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Abstract—We present a decision-theoretic model and robot
system that interprets multimodal human communication to
disambiguate item references by asking questions via a mixed
reality (MR) interface. Existing approaches have either chosen
to use physical behaviors, like pointing and eye gaze, or virtual
behaviors, like mixed reality. However, there is a gap of research
on how MR compares to physical actions for reducing robot
uncertainty. We test the hypothesis that virtual deictic gestures
are better for human-robot interaction (HRI) than physical
behaviors. To test this hypothesis, we propose the Physio-Virtual
Deixis Partially Observable Markov Decision Process (PVD-
POMDP), which interprets multimodal observations (speech,
eye gaze, and pointing gestures) from the human and decides
when and how to ask questions (either via physical or virtual
deictic gestures) in order to recover from failure states and cope
with sensor noise. We conducted a between-subjects user study
with 80 participants distributed across three conditions of robot
communication: no feedback control, physical feedback, and
MR feedback. We tested performance of each condition with
objective measures (accuracy, time), as well as evaluated user
experience with subjective measures (usability, trust, workload).
We found the MR feedback condition was 10% more accurate
than the physical condition and a speedup of 160%. We also
found that the feedback conditions significantly outperformed
the no feedback condition in all subjective metrics.

I. INTRODUCTION

Communicating human knowledge and intent to robots
is essential for successful human-robot interaction (HRI).
For example, when a surgeon says “hand me the scalpel,”
it is crucial that the assistive robot hand over the correct
utensil. In order to efficiently collaborate, humans intuitively
communicate through noisy modalities such as language,
gesture, and eye gaze. Failures in communication, and thus
collaboration, occur when there is mismatch between two
agents’ mental states.

Question-asking allows a robot to acquire information
that targets its uncertainty, facilitating recovery from failure
states. However, all question-asking modalities have trade-
offs, making choosing which to use an important and context-
dependent decision. For example, for robots with “real” eyes
or pan/tilt screens, looking requires fewer joints to move
less distance compared to pointing, decreasing the speed of
the referential action. However, eye gaze is inherently more
difficult to interpret.

On the other hand, Mixed Reality Head-Mounted Dis-
plays (MR-HMD), which have been shown to reduce mental
workload in HRI [16], can indicate items quickly, are very
accurate given proper calibration, and are independent of

Fig. 1: An example interaction. In (a), the participant first
uses speech, pointing, and eye gaze to ask for the red marker.
Then the participant experiences one of three conditions:
In (b), the no feedback control condition, the robot waits
for more information before choosing. In (c), the physical
feedback condition, the robot asks about the red marker via
pointing. In (d), mixed reality feedback condition, the robot
asks about the red marker via highlighting with a 3D sphere
in mixed reality.

the physical robot. However, visualizations may distract the
user’s attention more than a typical pointing or looking
action. Furthermore, MR technology is still new, and users
may prefer to instead interact with a robot that performs
physical actions. We aim to close the gap of research on
how MR compares to physical actions for reducing robot
uncertainty.

This work investigates how physical and visualization-
based question-asking compare for reducing robot uncer-
tainty under varying levels of ambiguity (Fig. 1). To do this,
we first model our problem as a POMDP, termed the Physio-
Virtual Deixis POMDP (PVD-POMDP), that observes a
human’s speech, gestures, and eye gaze, and decides when
to ask questions (to increase accuracy) and when to decide
to choose the item (to decrease interaction time). Then, we
conduct a between-subjects user study, where 80 participants
interact with a robot in an item-fetching task. Participants
experience one of three different conditions of our PVD-



POMDP: a no feedback control condition, a physical feed-
back condition, or a mixed reality feedback condition. Our
results show that our mixed reality model significantly out-
performs the physical and no feedback models in both speed
and accuracy, while also achieving the highest usability, task
load, and trust scores.

II. RELATED WORK

Previous research has investigated different communica-
tion modalities between robots and users, identifying the
costs and benefits of each. A large amount of work has
investigated physical robot actions used to reference objects
to communicate with a human user, with two effective modes
being robot eye gaze and robot pointing. Other research has
opted instead to utilize a visualization-based approach, with
visualizations displayed through 2D monitors, augmented
reality, and mixed reality.

