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what is the population of new york city?



what is the population of new york city?

“What is Saturday 
afternoon’s 
forecast?”

“Will it be sunny this 
weekend in Miami?”

“What’s the weather 
going to be like this 

weekend?”

how many people live in nyc?

new york city population

how big is new york city? how crowded is ny?

number of residents of nyc

“Is it going to be nice 
out on Saturday?”

Human language is  
highly variable.



In leaked audio, Clinton talks about  
Sanders supporters “living in basement”
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expressions in natural language have 
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in hacked fundraiser 
recording • in leaked 

recording • in audio from 
hacked email • privately • 

hacked audio: 

mocks • said • insults • 
characterizes • comments on • 

gives frank take on • slams • calls 
• knocks • describes

bernie 
supporters • millennials • 

sanders supporters • young 
voters • bernie sanders 

supporters • bernie kids • 
bernie fans

losers who 
live in their parents' 

basements • basement 
dwellers • frustrated basement-

dwellers • basement-
dwellers & baristas

Hillary • Hillary 
Clinton • HRC 

In leaked audio, Clinton talks about  
Sanders supporters “living in basement”

How to we know when two similar 
expressions in natural language have 

a different meaning?



In leaked audio, Clinton talks about  
Sanders supporters “living in basement”



In leaked  
recording=

Logical Inference

In leaked audio, Clinton talks about  
Sanders supporters “living in basement”



In hacked  
fundraiser  
recording

In leaked  
recording⊂

=

Logical Inference

In leaked audio, Clinton talks about  
Sanders supporters “living in basement”



Privately
In hacked  
fundraiser  
recording

In leaked  
recording⊂ ⊂

=

Logical Inference

In leaked audio, Clinton talks about  
Sanders supporters “living in basement”



Privately
In hacked  
fundraiser  
recording

In leaked  
recording⊂ ⊂

=

Logical Inference

Common Sense  
Inference

In leaked audio, Clinton talks about  
Sanders supporters “living in parents’ basement”



Privately
In hacked  
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Privately
In hacked  
fundraiser  
recording

In leaked  
recording⊂ ⊂

=

basement-dwellers

=

Logical Inference

Common Sense  
Inference Stylistics

In leaked audio, Clinton talks about  
Sanders supporters “living in parents’ basement”
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Natural Language Inference

In leaked audio, Clinton talks about  
Sanders supporters living in basement

Hillary Clinton privately slams millennials as 
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premise

hypothesis

(aka Recognizing Textual Entailment)



Natural Language Inference

In leaked audio, Clinton talks about  
Sanders supporters living in basement

Hillary Clinton privately slams millennials as 
basement-dwellers

(aka Recognizing Textual Entailment)

p entails h if “typically, a human reading 
p would infer that h is most likely true.”

The Pascal Recognising Textual Entailment Challenge.  
Dagan et al. (2006)
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Natural Language Inference

In leaked audio, Clinton talks about  
Sanders supporters living in basement

Hillary Clinton privately slams millennials as 
basement-dwellers

lives in basement 

is a basement-dweller
Equivalence



Natural Language Inference

In leaked audio, Clinton talks about  
Sanders supporters living in basement

Hillary Clinton privately slams millennials as 
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privately
Forward Entailment in leaked 
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Natural Language Inference

In leaked audio, Clinton talks about  
Sanders supporters living in basement

Hillary Clinton privately slams millennials as 
basement-dwellers

talks about
Reverse Entailment

slams



Natural Language Inference

In leaked audio, Clinton talks about  
Sanders supporters living in basement

Hillary Clinton privately slams millennials as 
basement-dwellers

Independent millennialsSanders 
supporters



Natural Language Inference

At a press conference, Clinton talks about 
Sanders supporters living in basement

Hillary Clinton privately slams millennials as 
basement-dwellers

Exclusion privatelyat a press  
conference



Equivalence x ⟺ y

Reverse 
Entailment x ⇒ y

Forward 
Entailment y ⇒ x

Independence x ⇏ y ⋀	 y ⇏ x

Exclusion x ⇒ ¬y ⋀	 y ⇒ ¬x

feline
cat

animal

cat

cat pet

cat dog

animal

cat



Lexical Semantics Resources

WordNet

act

communicate

address

harangue

rant

perform

practice

walk through scrimmage

relay

talk about

descant

WordNet. Fellbaum (1998)
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Bilingual Pivoting
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... ...

