A Framework for Coded Computation

ISIT 2008

Eric Rachlin and John E. Savage

Department of Computer Science
Brown University
Providence, RI
For 60 years the overwhelming success of digital computing has been facilitated by ever-shrinking, highly reliable hardware.

Example

If a 3GHz, 10^9 gates/processor, 1,024-processor computer runs for 1 year with a 1% chance of failure, the gate failure rate satisfies $p_f \leq 10^{-30}$!

As feature sizes shrink and the number of cores per chip increase, it becomes increasingly burdensome to maintain such an astronomically high level of reliability.

Nanoscale devices, multicore architectures, and distributed computing all suggest an impending need for fault-tolerant computation.
Beginning with von Neumann in 1956, many theorists have studied how to implement an arbitrary circuit, C, with unreliable gates.

- If gates fail independently at random with probability p_f, von Neumann asked whether we can construct a circuit C' such that for any input, x, $\text{Prob}(C(x) \neq C'(x)) = \delta$, for some $\delta < 1/2$.
- **His main idea:** Repeat each gate in C many times and periodically suppressed errors by applying constant-size majority gates to random subsets of repeated outputs.
- Subsequent analysis showed that $|C'|/|C| = \Omega(\log |C|)$.

This result contrasts sharply with digital communication.

- Repetition is a very inefficient error control mechanism.
- We use a reliable encoder and decoder to control errors.
Differential Reliability

- How can we use ideas from coding theory to compute reliably?
 - Build circuits using both reliable and unreliable gates.

- **Differential reliability** allows expensive, large, power-hungry, highly-reliable gates to “supervise” less reliable technology. This allows us to:
 - Encode the input (and decode the output) of a lengthy computation. This is called **Coded Computation**.
 - Exploit the fact that many algorithms have relatively simple checks. This is used in **Algorithm-Based Fault Tolerance**.

- In this talk we investigate coded computation, since the latter approach is highly algorithm specific.
Some Previous Work

- The earliest work on coded computation considered only bitwise operations performed on pairs of codewords. This is overly restrictive.
- Later certain algorithm specific encodings were considered:
 - Arithmetic codes for addition and multiplication
 - Check-sums for Matrix operations.
- More recent work by Spielman has suggested that a more general approach is worth pursuing.
Our Model of Unencoded Computation

- Our goal is to “encode” the computation performed by a circuit, C.
- We organize C into levels (slices) and consider a single level of C.

Computation on Circuit Slices

- Consider binary inputs $x, y \in \{0, 1\}^k$ and “instructions” $w \in \mathcal{I}$. The computation performed in a slice of k 2-input gates is

 $$z = \kappa^{(k)}(x, y, w) = (\kappa(x_1, y_1, w_1), \ldots, \kappa(x_k, y_k, w_k))$$

- More generally, if z_{t} is the output of level t, the computation performed by the next level can be expressed as,

 $$z_{t+1} = \kappa^{(k)}(\pi_{1,t+1}(z_t), \pi_{2,t+1}(z_t), w_{t+1})$$

- Here each $\pi_{i,t+1}$ is a permutation describing which outputs from level t correspond to which inputs at level $t + 1$.
A Naive Approach

- For simplicity, consider $\kappa(x, y, w) = \text{NAND}(x, y)$. In other words, all gates are NAND gates. Let $z = \text{NAND}^k(x, y)$.

- To provide fault-tolerance, we would like to identify an encoding function, $E : \{0, 1\}^k \mapsto \mathcal{A}^n$, and a function F such that:

$$E(z) = F(E(x), E(y))$$

- Easy! Just decode $E(x)$ and $E(y)$, compute z, then encode z. But this doesn’t guarantee fault-tolerance and the overhead is large.

- F should be simple, fault-tolerant, errors mustn’t propagate too much.

- Ideally each output would only depend on a small number of inputs.
 - For example, can F be of the form $F = f^{(k)}$ for some function f?
A Lower Bound

Theorem

Let C be an $[n, k, d]_A$ code with encoding function $E : \{0, 1\}^k \mapsto A^n$ and minimum distance d, and let F be a function such that

$$F(E(x), E(y)) = E(\text{NAND}^k(x, y)).$$

If each output symbol of F is a function of at most c inputs of $E(x)$ and $E(y)$, the following inequality must hold:

$$n \geq kd/(c \log_2 |A|)$$

- When $c = 1$, this bound implies that we cannot do better than using a repetition code.
- NAND can be replaced with any other function whose output only sometimes depends on a given input (e.g. OR, but not XOR).
- This theorem is a substantial generalization of several old results.
Our lower bound shows that it is not generally possible to select a code, C, with large minimum distance, and identify a very simple F such that $F(E(x), E(y), E(w)) = E(\kappa^{(k)}(x, y, w))$.

Instead we can consider a second (larger) code, C^*, with encoding function E^*, and identify a function Φ such that

$$\Phi^{(n)}(E(x), E(y), E(w)) = E^*(\kappa^{(k)}(x, y, w))$$

where $\Phi^{(n)}(u, v, t) = (\phi(u_1, v_1, t_1), \ldots, \phi(u_n, v_n, t_n))$.