Eyes tend to move very quickly, and are used to both col-
lect and communicate information. This makes eye-tracking
a natural way to ground the references of other agents
[1, 2, 7, 8, 12, 14, 15]. However, it is often difficult to
perceive where an agent is looking, especially compared
to pointing. Pointing is another natural deictic gesture that
requires more effort but is easier to interpret. Admoni et al.
[1] show that gaze and gesture are good at distinguishing
between locationally unambiguous (far apart) items, while
speech is good at distinguishing between visually unam-
biguous (different looking) items. However, related works
[1, 2, 7, 8, 12, 14, 15] do not compare using eye gaze
and pointing gestures to visualizations for reducing robot
uncertainty.

Language has also been shown to be an effective means of
symbol grounding, as in Chai et al. [5]. Their system enables
users to use natural language to describe objects in the shared
environment in order to ground them. The authors use a NAO
robot with pointing and language to ask questions to clarify
the human’s references. Having the robot act in order to share
its uncertainty to the human was shown to be important for
establishing common ground. Like their work, we investigate
pointing and language for disambiguation. However, we also
investigate eye gaze, visualization, and question asking for
mediating human-robot interaction.

Shridhar and Hsu [17] present an end-to-end system,
INGRESS, to interpret unconstrained natural language com-
mands for unconstrained object class references and perform
question-asking. Their system outperforms state-of-the-art
baselines, though they recognize that integration of nonverbal
commands would help with requiring less complicated verbal
references. Our approach, in contrast, uses a relatively simple
language model, but also incorporates human gesture and eye
gaze. Our model also allows the agent to ask questions via
gesture, eye gaze, and visualizations for disambiguation.

Several related works have studied the usage of visual
interfaces for improving communication in human-robot in-
teractions [13, 18, 22, 23]. Sibirtseva et al. [18] perform
a comparison of different visualization techniques for robot

question-asking in an item-fetching domain. The authors use
a semi-wizarded system to compare a 2D monitor interface,
an augmented reality interface (fixed overhead projector),
and a mixed reality interface for highlighting tabletop items.
The authors found the mixed reality interface most engaging,
but augmented reality most accurate and most preferred.
They posit that technical limitations were to blame for the
poor performance of MR. Our approach, in contrast, directly
compares MR visualization to physical behaviors such as
pointing and eye gaze. We do not compare to projector-
based systems because they do not support eye-gaze tracking,
whereas MR-HMDs do.

III. BACKGROUND

MDPs, POMDPs, and the FETCH-POMDP are mathe-
matical frameworks for modeling decision making. As these
models form the base of our approach, we describe them
further here.

A. Markov Decision Process

A Markov Decision Process (MDP) [3] is formalized as
a tuple (S,A, T,R, γ). S is the set of states the agent can
be in. A is the set of actions that the agent can take. T
is the transition function that models the probability that
performing an action a in state s lands the agent in state
s′: T (s, a, s′) = P (s′|s, a). R is the reward function that
models cost of performing an action a in state: R(a, s). γ is
the discount factor for each subsequent action in the expected
reward: V (s) =

∑∞
t=0 γ

tRt where Rt is the reward obtained
at time t.

B. Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process
(POMDP) [11] is a generalization of an MDP in which the
agent does not know what state it is in, but instead maintains
a belief distribution over possible states. More formally, a
POMDP is defined as a tuple (S,A, T,R,Ω, O, γ), where all
the previous definitions from MDP still apply, Ω is the set of
observations, and O is the observation function that models
the the probability of receiving observation o if the agent
takes action a and lands in state s: O(o, a, s) = P (o | a, s).

C. FETCH-POMDP

Whitney et al. [21] formulate a similar object-fetching task
to ours as a POMDP called the FEedback To Collabora-
tive Handoff Partially Observable Markov Decision Process
(FETCH-POMDP). In the FETCH-POMDP, users are able
use speech and pointing gestures to reference items on the
table, and the robot is able to either point to an item to ask
whether it was the desired item, wait, or pick an item that it
believes is the desired item.