...
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relay

talk about

descant

Lexical Semantics Resources

Paraphrasing with bilingual parallel corpora.  Bannard and Callison-Burch (2005)



Vector Space Models

Bilingual Pivoting

ahogados a la playa ...

get washed up on beaches ...

... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...

oder wurden , gefoltert

or have been , tortured

festgenommen 

thrown into jail

festgenommen

imprisoned

...

... ...

...

WordNet

act

communicate

address

harangue

rant

perform

practice

walk through scrimmage

relay

talk about

descant

Lexical Semantics Resources



Vector Space Models

Bilingual Pivoting

ahogados a la playa ...

get washed up on beaches ...

... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...

oder wurden , gefoltert

or have been , tortured

festgenommen 

thrown into jail

festgenommen

imprisoned

...

... ...

...

WordNet

act

communicate

address

harangue

rant

perform

practice

walk through scrimmage

relay

talk about

descant

x ⇒ y ⋀	 y ⇏ x

Lexical Semantics Resources



Vector Space Models

Bilingual Pivoting

ahogados a la playa ...

get washed up on beaches ...

... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...

oder wurden , gefoltert

or have been , tortured

festgenommen 

thrown into jail

festgenommen

imprisoned

...

... ...

...

WordNet

act

communicate

address

harangue

rant

perform

practice

walk through scrimmage

relay

talk about

descant

x shares some translation with y

Lexical Semantics Resources



Vector Space Models

Bilingual Pivoting

ahogados a la playa ...

get washed up on beaches ...

... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...
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WordNet
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x appears in similar contexts as y

Lexical Semantics Resources
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WordNet-level 
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interpretability?
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The Paraphrase Database

PPDB: The Paraphrase Database. Ganitkevich et al. (2013)
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talk about≈topic
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talk about≈see talk about≈highlighttalk about≈consider

talk about≈question
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talk about≈please
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talk about≈hear
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Entailment

Equivalence
Exclusion

Independent
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Equivalence MH ⟺ H It is her favorite book 
in the entire world.

Reverse 
Entailment

MH ⇒ H ⋀ 
H ⇏ MH	 

She is an American 
composer.

Forward 
Entailment

MH ⇏ H ⋀	  
H ⇒ MH

She is the 
president’s potential 

successor.

Independence MH ⇏ H ⋀	  
H ⇏ MH

She is the alleged 
hacker.

Exclusion MH ⇒ ¬H ⋀	  
H ⇒ ¬MH

She is a former 
senator.
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p entails h if typically, a human 
reading p would infer that h is 

most likely true.

Eddy is a domestic cat sitting on the ground 
looking out through a clear door screen.

Eddy is a cat sitting on the ground looking 
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What, if any, 
generalizations can be 

made to aide systems in 
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in practice?
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MH ⇒ H?



MH ⇒ H H ⇒ MH

Equiv. Yes Yes It is her favorite book in 
the entire world.

Rev. Ent. Yes Unk Eddy is a gray cat.

For. Ent. Unk Yes She is the president’s 
potential successor.

Indep. Unk Unk She is the alleged 
hacker.

Excl. No No She is a former senator.
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I simply love the actual 
experience of being one with 

the ocean and the life in it.

The entire bill is now subject to 
approval by the parliament.

H ⇒ MH?

Greenberg also was put 
under investigation for his 

crucial role at the company.
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H ⇒ ¬MH
(like privative)

H MH



Equiv. Yes Yes It is her favorite book in 
the entire world.

Rev. Ent. Yes Unk Eddy is a gray cat.

For. Ent. Unk Yes She is the president’s 
potential successor.

Indep. Unk Unk She is the alleged 
hacker.

Excl. No No She is a former senator.

Undef. Yes No ?????

MH ⇒ H H ⇒ MH
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Undefined Relations

Bush travels Monday to Michigan to 
remark on the economy. 

Bush travels Monday to Michigan to 
remark on the Japanese economy. 



Bush travels Monday to Michigan to 
remark on the Japanese economy. 
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Undefined Relations

Bush travels Monday to Michigan to 
remark on the economy. 
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Privative Modifiers

Wilson signed off to pay the debts to 
the company. 

