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Knowledge Acquisition for Robots Through Mixed
Reality Head-Mounted Displays

Nishanth Kumar* Eric Rosen* Stefanie Tellex

Abstract—A robot can clean a room by performing a series
of pick-and-place tasks on relevant items. To accomplish this
sequence, the robot must know the original poses of the relevant
items, how to grasp these items, and the final poses to place each
item at. Language and gestures have been shown to successfully
enable humans to help a robot acquire this knowledge, but
are limited because they do not allow people to express poses
precisely. Mixed Reality Head-Mounted Displays (MR-HMDs)
have recently gained traction as a means to facilitate human-robot
communication because they can visualize 3D graphics on the
environment from the perspective of of the user. We hypothesize
that MR-HMDs provide an intuitive interface for enabling end-
users to help robots acquire grounded knowledge about how to
clean up a shared workspace. We propose an MR system that
allows a user to communicate to a mobile manipulator what
items need to be placed away, how to grab them, where they are
located and where they need to be placed. After this information
is provided, the robot can autonomously clean a room.

Index Terms—Mixed Reality, Pose Detection, Grasp Annota-
tion, Human-Robot Interaction

I. INTRODUCTION

Having a robot clean up a room is a large desiderata for
home robots. This clean up task can be decomposed into a
sequence of pick and place tasks performed on specific items.
However, there are many things the robot must know about
the environment in order to successfully accomplish a clean up
task. The robot must know 1) the relevant items in the room
that it must identify and place elsewhere, 2) the locations of
these items so that it may navigate to them, 3) the affordance
points where it may grasp these items, and 4) the locations it
must place these items at such that the room becomes cleaned.

In an ideal world, a robot would autonomously learn or
identify everything it needs given language-based commands
from a human. However, despite current advances, robots are
still unable to accurately identify and localize items in real-
time due to perception errors. Moreover, even if this were
possible, robots are currently unable to successfully grasp and
manipulate arbitrary objects autonomously. These issues are
exacerbated by the often partially-observable nature of clean
up in the real world: there is a good chance the robot will
be unable to see all the relevant items immediately (i.e, it
may have to search for them). Furthermore, the robot’s sensor
may be imperfect, introducing noise into the observations that
make inference even more difficult. Having a human help a
robot build a knowledge base about the shared environment

*These authors contributed equally.

has been shown to be useful in circumventing these issues.
[1, 2]. These approaches use modalities such as language and
gestures to enable symbol grounding through human-robot
interactions. MR has started to gain attention as a useful
interface for facilitating human-robot interactions. Existing
approaches have used MR to enable robots to communicate
motion intent to users [3], as well as program robot motions
[4]. However, these approaches parameterize motions through
robot poses. To our knowledge, MR has not been used to allow
users to ground item information for mobile manipulators to
perform motion behaviors in a shared environment.

Fig. 1: A picture from the perspective of a user with our
proposed MR interface grounding the pose of the item, how
to grab it, and where to place it. A white Dr. Pepper soda can
mesh model has been positioned over a real soda can and a
grasp annotation has been added. In addition, a yellow version
of the mesh has been positioned somewhere else on the table
to represent a goal pose for the item to be placed, and how
its hand should be positioned.

We hypothesize that MR can be used to create an intuitive
interface for enabling end-users to help robots acquire knowl-
edge about items in their environment (Fig. 1). We outline
our approach to an MR interface that allows a user to add
3D meshes of items into the shared environment that they can
place and orient over real items to tell the robot what items are
in the room and what their poses are. Furthermore, the user
is able to generate 3D meshes of the robot’s end effector and
place them relative to the item to provide grasp annotations
that instruct the robot on how to grab the items. Finally, the
user is able to specify goal poses for the items by reposing
yellow 3D meshes that represent the user’s desired placement



of the item.
Future work will consist of connecting all these components

together under one interface, and enabling a robot to use
grounded information from a user with our MR interface to
clean a room. This work also has the potential to be integrated
with a learning agent, helping relieve issues via autonomous
approaches. Furthermore, future work can integrate this system
into a non-deterministic planner to allow a robot to deal with
noise and failure cases.

II. RELATED WORK

Related works have proposed methods for enabling robots
to acquire information about their environment through in-
teraction with a user [1, 2]. Bastianelli et al. [1] propose
a system that integrates a) a Simultaneous Localization and
Mapping (SLAM) subsystem, to provide a metric map of the
environment, and b) a multi-modal interface that allows a user
to use speech and gestures to point to items in the environment
and assign symbolic information to them. The user is able
to use a laser pointer to highlight items, and the agent is
able to locate the point and use a RGB-D sensor to segment
out the element. After the item has been segmented, the
sensor information can be used to perform pose detection and
contribute to the robot’s information about the environment.
Bastianelli et al. [1] shows that a multi-modal interface that
uses language and gesture can be used to build an effective
knowledge base representation for an agent performing symbol
grounding in a human robot interaction.