The authors evaluate the speed and accuracy of the
FETCH-POMDP against a model with a fixed question-
asking policy and a model that never asked questions, for
both ambiguous and unambiguous settings. By asking ques-
tions only when it is confused, the FETCH-POMDP [21]
increases interaction speed and accuracy compared to fixed
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Fig. 2: A graphical model of our PVD-POMDP. Hidden
variables are white, observed variables are gray (See Section
IV-A for variable definitions).

question-asking policies across ambiguous and unambiguous
contexts. However, the FETCH-POMDP is limited to only
pointing gestures for question asking, and does not use eye
gaze or MR visualizations. We hypothesize that MR visual-
izations are an objectively and subjectively better interface for
question-asking in an item disambiguation task than physical
behaviors.

IV. TECHNICAL APPROACH

We take a decision-theoretic approach to the item fetching
problem by modeling our domain as a POMDP. This allows
our robot to intelligently balance the informativeness and
speed of its actions and gracefully handle its uncertainty. The
Physio-Virtual Deixis Partially Observable Markov Decision
Process, or PVD-POMDP, has as observations the speech,
pointing gestures, and eye gaze of the user. Depending on
the condition, the model enables our robot to look at, point
to, and/or virtually highlight an item to ask if it is the
desired item. The general intuition of our actions is that robot
pointing is slower because the robot arm must move, but can
be interpreted easily. Robot looking is faster because only
the face and screen move, but is more difficult to interpret
than pointing, especially when items are close together. MR
visualizations are just as interpretable as pointing gestures
because MR isolates items via highlighting, yet is faster
to perform than robot looking because it requires no robot
motion.

A. Model Definition

The PVD-POMDP1 (Physio-Virtual Deixis POMDP) is
given by components 〈I, S,A, T,R,Ω, O, γ〉
• I is the list of all items on the table. Each item i ∈ I has

a known location (x, y, z) and set of associated words
i.vocab.

• S: The state is (id, q). id ∈ I is the human’s desired
item, which is hidden. q is the agent’s last question,
which is known. q is initialized to null.

• A: We divide the actions into two types: non-question-
asking and question-asking. The non-question-asking
actions are wait and pick(i) for i ∈ I . A pick action
ends the interaction. The question-asking actions are
point(i), look(i), and highlight(i) for i ∈ I . look is

1See supplemental video at https://www.youtube.com/watch?v=
lXFv747b-Uc

cheaper but less accurate than point, while highlight is
cheaper than look and as accurate as point. However,
highlight requires a MR-HMD for the user, while look
and point do not require additional hardware than the
robot itself.

• T (s, a, s′): id remains constant throughout an interac-
tion. q is initialized to null and updated to a whenever
a question-asking action a is taken.

• R(s, a): The agent receives large positive and neg-
ative rewards for picking the right and wrong item
respectively, and small negative rewards for all other
actions. In decreasing magnitude of reward, the non-
pick actions are point, look, highlight, wait. We calibrate
these rewards roughly accordingly to how long each of
the non-pick actions take: physical actions like point
and look require physical robot behavior, thus take more
time. highlight only needs to visualize on the MR-HMD,
thus costs less. wait takes very little time.

• Ω: Each observation is composed of language, gaze, and
gesture. Language is subdivided into base and response
utterances. The response utterance can be positive, neg-
ative, or null.

• O(o, s, a): The observation function can be factored into
base utterance, response utterance, gaze, and gesture
components. It is explained in detail in the Observation
Model section below.

• γ: The discount factor is γ = 0.99.

B. Observation Model

Each observation o is a quadruple of base utterance lb,
response utterance lr, gesture g, and eye gaze e. The com-
ponents are assumed conditionally independent of each other
given the state s (see Fig. 2):

Pr(o | s) = Pr(lb | s) Pr(lr | s) Pr(g | s) Pr(e | s) (1)

Following Goodman and Stuhlmüller [6], we assume
each base utterance lb has a literal interpretation probability
Prlex(id | lb) and that the speaker chooses their utterance by
soft-max optimizing the probability that the listener infers
the correct desired item from their base utterance. Each base
utterance is interpreted as a vector lb whose ith component
lb(i) is the number of words in the utterance that refer to
the ith object. Let U be the set of base utterance vectors and
|lb| =