Wilson signed off to pay the debts to 
the fictitious company. 
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the company. 

Privative Modifiers



5%
14%

7%

54%

19%

Equivalence Reverse Entailment Independence
Forward Entailment Exclusion Undefined

4%1%

67%

28%
37%

16% 1%
16%

28%

3%

Classes of Modifiers 
Revisited

MH ⇒ ¬H	 MH ⇒ H	 MH ⇏ H	 
Subsective Plain Non-Subsective Privative



Classes of Modifiers 
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MH ⇒ ¬H	 MH ⇒ H	 MH ⇏ H	 
Subsective Plain Non-Subsective Privative

Generalizations based on the class of the modifier 
lead to incorrect predictions more often than not.
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Yes

p = “The crowd roared.” 
h = “The enthusiastic crowd roared.” 

p entails h if typically, a human 
reading p would infer that h is 

most likely true.
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Determining 
whether they hold 
for individual 

entities
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Modifier-Noun Composition
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American 
composercomposer 

Compositional Semantics

…in such a way that we can we 
determine whether the modifier 

holds for individual 
entities in practice?

Can we assign intrinsic 
meaning to modifiers…



Step 1: Modifier Interpretation
Determine the properties entailed by the 

modifier in the context of the head



American jazz composer
born in America 

influential in America 
prolific while in America 

a product of America 
lived in America 
visited America 

popular in America

Step 1: Modifier Interpretation
Determine the properties entailed by the 

modifier in the context of the head



born in America 
influential in America 

prolific while in America 
a product of America 

lived in America 
visited America 

popular in America

Step 2: Class-Instance Identification
Determine, for a specific instance, whether 

the necessary properties hold
…Mingus's intricate, complex, 

compositions in the genres of jazz 
and classical music illustrate his 
ability to be dynamic in both the 

strings and the swing. Mingus truly 
was a product of America in all its 
historic complexities. His mother, 
Harriet, was half black and half 

Chinese, and his father, Charles Sr., 
was half black and half Swedish, 
making Mingus a true reflection of 

the hybrid nature of our divided 
nation…

American jazz composer
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American composer

Modifier Interpretation

Americacomposer *

⟨composer born in America, 0.94⟩ 
⟨composer from America, 0.93⟩ 
⟨composer active in America, 0.52⟩ 
⟨composer popular in America, 0.45⟩

P(Y|X) = 1
1 + eXβ



Modifier Interpretation

American composer born in America

American company based in America

American novel written in America

Produces good 

results…



Modifier Interpretation

child actor has child

risk manager takes risks

machine gun used by machine

…but not per
fect.
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Class-Instance Identification

American composer

⟨___ born in America, 0.94⟩ 
⟨___ from America, 0.93⟩ 
⟨___ active in America, 0.52⟩ 
⟨___ popular in America, 0.45⟩

Weighted modifier  
interpretations

Americacomposer *



American composer

* is a composer

J.S. Bach 
Charles Mingus 
John Cage 
W.A. Mozart

Candidate instances

Class-Instance Identification

⟨___ born in America, 0.94⟩ 
⟨___ from America, 0.93⟩ 
⟨___ active in America, 0.52⟩ 
⟨___ popular in America, 0.45⟩
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“J.S. Bach from America”

J.S. Bach 
Charles Mingus 
John Cage 
W.A. Mozart

Class-Instance Identification

⟨___ born in America, 0.94⟩ 
⟨___ from America, 0.93⟩ 
⟨___ active in America, 0.52⟩ 
⟨___ popular in America, 0.45⟩

American composer

Confidence = 0.94x21 + 0.93x34 + 0.52x329 + 0.45x4,043



“J.S. Bach active in America”

J.S. Bach 
Charles Mingus 
John Cage 
W.A. Mozart

Class-Instance Identification

⟨___ born in America, 0.94⟩ 
⟨___ from America, 0.93⟩ 
⟨___ active in America, 0.52⟩ 
⟨___ popular in America, 0.45⟩

American composer

Confidence = 0.94x21 + 0.93x34 + 0.52x329 + 0.45x4,043



“J.S. Bach popular in America”

