Operator Scheduling in a
Data Stream Manager.

Don Carney Brown University
Ugur Cetintemel Brown University
Alex Rasin Brown University
Stan Zdonik Brown University
Mitch Cherniack Brandeis University
Michael Stonebraker MIT

VLDB 2003 Berlin

Stream-based Applications

s Examples

o Traffic analysis
s Streams of automobile locations

o Market analysis
s Streams of stock ticker data

e Sensor monitoring
= Streams of soldier locations
s Characteristics
e | ots of data sources
e Unpredictable and high rates of input
e Latency expectations / deadlines
e Timely & Sophisticated processing

VLDB 2003 Berlin

Aurora from the Sky

Query | App

Query 2 App

Query

Each |Application| Provides:

« A|Query| over input data streams
A Quality-Of-Service Specification (
(specifies utility of results)

VLDB 2003 Berlin

A Look Inside

VLDB 2003 Berlin

Scheduling in Action

» App

VLDB 2003 Berlin

Traditional Thread-driven
Execution

e Thread per query or operator
e Resource management done by OS
= Easy to program

= Problems
e No Application specific QoS
e Scalability

VLDB 2003 Berlin

Basic Architecture

Run-time
Statistics Monitor

:Storage Manager

q —LITT-T]

Scheduler HEREN

Execution

N

Worker Threads

“"How to make this light-weight enough to meet QoS constraints
under heavy load”

VLDB 2003 Berlin

Aurora vs. Thread-Based

30

Tﬁreatlj-perl-boxI —.I— I
Aurora ——

N
(S

20

-
(=

()]

_—
")
©
c
(@)
O
Q
(7))
'
>
£ 15
Q
)
(4]
—
Q
(@)
©
| .
Q
>
Z

160 200 300 400 500 600 700 800 9001000
Number of Boxes

o

VLDB 2003 Berlin

Scheduler Specifics

s Overhead reduction
s Box execution order

= Scalability

Minimizing Per Tuple Overhead

Tuple at a time:

nmmxIIIIAc>AM/MmlIIIBmc»
>

Train = Scheduler Action

Scheduling:

_ .. [Z]y[X] A(z,Y, X) B (A(z), A(y), A(x))
Tuple Trains: >

Box & Tuple
Trains IFAM
(superbox):

VLDB 2003 Berlin

Scheduling Superboxes incurs
lowest overhead

0O Worker Thread
m Storage Manager

@ Scheduling

15 8.5

I I

Tuple-at-a- Tuple- Superbox
Time Trains

o))
o O
|

—
=
s
&
.E
-
c
(]
o
7))
n
©
c
o]
(&
(O]
)
'
©
o
(]
K e
| 99
(]
>
@)

Scheduling Type

VLDB 2003 Berlin

Superboxes provide best
performance

TupIe-Tll'ain—.—I I I 5 Apps
-Superbox —— _ s 500 boxes

—
(72)
©
c
(o)
(&)
(4b)
)
~—
>
(&)
c
(<))
b
®
-
D
(@]
©
| .
(¢})
>
<

0.7 0.8 0.9 1

VLDB 2003 Berlin

Traversal Matters

Min-Cost Traversal
Bl — B2 — B3

Processing Cost
e Execution of Box
Call Overhead

»
>

e Context Switch

—
- =-/_ Average Latency
. e Measured as

average of above 2

Processing | Call Overhead | Avg Latency

) (0)

Min-Cost @p 30 al:Sﬂ' _3030

VLDB 2003 Berlin

Traversal Matters

Min-Latency Traversal Processing Cost
B3— Bl —B3—>B2 —B3 e Execution of Box
- »

— Call Overhead
e Context Switch

Average Latency

e Measured as
average of above 2

Processing | Call Overhead | Avg Latency

(P) (o)
Min-Cost 30 45p_|_30

Min-Latency ‘ B0 325'3-—[}-_@560

VLDB 2003 Berlin

Superbox Traversal

s Box execution order to improve
e Throughput (Min-Cost)
= Minimizes number of box calls

o | atency (Min-Latency)
= Produces tuples fastest

s |raversal selection based on

e Targeted overhead
e Achieving best QoS

VLDB 2003 Berlin

Priority Assignment

p-tuple ordering:
e Slope

i e Slack
Critical Points

’
’
"

>
Current Expected Ouput
Tuple Latency Latency
Latency

VLDB 2003 Berlin

P-tuple Ordering

s At each scheduling event

1. Compute p-tuple for each box
2. Sort

= Example:

p-tuple

Slope | Slack
2 3
T
2 2

VLDB 2003 Berlin

Priority Assignment Vatters

1 ! l . . .
0.95 . |20 applications

0.91 1 1100 boxes

0.85[

0.8 T |2 QoS graphs
0.75 1 y 1. Loose
ol 2. Tight

0.65 |

P-tuple —@—
0.6 Round Robln —l—
0.55 :
0.2 0.3 04 05 0.6 07 08 09 1

Load

7))
o
o
o
o
©
|
o
>
<

VLDB 2003 Berlin

Approximation for Scalability

s P-tuple method is slow
e Compute for each box
e Sort costly for large numbers of boxes
s Approximation to trade off quality for
overhead
e Bucketing
e Pre-computation

VLDB 2003 Berlin

Bucketing

Approach:

e Partition slope/slack
space into buckets

o At Scheduling event

= Assign boxes to
buckets

= traverse buckets in

p-tuple order

e # buckets controls
approximation

But we still have to

compute slope and slack

VLDB 2003 Berlin 20

Pre-Computing Bucket
Assignments

Given Latency,
finding bucket

Bucket 2

Bucket 1

Latency

VLDB 2003 Berlin

=
»
(3)

=
»

=
[\

o
£
l—
o)
=
=
=
S
(14
—
o
©
£
= 0.3
o
>
o
o
=
S
S
@
<
o
(/)

0.15

Bucketing WWorks

200 Apps
1000 Boxes

2 QoS graph types
- Loose

- Tight

BUCKETING——
P-TUPLE

0

50 100 150 200 250 300 350 400
Num Partitions

VLDB 2003 Berlin

Average QoS

Better Approximation
with low overhead

1 »~ Approximations

BUCKETING——
P-TUPLE

50 100 150 200 250 300 350 400

Num Partitions

Related Work

s Operating Systems
e [HLC91],[JRR97],[L88],[RS94]

s Real-time Databases
e [AG93],[HCL-VLDB93],[KG94],[0S95],[R93]

s DSMS
e Chain [BBDM-SIGMODO03]

= Focuses on minimizing run-time memory usage

e Eddies [AH-SIGMODOO]
= Adaptability

VLDB 2003 Berlin

Conclusions

s Overhead matters
o Algorithms to reduce overhead

s Addressed QoS issues

o Approximation technique trades
scheduling quality for overhead

s EXperimental investigation of
scheduling algorithms

e Run on Aurora prototype

VLDB 2003 Berlin