∑
i∈I lb(i). Then we set:

Prlex(id | lb) =


(1− α)lb(i) + α

(1− α)|lb|+ α|I|
|lb| > 0

1

|I|
|lb| = 0

(2)

where α = 0.02 is a noise parameter. Let pl = 0.1 be the
probability a base utterance is made and θ = 15 the soft-max
parameter. Then:

Pr(lb | id) =


pl

eθPrlex(id|lb)∑
lb∈U

eθPrlex(id|lb)
|lb| > 0

1− pl |lb| = 0

(3)

https://www.youtube.com/watch?v=lXFv747b-Uc
https://www.youtube.com/watch?v=lXFv747b-Uc


When planning, we assume each base utterance will have at
most three words to lower computation time.

The equation for Pr(lr | s, a) has three components.
The probability of receiving a response is pr = 0.6. The
probability that the human interprets the agent’s question as
asking about i if the agent is asking about j is Pr∗(i | j),
which is defined in Equation 4 for point and highlight, and in
Equation 6 for look. The probability that the human responds
correctly based on their interpretation is prc = 0.999.

The human is assumed to always understand a point
or highlight action, so the interpretation probabilities for
pointing and highlighting are:

Prp(i | j) = Prh(i | j) =

{
1 i = j

0 i 6= j
(4)

The interpretation probability for the look action uses
a modified version of the model from Admoni et al. [1].
While humans have trouble identifying the exact angle of a
look, they are very good at determining the general direction
because of the robot’s head motion, so we assume the human
never mistakes a leftward look for a rightward look and vice
versa.

Let ang(i, j) be the angle between item i and item j
relative to the robot’s face, di the distance from the agent’s
face to item i, and w0 = 6, w1 = 6 noise parameters. Let
M(i, j) represent whether items i and j are on the same side
of the robot:

M(i, j) =

{
1 i and j are on the same side of the robot
0 otherwise

(5)
Then the probability Prl(i | j) that a human thinks the robot
is looking at i when they are in fact looking at j is:

Prl(i | j) ∝
1

di(1 + w0|ang(i, j)|)w1
M(i, j) (6)

Suppose the robot asked about item i using point or
highlight. Then probability of receiving a response lr is:

Pr(lr | s) =


prprc lr = yes
pr(1− prc) lr = no
1− pr lr = null

(7)

Let Prl(i) denote Prl(i | i). If the robot asked about item i
using look, then the probability of receiving a response lr is:

Pr(lr | s) ={
pr(Prl(i)prc + (1− Prl(i))(1− prc)) lr = yes
pr(Prl(i)(1− prc) + (1− Prl(i))prc) lr = no

(8)

Human eye gaze e is modeled as a vector from the user’s
head to the point they are looking at. Gesture g is modeled as
a vector from the user’s the hand to the point they are pointing
at. Angles are measured relative to the vector ending at the
desired item. The probabilities of receiving a gaze or gesture
are pe = 0.8 and pg = 0.3 respectively. When present, gaze
and gesture are assumed to come from Gaussian distributions

with mean 0 error and with and standard deviations σe =
0.02 and σg = 0.06 radians respectively:

Pr(g | id) =

{
pgN (θid ; 0, σ2

g) g 6= null

1− pg g = null
(9)

Pr(e | id) =

{
peN (θid ; 0, σ2

e) e 6= null

1− pe e = null
(10)

A human’s gaze is attracted to referenced items, so the
robot ignores gaze observations for 1 second after asking
a question.

Due to the differing noise models combined with a
decision-theoretic approach, the robot considers pointing to
be more costly than looking, and thus will only point at an
item when the increased accuracy is worth the cost. Roughly
speaking, the robot will look at an item if it is far enough
away from other items that looking is unambiguous and will
point at an item when it is in close proximity to other items.

C. Implementation Details

In order to observe the human’s speech, we use Google’s
Cloud Speech to transcribe the user’s speech. For gesture
tracking, we use the Microsoft Kinect v2 in conjunction with
OpenNI’s skeleton tracker software, and calculate pointing
vectors from the user’s head to hand. Lastly, we use the
Magic Leap One, a commercially avaliable MR-HMD, to
track eye gaze.