J.S. Bach 
Charles Mingus 
John Cage 
W.A. Mozart

Confidence = 0.94x21 + 0.93x34 + 0.52x329 + 0.45x4,043

Class-Instance Identification

⟨___ born in America, 0.94⟩ 
⟨___ from America, 0.93⟩ 
⟨___ active in America, 0.52⟩ 
⟨___ popular in America, 0.45⟩

American composer



Class-Instance Identification
American composer jazz composer

JS Bach 0.21 0.04
Charles Mingus 0.89 0.93
John Cage 0.96 0.52
WA Mozart 0.19 0.13
Libby Larsen 0.72 0.24
Duke Ellington 0.76 0.97
Palestrina 0.04 0.03
Ludwig van Beethoven 0.09 0.12
Morton Feldman 0.88 0.31
Frederick Chopin 0.33 0.32
Barack Obama 0.14 0.35
Herbie Hancock 0.62 0.95



Class-Instance Identification
American jazz composer

JS Bach 0.25
Charles Mingus 1.82
John Cage 1.48
WA Mozart 0.32
Libby Larsen 0.96
Duke Ellington 1.73
Palestrina 0.07
Ludwig van Beethoven 0.21
Morton Feldman 1.19
Frederick Chopin 0.65
Barack Obama 0.49
Herbie Hancock 1.57



Class-Instance Identification
American jazz composer

Charles Mingus 1.82
Duke Ellington 1.73
Herbie Hancock 1.57
John Cage 1.48
Morton Feldman 1.19
Libby Larsen 0.96
Frederick Chopin 0.65
Barack Obama 0.49
WA Mozart 0.32
JS Bach 0.25
Ludwig van Beethoven 0.21
Palestrina 0.07
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(a) Uniform random sample. (b) Weighted random sample.

Figure 3: ROC curves for selected methods. Given a list of instances associated with confidence scores,
ROC curves show the relationship between the number of true positives and the number of false positives
that are retained by setting various threshold confidence values. The curve becomes linear once all
remaining instances in the list have the same score (e.g., 0) as this makes it impossible to choose a
threshold which adds true positives to the list without also including all remaining false positives.

sentences. Thus, it can provide non-zero scores
for many more candidate instances. This enables
the proposed methods to achieve a better trade-
o↵ between extracting true positives versus false
positives, than the baseline models do.

Uniform Weighted
AUC Rec. AUC Recall

Baseline 0.55 0.23 0.53 0.28
Hearst 0.56 0.03 0.52 0.02
Hearst\ 0.57 0.04 0.53 0.02
ModsH 0.68 0.08 0.60 0.06
ModsI 0.71 0.09 0.65 0.09
Hearst\+ModsH 0.70 0.09 0.61 0.08
Hearst\+ModsI 0.73 0.10 0.66 0.10

Table 7: Recall of instances listed on Wikipedia
category pages. “Rec” is the recall against the en-
tire set of instances appearing on the Wikipedia
pages. AUC captures the tradeo↵ between true
positives and false positives (see Figure 3).

7 Conclusion

We have presented an approach to IsA extraction
which takes advantage of the compositionality of
natural language. Existing approaches often treat
class labels as atomic units which must be observed
in full in order to be populated with instances. As
a result, current methods are not able to handle
the infinite number of classes describable in natu-
ral language, most of which never appear in text.
Our method works by reasoning about each modi-
fier in the label individually, in terms of the prop-
erties that it implies about the instances. This
approach allows us to harness information that is
spread across multiple sentences, and results in a
significant increase in the number of fine-grained
classes which we are able to populate.

TODO: Add two or three lines of future
work.

TODO: Break some of the longer sen-
tences containing “which” or “that”.
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ROC curves show the relationship between the number of true positives and the number of false positives
that are retained by setting various threshold confidence values. The curve becomes linear once all
remaining instances in the list have the same score (e.g., 0) as this makes it impossible to choose a
threshold which adds true positives to the list without also including all remaining false positives.

sentences. Thus, it can provide non-zero scores
for many more candidate instances. This enables
the proposed methods to achieve a better trade-
o↵ between extracting true positives versus false
positives, than the baseline models do.

