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Abstract—As robots become more prevalent in society, they will
need to learn to act appropriately under diverse human teaching
styles. We present a human-centered approach for teaching
robots reward functions by using a mixture of teaching strategies
when communicating action appropriateness and goal success.
Our method incorporates two teaching strategies for learning:
explicit action instruction and evaluative, scalar-based feedback.
We demonstrate that a robot instantiating our method can learn
from humans who use both kinds of strategies to train the robot
in a complex navigation task that includes norm-like constraints.

Index Terms—Human-robot interaction, interactive reinforce-
ment learning, feedback strategies, learning systems, norms

I. INTRODUCTION

As robots take on more socially significant roles—as care-
takers, assistants, and collaborators—we must develop algo-
rithms allowing robots to learn appropriate behavior in society.
People teach robots in ways most intuitive to them, which may
not align with current learning algorithms’ expected inputs.
Thus, robots must be able to learn from diverse forms of
human feedback, such as instruction, demonstration, praise,
and criticism, and they must be able to respond to teachers
with different styles and preferences of teaching.

Recent work on learning reward functions (Jeon et al.
[1], Biyik et al. [2]) has emphasized the importance of learning
from diverse forms of feedback. These authors model human
feedback choices as a Boltzmann rational process, and they
employ Bayesian inverse reinforcement learning (Ramachan-
dran and Amir [3]) to incorporate both the choice of feedback
and the feedback value to align robot behavior with what the
human desires. However, teachers have different personalities,
teaching styles, and goals when teaching students (Clegg et al.
[4], Kline [5], Grasha [6]), and they may not always act in a
Boltzmann rational manner.

We are taking first steps toward algorithms that specifically
integrate two frequent teaching strategies in social settings:
instructing a learner on the correct actions in a given con-
text and providing evaluative feedback when observing the
learner’s actions. Our preliminary findings indicate that an
intelligent agent can successfully learn from combinations of
instruction and evaluative feedback and that it can also learn
from human feedback that considers both the long-term and
immediate consequences of the agent’s current behavior.

II. RELATED WORK

Previous work on human-robot teaching often assumes that
human teaching takes one of two forms: either action-based in-
struction or scalar-based evaluation. Examples of action-based
teaching are human demonstrations, which—in reinforcement-
learning (RL) frameworks—are example sequences of state-
action pairs. Scalar-based teaching assigns some scalar value
to the observed quality of the agent’s action. Several methods
exist for learning reward functions or policies from these two
forms of feedback.

Inverse reinforcement learning (IRL) algorithms aim to
learn a reward model inducing an optimal policy consistent
with a set of expert (typically human) demonstrations. Abbeel
and Ng [7] aimed to find a policy closely matching the policy
of human experts by using linear programming to learn a
reward model that explains the expert policy. Ambiguity in
potential reward models was observed by Ng and Russell [8],
indicating that the reward model inducing a given policy is
not unique. To determine if any two inferred reward functions
are equivalent, Gleave et al. [9] proposed the Equivalent-
Policy Invariant Comparison (EPIC) that canonicalizes the
reward functions and computes a pseudometric. If two reward
functions are equivalent under EPIC, then they induce the same
policy and therefore the same behavior.

The aforementioned methods require no interaction between
the learning agent and the human teacher because the agent is
trained on a pre-collected dataset of human demonstrations.
However, collecting demonstration data can be expensive.
Brown and Niekum [10] investigated the minimal number of
maximally informative demonstrations to use as the demon-
stration dataset for IRL and aimed to leverage this information
in a Bayesian Information-Optimal IRL approach [10]. Other
work has focused on interactive IRL to learn from incre-
mentally obtained demonstrations. Arora et al. [11] proposed
an online, incremental IRL framework. Kamalaruban et al.
[12] considered teachers providing demonstrations conditioned
on observing the agent’s behavior and teaching under full
knowledge of the agent’s policy and parameters, or only given
noisy samples of the agent’s policy.

Additionally, previous work has shown that humans are
able to teach an agent desired behaviors by giving scalar-
based evaluative feedback. In interactive RL, a human teacher
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provides feedback dynamically as part of the ongoing learning
process. Knox proposed TAMER [13], which assumes hu-
mans provide time-delayed reward-based feedback that can
be treated as scalar values and can be used to estimate the
human’s internal reward model. MacGlashan et al. proposed
COACH [14, 15], offering empirical evidence that human
participants can provide policy-dependent, advantage-based
scalar feedback to train agents. Policy-dependent feedback
is based on an evaluation of the perceived current policy
of the agent. Advantage-based feedback intuitively represents
how much more valuable taking an action in a certain state
is compared to the average value of all actions that could
be taken from that state, under the agent’s current policy.
Policy-dependent feedback enables effective teaching strate-
gies like policy shaping (e.g., giving breadcrumbs for sub-
optimal behavior); COACH demonstrated evaluative feedback
can directly improve an agent’s policy via policy gradients.