To obtain F from Φ, we must then “transcode”, meaning project $\Phi^{(n)}(E(x), E(y), E(w))$ back to C.
A More General Approach (cont.)

\[\Phi^{(n)}(E(x), E(y), E(w)) = E^*(\kappa^{(k)}(x, y, w)). \]

- Since \(C^* \) is larger than \(C \), a given output can have multiple encodings.
- To ensure that \(\Phi \) performs the desired computation, we choose \(C \) and \(C^* \) to be systematic. Then we have \(\Phi = \kappa \) on the information symbols. As shown on next slide, this is obtained using interpolation.
- Fault-tolerance relies on the error correcting capability of \(C^* \), as well as the structure of the transcoding operation.
- To transcode from \(C^* \) back to \(C \) in a fault-tolerant manner, Spielman suggested using 2D codes. This requires that \(C \) and \(C^* \) be linear.
Extension Polynomials

- In a linear code C, $x \in F^k$ is encoded as $E(x) \in G^n$, where $F \subseteq G$ are both finite fields.

- If E is chosen such that C is systematic, then we can define Φ using interpolation over the values of F^3 on which κ is defined.

- This ensures that $\Phi^{(n)}(E(x), E(y), E(w))$ computes $\kappa^{(k)}(x, y, z)$, along with $n - k$ check symbols in G.

Example

Let $F = \{0, 1\}$ and $F \subseteq G$. If $\kappa(x, y, 1) = \text{NAND}(x, y)$ and $\kappa(x, y, 0) = x$, then we have:

$$
\Phi(x, y, w) = w(1 - xy) + (1 - w)x.
$$

If κ had a larger domain (for example, more than two instructions), we could chose a larger F, or use more than three variables.
Selection of C and C^*

- In order to select C and C^* such that $\Phi(n)(E(x), E(y), E(w)) \in C^*$, Spielman suggested Reed-Solomon codes.
- We observe that Reed-Muller codes are also viable, as well as other codes based on bounded-degree polynomials.

Linear Codes Based on Polynomials

- Let $C_G(m, r)$ denote a code in which each codeword is value of r-degree, m-variable polynomial $p(v_1, ..., v_m)$ evaluated at n points in $P \subseteq G^m$.
- For $C_G(m, r)$ to be systematic, $p(v_1, ..., v_m)$, which encodes $E(x)$, is an interpolation polynomial, that is, the first k values of $p(v_1, ..., v_m)$ for $(v_1, ..., v_m) \in S$ is x where $S \subseteq P$, $|S| = k$.
- In a Reed-Muller Code, $G = \{0, 1\}$, $n = 2^m$, and $k = \Sigma_{i=0}^{r} \binom{m}{i}$. In a Reed-Solomon Code, $m = 1$, $n \leq |G|$, and $k = r + 1$.
If $E(x), E(y), E(w) \in C_G(m, r)$, and $\Phi(x, y, w)$ has degree s, then:

$$\Phi^{(n)}(E(x), E(y), E(w)) \in C_G(m, rs)$$

If rs isn’t too large, we still have the ability to correct for errors.

- In the case of Reed-Muller codes, $d = 2^{m-rs}$.
- For arbitrary $C_G(m, r)$, we if $S \subseteq G$ and $P = S^m$, then $d \geq (1 - (rs/|S|))$

To transcode, we can treat $C_G(m, r)$ and $C_G(m, rs)$ as a 2D code, and transcode first by rows, then by columns.
Using polynomial codes, we can encode \(x \) and \(y \), the inputs to a level of a circuit, and apply \(\Phi^{(n)} \), then transcode the result.

Before the encoded output, \(E(z) \), can be supplied as input to the next level of the circuit, it must be copied, and each copy must be permuted. Recall our model:

\[
z_{t+1} = \kappa^{(k)}(\pi_{1,t+1}(z_t), \pi_{2,t+1}(z_t), w_{t+1})
\]

Which when encoded should become:

\[
E(z_{t+1}) = T(\Phi^{(k)}(\pi_{1,t+1}(E(z_t)), \pi_{2,t+1}(E(z_t)), E(w_{t+1})))
\]

where \(T \) denotes the transcoding operation.

If \(\pi_{1,t+1} \) and \(\pi_{2,t+1} \) are arbitrary, they cannot necessarily be applied them directly. Instead they can be decomposed into permutations that can be applied.
Polynomial codes are closed under a number of permutations. For example, both Reed-Solomon and Reed-Muller codes can both be permuted along the dimensions of a hypercube.

Additional permutations can be applied during 2D transcoding. If needed, an arbitrary permutation can be realized as a series of allowed permutations.

- Hypercube-style data movement is enough to implement arbitrary permutations via a switching network formed from back-to-back butterfly graphs.
- This network can in turn be implemented using only cyclic shifts via a shuffle-exchange protocol.
Putting it all together

- Given an arbitrary circuit C, it can be converted to a leveled circuit C_R such that all gates have fan-in and fan-out 2.

- Using the techniques we have presented, the input to C_R can be encoded, and the computation performed by each level can be made fault-tolerant.

- Between each step of coded computation, transcoding is required. This constitutes the major overhead of this approach.

- Still, this approach can still potentially outperform basic reputation if C is sufficiently deep. The overhead required is a logarithmic (or polylogarithmic) in the width of C, where as with repetition it is logarithmic in $|C|$.
Conclusions and Future Work

- Coded-computation appears to have the potential to outperform repetition, but currently the overhead is still high.
- Reed-Muller codes allow us to implement the binary operations of a circuit using binary codes. This is a significant improvement over Spielman’s Reed-Solomon based-approach.
- The structure of specific computations may allow them to be encoded with lower overhead.