Randelli et al. [5] also found that multi-modal human-
robot interactions facilitated by speech and gestures can be
useful for helping robots build relevant knowledge bases
about environments they have never been in before. Randelli
et al. [5] propose a tangible user interface that incorporates
mechanisms for having users select items in the environment
similar to Bastianelli et al. [1], as well as ground landmarks. In
addition, Bastianelli et al. [1] perform a case study in a home
environment, where a robot may need to perform tasks such
as cleaning. Related works have given service robots access
to semantic information about the environment to help them
perform tasks, but constructing these knowledge bases is still
difficult [5].

Similarly, Kemp et al. [6] developed an interface for a laser-
pointer to be used to specify the 3D object location of an
item. They showed that this interface allowed users to enable
a mobile manipulator to pick up objects from the floor reliably.
This system was especially novel because it does not require
any instrumentation of the environment, and is also robust
for real-world domains. Kemp et al. [6] motivates our MR
interface to also work in general, unstructured environments,
such as a home. However, a laser pointer is limited in what
it can “highlight” in the environment, and information about
the object’s affordance points or goal poses may not be so
precisely communicated through the modalities used by Kemp
et al. [6] and Bastianelli et al. [1].

Other related work has shown that human knowledge can
be leveraged to enable robots to grasp previously unseen

objects. Leeper et al. [7] developed a monitor and mouse
based interface to allow users to specify objects and grasp
locations and showed that this enabled the robot to grasp
objects in cluttered environments and minimize collisions. Lin
and Chiang [8] show that human gestures can be used to
specify information to a robot about a pick-and-place task.

Nguyen and Kemp [9] propose a method to autonomously
compute feasible locations on items to perform manipulation
behaviors by using RGB images and 3D point clouds of an
item. Nguyen and Kemp [9] evaluate different 3D locations
around the item, and record whether the behavior would be
successful or not. Our proposed MR interface can be used
to generate seed locations for these learning algorithms by
leveraging the annotated grasp poses the users give.

Mixed Reality (MR) has gained popularity in human-robot
interactions. Rosen et al. [3] developed a MR interface for
enabling a robot to communicate its motion intent to a user. In
addition, Rosen et al. [3] conducted a user study to compare
the MR interface to a 2D monitor approach, and found 16
percent increase in accuracy with a 62 percent decrease in the
time it took to label robot motions as either safe or unsafe,
compared to the next best system. Gadre et al. [4] developed an
MR based interface and showed that this is more intuitive and
easier to use than 2D interfaces for users to program simple
tasks for a stationary robot arm to complete. Frank et al. [10]
showed that MR based interfaces are more intuitive and easier-
to-use than 2D interfaces for users to command multiple-
robots to perform simple tasks. However, no MR system to
our knowledge has enabled users to ground item information
to enable a mobile manipulator to perform a complex behavior
such as cleaning an unknown room.

III. SYSTEM DESCRIPTION

Our proposed MR interface enables a user to directly ground
information about items in the environment (Fig. 2). To do
this, the MR-HMD map must be calibrated to the mobile
manipulator’s map. We accomplish this task by presenting the
user with a 3D mesh model of the robot, which they move to
align with the real one using the MR-HMD. This calibration
step aligns the MR-HMD coordinate frame with the robot’s.

Now that the robot and MR-HMD are calibrated, the MR-
HMD can display 3D information about items it knows
about, overlaid on the physical items. At the start, the mobile
manipulator may know nothing but how to move to locations,
but the user may now ground information about the items
using MR.

A. Pose Detection

To specify the object’s current location and orientation, a
user simply selects the relevant 3D mesh model, and places it
over the real object using hand gestures (Fig. 2). This is done
in a similar manner to the coordinate frame calibration step,
but instead of dragging a 3D mesh model of the robot over
the real robot, we drag a 3D mesh model of the item over the
real item. Because the MR-HMD coordinate frame is aligned
with the robot’s, the robot is now aware of the pose of the



a) A user repositioning the 3D mesh over the real item
to ground the current pose.

b) A user repositioning the 3D mesh of a robot end-
effector to ground the grasp pose relative to the item.

Fig. 2: Two images of our currently implemented system (https://www.youtube.com/watch?v=Qipza556sWQt). A user is
grounding a) the pose of an Amazon Alexa to be cleaned up, and b) how to grab the Alexa. Once the robot has this information,
it can use a motion planner to move to the item, and grab it.

object in 3D space with respect to its coordinate system. This
enables the robot to know where the item is, and can be used
to help the robot navigate to the item.

This assumes that a 3D model of the item already exists and
is available. However, in unstructured environments, the robot
may encounter items it has never seen before. If the system
does not have access to the object model, the user can use MR
to help the robot generate it through an autonomous approach.
For example, the user can select a 3D primitive shape, like a
sphere, and place it over the desired object. A robot with a
RGBD sensor could then go the item and move around it,
using the sphere as a mask for what parts of the perception
data are relevant for mesh generation.