Other work has considered how agents can learn from
mixtures of human feedback. Li et al. proposed IRL-TAMER
[16], in which an agent initially learns from demonstration
and then is fine-tuned by scalar-based feedback via TAMER.
Mourad et al. [17] also considered initially learning from
demonstration under supervision before switching to binary
evaluative feedback for fine-tuning. The binary feedback was
myopic and policy-independent, with agents learning appro-
priate policies under their framework.

Bayesian IRL (Ramachandran and Amir [3]) approaches
have been applied to active learning problems using
preference-based feedback (Sadigh et al. [18]). The human
teacher chooses the preferable trajectory from a trajectory pair
that is determined and proposed by the agent. Jeon et al. [1]
offers a framework incorporating choice of human feedback,
from a diverse set of feedback types, as additional information
regarding reward, assuming that a human’s feedback choice is
Boltzmann rational. Finally, Palan et al. [19], Biyik et al. [2]
integrated learning from demonstrations with preference-based
feedback in active learning settings.

Our work differs from prior work in that we aim to
incorporate both action instruction and scalar-based human
feedback, in light of empirical evidence that some mixture of
these strategies is natural for human teachers to give. Chi and
Malle [20] found in initial studies that most human participants
who train an agent to act appropriately in a medical setting
chose a combination of the two kinds of teaching; and they
were guided both by the robot’s performance and by their
own accumulated impressions of the robot. Here we develop a
human-centered learning algorithm allowing an agent to learn
reward models from any combination of action- and scalar-
based evaluative feedback.

III. PROBLEM STATEMENT

Teaching Objective. We aim to interactively teach an agent
to successfully reach a goal while acting appropriately in
line with norm-like environmental constraints (i.e., prohibited
rooms). In this first stage, we do not use human partici-
pants as teachers but instead construct teacher models that

guide agent behavior with different types of teaching. Here
we compare teacher models that provide either scalar-based
evaluative feedback with varying properties (e.g., advantage
based, policy-dependent) or a mixture of action-based and
evaluative feedback.

Learning Agent Model. In our approach, the agent main-
tains an internal estimate of a feature-based reward model
R(�(s);w), where � is a state-based feature extractor; s is
an environment state with features, such as position, or room
type; and w are learned weights. The agent must learn a
reward representation inducing a stochastic policy ⇡(a|s) that
the teacher deems appropriate behavior, where ⇡(a|s) is the
probability of taking action a in state s.

Reward-Induced Policy. To induce its policy, the agent
solves a Markov Decision Process (MDP) by using its current
internal reward function estimate as the reward function.
Specifically, the agent models its world as a sequence of
MDPs represented by (S,A, T, �, R), where S is the set of
environment states, A is the set of actions the agent can take,
T is a transition model capturing the environment dynamics,
� is the agent’s internal discount factor, and R = R(�(s);w)
is the agent’s current internal reward estimate, which updates
whenever feedback is received. Whenever the reward estimate
is updated, the MDP is solved with dynamic programming
using the softmax Bellman operator (Song et al. [21]) to
obtain the Q(s, a) state-action values and the corresponding
stochastic policy. Using a computational graph allows the
agent’s stochastic policy to remain differentiable with respect
to w. The stochastic policy is simply the softmax of the Q
values. The agent uses this policy to act in the world and elicit
feedback from the teacher model.

Learning Reward. The agent learns its reward estimate
by using a likelihood objective to update the reward function
such that the induced policy better accounts for the teacher’s
feedback. Whenever feedback is provided, the teacher model
has a choice of providing action-feedback af 2 A or evaluative
scalar-feedback f , which is used to update the agent’s reward
model. To accomplish this independently of the teacher’s
underlying feedback strategy, hence flexibly for teachers with
different strategies, the agent uses a likelihood objective—
adjusted based on feedback received—to maximize the likeli-
hood its induced policy results in desired behavior.

IV. TECHNICAL APPROACH

The agent utilizes different loss functions conditioned on
the type of feedback received in order to adjust the internal
reward function it uses to induce its policy.

Action Instruction. The agent seeks to maximize the
likelihood L(⇡;w) =

Q
(af ,s)2B ⇡(af |s;w) that its policy

takes appropriate actions af (i.e., actions that the teacher has
indicated to be appropriate in state s), which have been stored
as a result of interactions in a feedback buffer B.