Uniform Weighted
AUC Rec. AUC Recall

Baseline 0.55 0.23 0.53 0.28
Hearst 0.56 0.03 0.52 0.02
Hearst\ 0.57 0.04 0.53 0.02
ModsH 0.68 0.08 0.60 0.06
ModsI 0.71 0.09 0.65 0.09
Hearst\+ModsH 0.70 0.09 0.61 0.08
Hearst\+ModsI 0.73 0.10 0.66 0.10

Table 7: Recall of instances listed on Wikipedia
category pages. “Rec” is the recall against the en-
tire set of instances appearing on the Wikipedia
pages. AUC captures the tradeo↵ between true
positives and false positives (see Figure 3).

7 Conclusion

We have presented an approach to IsA extraction
which takes advantage of the compositionality of
natural language. Existing approaches often treat
class labels as atomic units which must be observed
in full in order to be populated with instances. As
a result, current methods are not able to handle
the infinite number of classes describable in natu-
ral language, most of which never appear in text.
Our method works by reasoning about each modi-
fier in the label individually, in terms of the prop-
erties that it implies about the instances. This
approach allows us to harness information that is
spread across multiple sentences, and results in a
significant increase in the number of fine-grained
classes which we are able to populate.

TODO: Add two or three lines of future
work.

TODO: Break some of the longer sen-
tences containing “which” or “that”.
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(a) Uniform random sample. (b) Weighted random sample.

Figure 3: ROC curves for selected methods. Given a list of instances associated with confidence scores,
ROC curves show the relationship between the number of true positives and the number of false positives
that are retained by setting various threshold confidence values. The curve becomes linear once all
remaining instances in the list have the same score (e.g., 0) as this makes it impossible to choose a
threshold which adds true positives to the list without also including all remaining false positives.

sentences. Thus, it can provide non-zero scores
for many more candidate instances. This enables
the proposed methods to achieve a better trade-
o↵ between extracting true positives versus false
positives, than the baseline models do.

Uniform Weighted
AUC Rec. AUC Recall

Baseline 0.55 0.23 0.53 0.28
Hearst 0.56 0.03 0.52 0.02
Hearst\ 0.57 0.04 0.53 0.02
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Hearst\+ModsH 0.70 0.09 0.61 0.08
Hearst\+ModsI 0.73 0.10 0.66 0.10

Table 7: Recall of instances listed on Wikipedia
category pages. “Rec” is the recall against the en-
tire set of instances appearing on the Wikipedia
pages. AUC captures the tradeo↵ between true
positives and false positives (see Figure 3).

7 Conclusion

We have presented an approach to IsA extraction
which takes advantage of the compositionality of
natural language. Existing approaches often treat
class labels as atomic units which must be observed
in full in order to be populated with instances. As
a result, current methods are not able to handle
the infinite number of classes describable in natu-
ral language, most of which never appear in text.
Our method works by reasoning about each modi-
fier in the label individually, in terms of the prop-
erties that it implies about the instances. This
approach allows us to harness information that is
spread across multiple sentences, and results in a
significant increase in the number of fine-grained
classes which we are able to populate.

TODO: Add two or three lines of future
work.

TODO: Break some of the longer sen-
tences containing “which” or “that”.
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(a) Uniform random sample. (b) Weighted random sample.

Figure 3: ROC curves for selected methods. Given a list of instances associated with confidence scores,
ROC curves show the relationship between the number of true positives and the number of false positives
that are retained by setting various threshold confidence values. The curve becomes linear once all
remaining instances in the list have the same score (e.g., 0) as this makes it impossible to choose a
threshold which adds true positives to the list without also including all remaining false positives.

sentences. Thus, it can provide non-zero scores
for many more candidate instances. This enables
the proposed methods to achieve a better trade-
o↵ between extracting true positives versus false
positives, than the baseline models do.

Uniform Weighted
AUC Rec. AUC Recall

Baseline 0.55 0.23 0.53 0.28
Hearst 0.56 0.03 0.52 0.02
Hearst\ 0.57 0.04 0.53 0.02
ModsH 0.68 0.08 0.60 0.06
ModsI 0.71 0.09 0.65 0.09
Hearst\+ModsH 0.70 0.09 0.61 0.08
Hearst\+ModsI 0.73 0.10 0.66 0.10

Table 7: Recall of instances listed on Wikipedia
category pages. “Rec” is the recall against the en-
tire set of instances appearing on the Wikipedia
pages. AUC captures the tradeo↵ between true
positives and false positives (see Figure 3).