We used Perseus, an offline POMDP planner from Spaan
and Vlassis [19], as our planning algorithm. It took 6,
5191, and 724 seconds to train the control, physical, and
mixed reality paradigms, respectively. Note that this training
happens offline before the interaction begins, which enables
the robot to act in real-time at run-time. Since human gesture
and gaze are analogous, we planned using only gaze, but
utilized both gaze and gesture during interaction.

For the user to understand which item the robot is asking
about, the visualization presented to the user must isolate the
referenced item from all the others. Our choice was to use a
3D sphere visualized over the referenced item. A sphere is the
only fully rotationally invariant 3D shape, so it can be viewed
equally well from all angles. We found that during our pilot
studies (Section VI), users were less distracted when they
moved, and generally looked directly at the item. We found
3D spheres to be the most highly regarded design in our pilot
studies, and chose it as our final visualization method.

V. EVALUATION

To evaluate our hypothesis, we designed an evaluation task
where the robot disambiguated what item the human referred
to as quickly and accurately as possible (defined in Section
V-C) from an array of potential objects on a table in front
of the robot. The aim of our evaluation was to investigate
how communicating questions via physical robot behaviors,
like looking and pointing, compare to communicating those
questions via mixed reality visualizations.



We devised a user study to compare three conditions of
communication modalities. In the no feedback control con-
dition, the robot did not ask any questions and only decided
to pick an item when it was sufficiently confident based on
observations from the human (i.e: robot did not interact with
the human except for when it picked an item). In the physical
feedback condition, the robot was able to ask questions by
moving, either using gesture or looking to reference items. In
the mixed reality (MR) feedback condition, the robot was able
to ask questions by visualizing a sphere over the referenced
item in the user’s mixed reality headset. We posited two
hypotheses (H1 and H2) about the objective measures, and
two hypotheses (H3 and H4) about the subjective measures:
• H1: The feedback conditions (physical and MR) will

outperform the no feedback condition (control), as
demonstrated by: (a) greater trial accuracy and (b) lower
trial time.

• H2: The MR feedback condition will outperform the
physical feedback condition, as demonstrated by: (a)
greater trial accuracy and (b) lower trial time.

• H3: Users in the feedback conditions (physical and MR)
will have a better user experience than users in the no
feedback condition (control), as demonstrated by: (a)
greater usability scores, (b) greater trust scores, and (c)
decreased workload scores.

• H4: Users in the MR feedback condition will have
a better user experience than users in the physical
feedback condition, as demonstrated by: (a) greater us-
ability scores, (b) greater trust scores, and (c) decreased
workload scores.

A. Physical Setup
The physical setup of our experiment can be seen in Fig.

1. For the interaction, the human stood 2 meters away from
a table with six items on it, and the robot stood on the
other side of the table. Our item set consisted of three red
expo markers, two glass cups, and one yellow rubber duck.
The expo markers and glasses were identical except for their
different spatial positions. The items were placed on the table
in three groups of two, with the rubber duck and a marker
on the far left, the two glasses in the middle, and the last two
markers on the far right. The distances between the objects,
from left to right, were 10cm, 40cm, 15cm, 45cm, and 10cm.

We chose the items and their locations to represent visually
and spatially ambiguous scenarios. Specifically, the leftmost
group is least ambiguous, as the duck is a unique item, and
the marker is very far from its identical copies. The middle
group is more ambiguous, as the two glasses are identical,
and are somewhat close together. The rightmost group is most
ambiguous, as the two markers are identical, and very close
together.

The Microsoft Kinect v2 sensor was placed on top of the
robot and calibrated to accurately track the pose of the human
relative to the robot. The user wore the Magic Leap One
HMD and headphones with a microphone in order to track
the user’s eye gaze and speech, respectively. The user heard
the robot’s question-asking through the headphones.