Evaluative Scalar Feedback. The agent seeks to adjust the
likelihood of taking the specific action a from state s, based
on the scalar feedback f it has received from the teacher.
The pseudo-loss L(⇡;w) = � log(⇡(a|s;w))f creates an
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appropriate gradient update with respect to w. The evaluative
feedback f that the teacher provides is a real number from R
instead of being limited to binary feedback (good vs. bad).

Modeled Teacher Feedback Strategies

We model teacher feedback choices (instruct vs. evalu-
ate) as a function of different strategies, characterized by
two components: (1) policy-dependence vs. independence,
which captures how much of the learner’s current behavior
the teacher takes into account when providing feedback; (2)
myopic vs. forward-looking, which refers to variations in the
teacher’s discount factor, or the relative weights given to near-
term and long-term consequences of the agent’s current policy.

Policy-Independent Strategies. We created four policy-
independent strategies: (1) Pure action-based feedback, where
the teacher always responds with the optimal action af the
agent should have taken from state s. (2) Myopic raw ad-
vantage, where the teacher uses their own optimal policy
advantage values as feedback. (3) Myopic ranked advantage,
which is the same as (2), except that the advantage values
are mapped onto integers in the interval [�2, 2] for better
differentiation. (4) Myopic ranked path-cost, where the teacher
ranks how optimal the agent’s immediate action is, assuming it
follows an optimal policy forever afterwards, but additionally
penalizes immediate violations.

Policy-Dependent Strategies. We created two policy-
dependent strategies: (1) Forward-looking raw advantage feed-
back, in which the teacher evaluates the agent’s current policy
using a high-discount factor, emphasizing the long-term con-
sequences of the agent’s current behavior. (2) Forward-looking
ranked advantage feedback, which is the same as (1), except
that the advantage values are mapped onto integers in [�2, 2].

V. EVALUATION

We evaluated how well the agent learns from the various
teacher models described above, and we also considered the
impact of the agent’s own tendency to be myopic vs. forward-
looking by varying its � parameter.

Environment. We conducted our experiments in a 5x10
GridWorld, where each cell emits the agent’s internal reward-
estimate value based on the cell’s color upon entry. The
teacher provides feedback to the agent so that it learns to
reach a goal-colored cell while learning to avoid prohibited-
colored cells. The color of a cell is the feature used in
the agent’s reward function; there are 5 colors for which
the agent needs to learn reward values. Code is available at
https://github.com/hsbwncpodoet/hrilbr.

Evaluation Metrics

We evaluate the agent’s learned behavior from feedback
using two key metrics: (1) deterministic norm violations, and
(2) deterministic goal success.

Deterministic Violations. The agent follows a greedy,
deterministic version of its policy from each possible initial
state, until either (1) all states are visited, or (2) a previously

A. Policy-dependent forward-looking ranked advantage
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B. Policy-independent myopic ranked path-cost
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C. Mixed policy-independent action-based and myopic ranked path-cost
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Fig. 1. Deterministic goal success and policy violations. The mean over
50 seeds is shown; shaded areas correspond to ±0.25 standard deviation.
Max episode length is 100 timesteps. (a) Policy-dependent forward-looking
ranked advantage. (b) Policy-independent myopic ranked path-cost. (c) Mixed
policy-independent action-based and policy-independent myopic ranked path-
cost. Legend: For (a) and (b), the agent’s internal discount factor �. For (c),
probability of giving A=action-based, E=evaluative at each timestep. Pure-
action and pure-evaluative feedback is included.

visited state is reached. The metric is the number of violations
averaged over all initial states (50 in the present case).

Deterministic Goal Success. This metric is the percentage
of initial states from which the agent is able to reach the goal
state while following the deterministic, greedy policy for N
steps, where N = |S|, the size of the state space.

VI. RESULTS

We compare how the violation and goal success metrics
are affected by (a) various teacher models (e.g., action-only,
policy-dependent or policy-independent evaluative, and action-
evaluative mixed) and (b) the agent’s own discount factor �. In
mixed feedback strategies, the pure-action and pure-evaluative
feedback strategies represent boundary cases.

Fig. 1 summarizes our simulations. The teaching strat-
egy of policy-dependent forward-looking ranked advantage
feedback (panel A.) leads to inconsistent learned behavior.
Under this strategy, a teacher trades off keeping the agent’s
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norm violations low and propelling the agent to the goal. A
forward-looking agent (high �) taught with this strategy shows
goal success but commits many norm-violating behaviors. A
myopic agent (low �) taught with this strategy commits few
norm violations but hardly ever reaches the goal.

In contrast, giving policy-independent myopic ranked path-
cost feedback (Fig. 1, panel B.) is more effective, consistently
leading to appropriate behavior by forward-looking agents.
Taught with this strategy, forward-looking agents (high �)
learn to reach the goal, whereas myopic agents (low �) have
lower goal success; the agents’ low number of norm violations
is not affected by �.