B. Grasp Annotation

The user must also provide at least one grasp annotation
around the mesh model so that the robot can grab the item.
These annotations are in the form of MR visualizations of the
robot’s end-effectors that the user can place around a mesh
model (Fig. 2). In our proposed system, users will be able to
pair the end effectors with the 3D mesh model, so that the end
effector pose is saved relative to the item pose. This allows
the robot to know where the affordance poses of the item are
for the 3D mesh, regardless of current pose. For example, if
the item moved and the mesh model was updated to reflected
that, we would still know the affordance poses for the item.
The robot is now aware of various relative poses it could move
its end-effector to in order to grasp the object.

C. Goal Pose Specification

Finally, the user must specify the pose at which each object
should be placed. The user may specify the goal pose by using
hand gestures to move a copy of the object model to a goal
location (Fig 1). This is very similar to the pose detection
component, except instead of dragging the 3D mesh over the
real item, the user drags it to a desired pose for where the
item should be put away. In addition, the user could use MR to
highlight a 3D region of the environment to indicate a cleanup

area for the item, letting the agent place the item in any stable
pose inside the region.

D. Execution

The robot will begin executing the sequence in the same
order the user specified. First, it will localize itself, and
navigate to a randomly-chosen position near the object such
that it is close enough to attempt grasps, using a move base
planner such as GMapper [11]. It will then orient itself to
face the object. It will choose a random grasp annotation from
those the user has specified and attempt to grasp the object at
this pose. It will use torque sensors in its grippers to reason
whether it has successfully grasped the item or not. If it has
not, it will attempt to grasp using a different grasp annotation.
If it is unsuccessful at every annotation provided, it will move
the base to a new location to find a different plan. Once it
succeeds at grasping, it will use SLAM to navigate to a region
near the user-specified pose to place the object. The robot
knows the goal pose of the item and how it is grabbing the
item, so the agent can calculate the pose it must move its end-
effector to such that the object is placed correctly. The robot
will then repeat this sequence of steps for the next object.

E. Proposed Work

We intend to complete the system described in Section III
above (video in Fig. 2) and implement it with an MR-HMD
and mobile manipulator. We will then setup a representative
kitchen cleanup task that will involve the robot performing
a series of pick-and-place tasks in a cluttered environment.
We will perform a user-study and evaluate both quantitative
and qualitative metrics. Specifically, we will measure task
completion rate and speed, as well as evaluate our system’s
usability via the NASA-TLX [12] and System Usability Score
(SUS) [13]. We will evaluate our results against the baseline
of users performing the same task using a 2D monitor and
mouse based interface.

In the future, we intend to extend our system to plan
execution of the robot’s task more efficiently and also recover



from failure autonomously. We expect to accomplish this by
framing the cleanup task as a Partially-Observable Markov
Decision Process (POMDP) [14]. We will then use a known
POMDP solver to generate plans where the robot will execute
the pick-and-place sequences in the optimal order and also be
able to autonomously recover from failures such as inability
to grasp the object at the provided annotations, inability
to navigate to a location near the object, etc. Using the
POMDP framework also opens the doors for the robot to use
Reinforcement Learning (RL) to improve itself at the cleanup
task.

We also plan to extend our system allow users to help
robots learn new skills in addition to cleanup. We intend to
use MR to allow users to directly specify relevant information
about the skill to the robot, and then use Learning From
Demonstration (LFD) [15] to teach the robot the skill. We
intend to investigate the effectiveness of MR as a method of
teaching robots arbitrary skills and also how well these skills
will generalize.

In addition, parts of our proposed MR system could be used
to help aid the autonomous approaches to different parts of the
system. For example, after the user selects the 3D mesh of an
item in the room they want the robot to interact with, it can
be paired with a 3D point cloud captured by the robot to be
fed into a mesh alignment algorithm to autonomously perform
pose detection. Furthermore, a user could additionally use MR
to highlight a 3D region of the environment to crop out what
parts of the 3D point cloud should be inputted to the mesh
alignment algorithm.

IV. CONCLUSION

Our proposed MR interface allows users to specify infor-
mation necessary for a mobile manipulator to complete com-
plex pick-and-place tasks in novel environments. We intend
to complete development of this system and implement it
using an MR-HMD and mobile manipulator. We will then
setup a cleanup task involving multiple pick-and-place actions
executed on different items and perform a substantial user-
study based on this task.

In the future, we intend to incorporate POMDP’s into our
interface to allow the robot to autonomously recover from
failure. We also plan to enable the robot to learn and im-
prove at its pick-and-place tasks via Reinforcement Learning.
Finally, we intend to extend our system to allow the robot to
be taught arbitrary actions and the conditions under which to
execute them via Learning From Demonstration. We then plan
to evaluate the ease-of-use and effectiveness of this system.
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