B. Experimental Procedure

Participants were randomly assigned to one of the three
between-subjects conditions (no feedback control condition,
physical feedback condition, MR feedback condition). After
reading the IRB approved consent procedure, we calibrated
the Magic Leap One for each user’s eye gaze by using the
supplied visual calibration program. We then went through
the instructions for the study, and informed users there would
be 18 trials with the robot. For each trial, the user was told
an item number associated with an object and instructed
to use speech, gesture, and eye gaze to reference the item
to the robot in a clear and natural manner. If the user
was in a condition with feedback, the user was told what
feedback to expect from the robot (i.e., either physical or
MR visualization-based question-asking). The experimenter
then counted down from three to start the trial, at which point
the user could reference the item; each trial ended when the
robot selected an item or 30 seconds had passed. Every user
was asked to reference each of the six items three times,
totaling 18 trials. The order of items was randomly shuffled
for each user. In each of the trials, we recorded the interaction
time and whether the correct item was selected or not. After
all 18 trials were completed, the user completed a series of
subjective questionnaires.

C. Objective Measures

The performance of the robot in the task was evaluated
using two objective measures, accuracy and time.

1) Accuracy: Accuracy was calculated as the number of
correct items selected by the robot divided by the total
number of trials (18 trials). We treated a trial timeout as
an incorrect pick when calculating accuracy.

2) Time: Each trial began when the robot heard the user
speak and ended when the robot picked an item; if the robot
did not pick an item, the trial timed out after a 30 second
period. The time measure was calculated as the average time
of the interaction across all 18 trials.

D. Subjective Measures

Participants completed a series of three questionnaires to
evaluate the success of the interaction on the basis of the
perceived usability of the system, the trust in the robot on
the task, and the task load of the interaction.

1) System Usability Scale: The System Usability Scale
(SUS) is a versatile tool for assessing system usability
developed by Brooke [4]. We use the SUS to evaluate user
perceptions of usability of the robot system. The SUS con-
sists of 10 Likert items, with usability scores for participants
calculated by following the scoring guidelines for the SUS.

2) Multi-Dimensional-Measure of Trust: The Multi-
Dimensional-Measure of Trust (MDMT) was developed by
Ullman and Malle [20] to assess human trust in robots across
tasks and domains. There are two superordinate dimensions
of the MDMT: moral trust and capacity trust. For this study,
we were interested in user evaluations of capacity trust in the
robot. We used two of the four subscales from the MDMT:



(a) Accuracy (b) Time (c) SUS (d) MDMT (e) RTLX

Fig. 3: Our objective measures (a) Accuracy and (b) Time, and subjective measures (c) SUS, (d) MDMT, and (e) RTLX,
shown for all three between-subjects conditions. Error bars represent stand error.

reliable (reliable, predictable, someone you can count on,
consistent) and capable (capable, skilled, competent, metic-
ulous). The MDMT consists of rating scales for each item
from 0, “Not at all,” to 7, “Very,” with an option for “Does
Not Fit.” We calculated capacity scores for participants by
averaging across ratings on these eight items.

3) NASA Task Load Index: The NASA Task Load Index
(NASA-TLX) is an effective measure used across a variety of
domains for the assessment of perceived workload [10]. We
use the raw version of the NASA-TLX, often referred to as
the RTLX, which is less burdensome than the original version
and has been successfully utilized in numerous research
studies [9]. We use the RTLX to evaluate the user workload
associated with interacting with the robot system. The RTLX
consists of six rating scales on different dimensions, with
each scale spanning 0-100 in 5-point increments. We calcu-
lated workload scores for participants by averaging across
ratings on all six scales.

VI. RESULTS

Participants were recruited from the authors’ academic in-
stitution, with participants required to be at least 18 years old
and able to see without glasses (contacts were acceptable).
We first conducted a pilot study with 10 participants to test
the system. We then conducted the main study with a total of
83 participants. Three participants were excluded from data
analysis (two for failure to follow study instructions, and one
due to system technical error). Analysis was performed on
the data from 80 participants: 27 in the no feedback control
condition, 26 in the physical feedback condition, 27 in MR
feedback condition. Please see Fig. 3 and Table I for data.

