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Abstract

We present a system for extracting structured information
from unstructured text using a combination of information
retrieval, natural language processing, machine learning, and
crowdsourcing. We test our pipeline by building a struc-
tured database of gun violence incidents in the United States.
The results of our pilot study demonstrate that the proposed
methodology is a viable way of collecting large-scale, up-to-
date data for public health, public policy, and social science
research.

Motivation
The majority of information is encoded in the form of natu-
ral language. But structured formats, like tables or relational
databases, make it easier to perform quantitative analyses of
data and draw evidence-based conclusions. For many social
science disciplines, the type structured information neces-
sary for such analyses is rarely available at the scale needed.
However, massive amounts of new data are made available
every day in the form of unstructured language, for example
in online newspapers, blogs, and public government records.
Extracting structured information from these sources could
enable policy makers and scientists to answer more ques-
tions rigorously and empirically.

Current state-of-the-art systems for fully-automatic infor-
mation extraction (Berant et al. 2013) perform well below
the level required to extract the accurate, detailed informa-
tion needed for proper scientific research. We propose a
hybrid methodology which combines automatic techniques
(including machine learning, natural language processing,
and information extraction) with crowdsourcing in order to
extract detailed, structured data from natural language text.
We apply our methodology to a case study in which we build
a database of gun violence incidents across the US from lo-
cal news articles.

Gun Violence Use Case
Gun violence provides a especially poignant example of an
area of research that can benefit from our proposed method-
ology. Guns account for ≈33,000 deaths in the US every
year, but there is no single database that enumerates the de-
tails of gun violence incidents (FICAP 2006). Although a
large-scale gun violence database could enable data-driven
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reasoning about a topic that is usually dominated by emo-
tion, research in this area is massively underfunded and ac-
tively blocked by federal legislation (Kassirer 1995). How-
ever, local newspapers and television stations report on gun
injuries and fatalities. The details of these reports would
be valuable to epidemiologists if they were in a structured
database, rather than spread across the text of thousands of
web pages.

This work describes a general methodology which can be
applied to gun violence, or any other events for which de-
tailed global data is difficult to access, but which is described
in a dispersed fashion on the web.

Proposed Methodology
Our database population pipeline consists of 6 steps, 4 which
are performed automatically and 2 which are performed by
humans. Figure 1 depicts this pipeline schematically. The
stages are as follows:

1. Automatic: Perform a daily web crawl of more than 2,500
local newspapers1 covering all 50 states.

2. Automatic: Predict whether or not each of the articles in
our web crawl describes an incident of gun violence using
a statistical text classifier.

3. Crowd: Recruit crowd-workers to validate the predictions
of our classifier, to ensure that the collected gun violence
articles are high-precision.

4. Automatic: Run a suite of natural language processing
(NLP) tools such as named entity recognizers and key
word extractors over the validated texts. These automatic
methods can facilitate the job of the crowd-workers in the
next step.

5. Crowd: Recruit crowd-workers to read the articles and
answer questions to populate the database. For the gun
violence database, fields include information like date and
location of the incident, type of weapon, and descriptions
of the shooters and victims.

6. Automatic: Perform a heuristic de-duplication step in or-
der to filter out or merge information from redundant arti-
cles.

We run a pilot study of the KBP component of our
pipeline by having workers extract information from 8,800

1http://newspapermap.com
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Figure 1: Pipeline for extracting structured information from text using both automatic processing (red) and human computation (blue).

articles describing gun violence scraped from the Gun Re-
port blog2. In total, 505 workers processed all of our articles,
taking an average of just 5 minutes per article.
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Homocides by race and gender
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Figure 2: Deaths reported by (CDC 2013) (blue) and records in
the Gun Violence Database (red), by victim’s age (left) and race
(right).
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Figure 3: Reports of shootings across US cities, according to 8,800
records in our constructed database.

Results and Discussion
The database we construct from our 8,800 articles covers
all 50 states and over 3,000 cities. Figure 3 shows how the
records in the database are distributed across the country. By
extracting data from local news reports, we are able to col-
lect the type of locally-aggregated information which is of
particular interest to social science and policy researchers.
The extracted data covers nearly 2,000 reports of uninten-
tional shootings, 565 reports of domestic violence, and over
300 reports of police-related shootings. This type of fine-
grained information is especially relevant for making in-
formed policy decisions, but is nearly impossible to extract

2http://nocera.blogs.nytimes.com/category/
gun-report/

automatically using the current state-of-the-art NLP tech-
nologies. Figure 2 compares the demographic breakdown
of the homicide reports in our database to national statistics
released by the CDC. The figures show that the extracted
data provides good coverage of many age, race, and gender
groups relevant to experts at the CDC.

Related Work
We build on a large body of work on citizen science, partic-
ularly for improving social policy (López Moncada, Farzan,
and Clift 2014). Especially relevant to our work are efforts
which have invoked human-in-the-loop algorithms (Hernan-
dez et al. 2014). There are several related efforts which re-
cruit volunteers to collect information about gun violence
and police brutality (Burghart 2014; Wagner 2014).
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