
10.1016/S0004-3702(98)00023-X. 

[20] T. Arnold, D. Kasenberg, and M. Scheutz, “Value alignment or 
misalignment – What will keep systems accountable?,” in The 
Workshops of the Thirty-First AAAI Conference on Artificial 
Intelligence: Technical Reports, WS-17-02: AI, Ethics, and Society, 
Palo Alto, CA: The AAAI Press, 2017, pp. 81–88. 

[21] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, 
“Cooperative inverse reinforcement learning,” in Advances in Neural 
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. 
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 
2016, pp. 3909–3917. 

[22] V. Sarathy, M. Scheutz, Y. N. Kenett, M. M. Allaham, J. L. 
Austerweil, and B. F. Malle, “Mental representations and 
computational modeling of context-specific human norm systems.,” in 
Proceedings of the 39th Annual Meeting of the Cognitive Science 
Society, Austin, TX: Cognitive Science Society, 2017, pp. 1035–1040. 

[23] D. Whitney, E. Rosen, J. MacGlashan, L. L. S. Wong, and S. Tellex, 
“Reducing errors in object-fetching interactions through social 

feedback,” in Proceedings of the 2017 IEEE International Conference 
on Robotics and Automation (ICRA), 2017, pp. 1006–1013. 

[24] C. Bicchieri, The grammar of society: The nature and dynamics of 
social norms. New York, NY: Cambridge University Press, 2006. 

[25] B. F. Malle, M. Scheutz, and J. L. Austerweil, “Networks of social 
and moral norms in human and robot agents,” in A World with Robots: 
International Conference on Robot Ethics: ICRE 2015, M. I. Aldinhas 
Ferreira, J. Silva Sequeira, M. O. Tokhi, E. E. Kadar, and G. S. Virk, 
Eds. Cham, Switzerland: Springer International Publishing, 2017, pp. 
3–17. 

[26] M. Nickles, “Towards a logic of graded normativity and norm 
adherence,” in Normative Multi-agent Systems: Dagstuhl Seminar 
Proceedings, Dagstuhl, Germany, 2007, [Online]. Available: 
http://drops.dagstuhl.de/opus/volltexte/2007/926. 

[28] K. J. Holyoak and D. Powell, “Deontological coherence: A framework 
for commonsense moral reasoning,” Psychological Bulletin, vol. 142, 
no. 11, pp. 1179–1203, Nov. 2016, doi: 10.1037/bul0000075. 

[29] G. Shafer, A mathematical theory of evidence. Princeton, NJ: 
Princeton University Press, 1976. 

[30] V. Sarathy, M. Scheutz, and B. F. Malle, “Learning behavioral norms 
in uncertain and changing contexts,” in Proceedings of the 2017 8th 
IEEE International Conference on Cognitive Infocommunications 
(CogInfoCom), 2017, pp. 301–306. 

[31] Y. N. Kenett, M. M. Allaham, J. L. Austerweil, and B. F. Malle, “The 
norm fluency task: Unveiling the properties of norm representation.,” 
in Poster presented at the 57th Annual Meeting of the Psychonomic 
Society, Boston, MA, November 2016, Boston, MA, 2016. 

[32] B. F. Malle and J. L. Austerweil, “From value alignment to norm 
competence: How robots and AI will conform to human society.  
Paper presented at,” presented at the American Psychological 
Association’s conference on Technology, Mind and Society, 
Washington, DC, Apr. 2018. 

[33] B. Tversky and K. Hemenway, “Categories of environmental scenes,” 
Cognitive Psychology, vol. 15, no. 1, pp. 121–149, Jan. 1983, doi: 
10.1016/0010-0285(83)90006-3. 

[34] B. F. Malle, “Graded representations of norm strength,” in 
Proceedings of the 42nd Annual Meeting of the Cognitive Science 
Society., Cognitive Science Society, 2020. 

[35] M. S. Fagundes, S. Ossowski, J. Cerquides, and P. Noriega, “Design 
and evaluation of norm-aware agents based on Normative Markov 
Decision Processes,” International Journal of Approximate 
Reasoning, vol. 78, pp. 33–61, Nov. 2016, doi: 
10.1016/j.ijar.2016.06.005. 

[36] D. Kasenberg and M. Scheutz, “Norm conflict resolution in stochastic 
domains,” in Proceedings of the Thirty-Second AAAI Conference on 
Artificial Intelligence, 2018, pp. 85–92. 

[37] V. Krishnamoorthy, W. Luo, M. Lewis, and K. Sycara, “A 
computational framework for integrating task planning and norm 
aware reasoning for social robots,” in 2018 27th IEEE International 
Symposium on Robot and Human Interactive Communication (RO-
MAN), Aug. 2018, pp. 282–287, doi: 
10.1109/ROMAN.2018.8525577. 

[38] N. Gopalan et al., “Planning with Abstract Markov Decision 
Processes,” in Twenty-Seventh International Conference on 
Automated Planning and Scheduling (IACAPS 2017), Jun. 2017, pp. 
480–488, Accessed: Apr. 13, 2020. [Online]. Available: 
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15759. 

[39] Z. Kira, W. Li, R. Allen, and A. R. Wagner, “Leveraging deep 
learning for spatio-temporal understanding of everyday 
environments,” 2016. 

[40] Unity Technologies, Unity. 2020. 
[41] D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and S. Tellex, 

“Comparing robot grasping teleoperation across desktop and virtual 
reality with ROS reality,” in Robotics Research: The 18th 
International Symposium ISRR, N. M. Amato, G. Hager, S. Thomas, 
and M. Torres-Torriti, Eds. Cham, Switzerland: Springer Nature, 
2019, pp. 335–350. 

 

View publication statsView publication stats

https://www.researchgate.net/publication/344157781