Acc. Time SUS MDMT RTLX
CTRL .72±.20 7.59±4.05s 65.74±20.34 4.45±1.33 29.88±16.74
PHYS .82±.17 8.10±2.86s 73.27±15.66 4.90±0.99 24.13±12.84
MR .93±.07 5.07±1.25s 76.76±12.71 5.40±0.85 19.01±11.37

TABLE I: A table of the means and standard deviations of all
five of our metrics for all three conditions (CTRL = Control,
P = Physical, MR = Mixed Reality). Bolded numbers are the
best for that metric.

A. Objective Measures

The two objective dependent measures (accuracy, time)
were correlated (p < .001) with each other, r = -.68. This
correlation suggests that as accuracy increased, time for

the task decreased. The correlation between the dependent
variables also indicates that a multivariate analysis of the
data is warranted to account for the relationship between the
dependent variables.

A MANOVA was conducted using a pair of a priori
orthogonal Helmert contrasts in order to test hypothesis H1
(that the feedback conditions would outperform the no feed-
back condition) and hypothesis H2 (that the MR feedback
condition would outperform the physical feedback condition).
An examination of the multivariate relationships of the data
reveals strong support for hypothesis H1: the feedback condi-
tions outperformed the no feedback condition. There was also
strong support for hypothesis H2: the MR feedback condition
outperformed the physical feedback condition.

The first Helmert contrast was significant and supports
hypothesis H1, F(2, 76) = 10.14, p < .001, multivariate η2 =
.21. The univariate F-tests revealed that, compared to the no
feedback condition, the feedback conditions were (a) higher
on accuracy, F(1, 77) = 17.69, p < .001, η2 = .19; and (b)
not statistically significant different for time, F(1, 77) = 2.21,
p = .14, η2 = .03. These results indicate that the effect of
increased performance in the feedback conditions is driven
by higher accuracy.

The second Helmert contrast was significant and supports
hypothesis H2, F(2, 76) = 6.86, p < .01, multivariate η2

= .15. The univariate F-tests reveal that the MR feedback
condition outperformed the physical feedback condition with
(a) significantly higher accuracy, F(1, 77) = 5.80, p = .02, η2

= .07; and (b) significantly lower time, F(1, 77) = 13.91, p
< .001, η2 = .15. These results indicate that the MR feedback
condition was superior to the physical feedback condition.

B. Subjective Measures

The three subjective dependent measures (SUS, MDMT,
RTLX) were all correlated (ps < .001) with each other: r
= .65 for SUS and MDMT; r = -.60 for SUS and RTLX;
and r = -.54 for MDMT and RTLX. These correlations
suggest that usability and trust increase in tandem, and that
workload decreases as both usability and trust increase. The
correlations between the dependent variables also indicate
that a multivariate analysis of the data is warranted to account
for the relationships among the dependent variables.

A MANOVA was conducted using a pair of a priori
orthogonal Helmert contrasts in order to test hypothesis H3
(that the feedback conditions would facilitate better user



experiences than the no feedback condition) and hypothesis
H4 (that the MR feedback condition would facilitate better
user experiences than the physical feedback condition). An
examination of the multivariate relationships of the data
reveals strong support for hypothesis H3: Feedback from
the robot in both the physical and MR conditions facilitated
better overall user experiences than no feedback. There was
also a trend in the data consistent with hypothesis H4: MR
feedback facilitated better user experiences than physical
feedback. The means and standard deviations of all three
subjective metrics for each condition are shown in Figure 3.

The first Helmert contrast was significant and supports
hypothesis H3, F(3, 75) = 3.13, p = .03, multivariate η2 = .11.
The univariate F-tests revealed that the feedback conditions
were rated as (a) significantly better on usability, F(1, 77) =
5.66, p = .02, η2 = .07; (b) significantly higher on trust, F(1,
77) = 7.56, p < .01, η2 = .09; and (c) significantly lower on
workload, F(1, 77) = 6.50, p = .01, η2 = .08. These results
offer strong support for hypothesis H3.