In Fig. 1, panel C., teachers giving varying proportions of
action-based and evaluative feedback (of the more effective
policy-independent myopic ranked path-cost kind) elicit con-
siderable goal success in their learners and help them keep
their norm violations very low. The results suggest that the
specific proportions have modest impact on goal success and
norm violations: greater proportions of action-based feedback
tend to keep norm violations minimal and greater proportions
of evaluative feedback tend to increase goal success. A 70%
action + 30% evaluation strategy appears to offer the best
compromise.

VII. DISCUSSION

Our evaluation results indicate that certain teaching and
learning combinations influence how well agents learn appro-
priate behavior: a forward-looking teacher model providing
policy-dependent ranked advantage feedback trades off goal
success and violations, depending on how myopic the learning
agent’s discount factor � is. Interestingly, while this teacher
has access to the agent’s current policy, the teacher is unaware
of the agent’s true �, and assumes a long-term outlook when
evaluating the agent’s policy. This indicates a misalignment
between how the teacher and agent value future consequences;
when learning, the agent interprets the teacher’s feedback as
the immediate consequence of the most recent action.

In contrast, a myopic teacher model providing policy-
independent ranked path-cost feedback appears to successfully
teach an agent appropriate behavior: the agent learns to reach
the goal while minimizing norm violations. Here, the teacher
evaluates the appropriateness only of the agent’s most recent
action, by comparing against exemplar behavior, and then
assumes the agent will subsequently be an exemplar for the
foreseeable future. We observe that this type of feedback
is consistent with how the agent interprets feedback during
learning, which explains why variations in the agent’s � alter
goal success but do not affect violation minimization.

Teacher models that provided a combination of action-based
and evaluative feedback trained the agent to both successfully
reach the goal and to keep norm violations very low. As a
policy-independent teaching method, the feedback corresponds
well with the agent’s interpretation of the immediate conse-
quences of its behavior. If this kind of teacher is representative
of human teachers in natural environments—as preliminary
behavioral experiments suggest (Chi and Malle [20])—then

our agent should display effective learning when encountering
real-world teachers. Notably, the mixed-strategy teacher mod-
els we implemented were successful despite randomly mixing
the two feedback types, whereas humans are likely to display
systematic choice patterns (i.e., when to use which strategy),
and they may teach our agent even better or faster.

Our approach assumes that agent and teacher have single,
fixed, preset discount factors that decay future rewards geomet-
rically. It may be beneficial to consider how diverse discount
factors and diverse time horizons influence the learning and
teaching process, as represented by hyperbolic discounting
(Kurth-Nelson and Redish [22], Fedus et al. [23]). Using
eligibility traces (Klopf [24], Sutton [25], MacGlashan et al.
[15], van Hasselt et al. [26]) for learning to dynamically ad-
just between immediate consequences and long-term positive
outcomes would likely improve the learning process.

VIII. CONCLUSION AND FUTURE WORK

As robots become more socially integrated into society,
human-centered learning algorithms will need to be flexible
and adaptable to accommodate diverse human teaching styles.
Our investigation was inspired by evidence that humans prefer
to use combinations of teaching strategies. The results of this
investigation suggest that learning algorithms can indeed inte-
grate different teaching strategies with considerable success.

We focused on two teaching strategies prevalent in social
settings that have been widely studied in HRI work: instructing
a learner to perform correct actions (action-based feedback)
and evaluating the learner’s actions (evaluative feedback). We
integrated the two types of feedback under a single likelihood-
based algorithm to estimate a reward function that induces
policies maximally likely to satisfy the teacher’s defined goal
and norm constraints. We evaluated this integrative algorithm
in simulated training sessions using goal success and norm
violation metrics. Importantly, we compared policy-dependent
and policy-independent teacher models—implemented with
ranked advantage and ranked path-cost, and myopic and
forward-looking strategies—to assess how well the agent
learned under their tutelage. Our results indicate that agents
benefit the most from combined demonstration and evaluative
feedback strategies. We envision this method can be used to
teach robots in a variety of environments, but especially in
complex social environments, such as hotels or hospitals.

In future work, we will investigate training agents with
more realistic teacher models, including a range of human
participants to observe the broadest array of learning outcomes
in natural environments. We also aim to address generalization
of the agent’s feature-based reward representation and aim
to evaluate our method in complex environments with large
numbers of context-specific norms. Finally, we hope to explore
how learning agents can address a fundamental challenge
of norm-based social action: while norms generally require
community agreement on what the appropriate behavior is,
people often disagree. A robot learner must be able to respond
to such disagreements—perhaps by asking humans themselves
to clarify or resolve the disagreement.
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