7 Conclusion

We have presented an approach to IsA extraction
which takes advantage of the compositionality of
natural language. Existing approaches often treat
class labels as atomic units which must be observed
in full in order to be populated with instances. As
a result, current methods are not able to handle
the infinite number of classes describable in natu-
ral language, most of which never appear in text.
Our method works by reasoning about each modi-
fier in the label individually, in terms of the prop-
erties that it implies about the instances. This
approach allows us to harness information that is
spread across multiple sentences, and results in a
significant increase in the number of fine-grained
classes which we are able to populate.

TODO: Add two or three lines of future
work.

TODO: Break some of the longer sen-
tences containing “which” or “that”.

References

Anonymous. 2016. Unsupervised interpretation of
multiple-modifier noun phrases. In submission.

Mohit Bansal, David Burkett, Gerard de Melo, and
Dan Klein. 2014. Structured learning for taxon-
omy induction with belief propagation. In Pro-
ceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume
1: Long Papers), pages 1041–1051, Baltimore,
Maryland, June. Association for Computational
Linguistics.

Marco Baroni and Roberto Zamparelli. 2010.
Nouns are vectors, adjectives are matrices: Rep-
resenting adjective-noun constructions in seman-
tic space. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1183–1193. Association for Com-
putational Linguistics.

Lidong Bing, Sneha Chaudhari, Richard Wang,
andWilliam Cohen. 2015. Improving distant su-
pervision for information extraction using label
propagation through lists. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 524–529, Lisbon,
Portugal, September. Association for Computa-
tional Linguistics.

Kurt Bollacker, Colin Evans, Praveen Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Free-
base: a collaboratively created graph database
for structuring human knowledge. In Proceed-
ings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1247–
1250. ACM.

E. Choi, T. Kwiatkowski, and L. Zettlemoyer.
2015. Scalable semantic parsing with partial



Lexical Entailment

Semantic Containment

Class-Instance Identification

0.0

0.2

0.4

0.5

0.7 0.660.660.61
0.49

20
36
52
68
84

100

10

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

EACL 2017 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

(a) Uniform random sample. (b) Weighted random sample.

Figure 3: ROC curves for selected methods. Given a list of instances associated with confidence scores,
ROC curves show the relationship between the number of true positives and the number of false positives
that are retained by setting various threshold confidence values. The curve becomes linear once all
remaining instances in the list have the same score (e.g., 0) as this makes it impossible to choose a
threshold which adds true positives to the list without also including all remaining false positives.

sentences. Thus, it can provide non-zero scores
for many more candidate instances. This enables
the proposed methods to achieve a better trade-
o↵ between extracting true positives versus false
positives, than the baseline models do.

Uniform Weighted
AUC Rec. AUC Recall

Baseline 0.55 0.23 0.53 0.28
Hearst 0.56 0.03 0.52 0.02
Hearst\ 0.57 0.04 0.53 0.02
ModsH 0.68 0.08 0.60 0.06
ModsI 0.71 0.09 0.65 0.09
Hearst\+ModsH 0.70 0.09 0.61 0.08
Hearst\+ModsI 0.73 0.10 0.66 0.10

Table 7: Recall of instances listed on Wikipedia
category pages. “Rec” is the recall against the en-
tire set of instances appearing on the Wikipedia
pages. AUC captures the tradeo↵ between true
positives and false positives (see Figure 3).

7 Conclusion

We have presented an approach to IsA extraction
which takes advantage of the compositionality of
natural language. Existing approaches often treat
class labels as atomic units which must be observed
in full in order to be populated with instances. As
a result, current methods are not able to handle
the infinite number of classes describable in natu-
ral language, most of which never appear in text.
Our method works by reasoning about each modi-
fier in the label individually, in terms of the prop-
erties that it implies about the instances. This
approach allows us to harness information that is
spread across multiple sentences, and results in a
significant increase in the number of fine-grained
classes which we are able to populate.

TODO: Add two or three lines of future
work.

TODO: Break some of the longer sen-
tences containing “which” or “that”.
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What can be 
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“runtime”?
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