The second Helmert contrast was not significant, F(3, 75)
= 1.19, p = .32, multivariate η2 = .05. However, the means of
the measures are consistent with hypothesis H4, with ratings
in the MR feedback condition greater on usability and trust
than in the physical feedback condition, as well as lower
on workload. None of the univariate F-tests were statistically
significant, but workload and trust had noteworthy effect sizes
of 2-4% explained variance: F(1, 77) = 0.59, p = .45, η2 =
.01 for usability; F(1, 77) = 2.86, p = .10, η2 = .04 for trust;
and F(1, 77) = 1.81, p = .18, η2 = .02 for workload. Given
the interesting trend but insufficient statistical confidence,
future work will aim to elucidate whether there is in fact
a qualitative difference between the two feedback conditions
along subjective measures.

We gain some additional insight from the MANOVA by
examining the semi-partial coefficients (discriminant function
weights) for the three user experience measures. The semi-
partial coefficients are like weights in a multiple regression
and indicate which of the three measures most strongly
discriminates between the conditions. When contrasting feed-
back to no feedback, MDMT (trust) makes the strongest
contribution (.57), RTLX (workload) also makes a notable
contribution (-.46), but SUS (usability) makes little unique
contribution (.15) above and beyond RTLX and MDMT.
Taken together, while the three measures show high corre-
lations and share some ability to discriminate between the
feedback and no feedback conditions, the MDMT is able to
stand by itself as a parsimonious tool to capture user attitudes
towards a robot. This is perhaps because it is a user-friendly
measure, derived from natural language people use in the
domain of trust [20].

VII. DISCUSSION

The results from the objective and subjective measures
in our user study paint a single, coherent story about the
conditions we tested. In general, the feedback conditions
(physical, MR) outperformed the no feedback condition,

and the MR feedback condition (control) outperformed the
physical feedback condition. The user experience of each
condition roughly paralleled the performance of the system.
Ultimately, we conclude that models that integrate feedback
perform better and are preferred by users, and that MR is a
promising modality for this communication.

In terms of objective measures, the feedback conditions
(physical, MR) were more accurate than the no feedback
condition (control), as was the MR condition compared to
the physical condition. While the MR condition averaged less
time than the physical condition, the time difference between
the feedback condition and the no feedback condition was
not statistically significant; this appears to stem from the
reduced speed of the physical condition, which required
extra time for the robot to move its end effector to offer
feedback. The results thus fully support hypothesis H2 (MR
feedback condition compared to physical feedback condition
on objective measures), with nuanced support for hypothesis
H1 (feedback condition compared to no feedback condition
on objective measures). Remarkably, the MR condition was
simultaneously the most accurate and the fastest, contrary to
the typical speed-accuracy tradeoff. These results show par-
ticular promise for the MR feedback model, which appears
to exhibit the best performance in terms of both accuracy and
speed.

The subjective measures on user experience offer a similar
story. Participants gave better user experience ratings across
all three subjective measures (usability via SUS, trust via
MDMT, workload via RTLX) in the feedback conditions
(physical, MR) as compared to the no feedback condition
(control). Although there was no statistically significant
difference between the user experience ratings in the MR
feedback condition and the ratings in the physical feedback
condition, the means across all three subjective measures
improve from no feedback to physical feedback, and again
from physical feedback to MR feedback. As a result, we
believe that the benefits of MR are worth exploring further
in future work. The results thus fully support hypothesis H3
(better user experience in feedback conditions compared to
no feedback condition on subjective measures), with trending
support for hypothesis H4 (better user experience in MR
feedback condition compared to physical feedback condition
on subjective measures)

VIII. CONCLUSION

This work presents a robot interaction model that is able to
interpret multimodal human communication and use a mixed
reality interface to perform question-asking in an item dis-
ambiguation task. We approach our problem from a decision-
theoretic standpoint, and ultimately offer our new model
called the Physio-Virtual Deixis (PVD) POMDP. Lastly,
we report the results of our user study, which compared
two feedback conditions (physical, MR) to a no feedback
condition, as well as compared the physical and MR feedback
conditions to each other. We found statistically significant
support along both objective and subjective measures in



favor of conditions that offer feedback (physical, MR) over
no feedback (control), as well as statistically significant
support from objective measures (and trending support from
subjective measures, though not significant) in favor of a MR
feedback condition over a physical feedback condition.
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