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Stream-based Applications

s Examples

o Traffic analysis
s Streams of automobile locations

o Market analysis
s Streams of stock ticker data

e Sensor monitoring
= Streams of soldier locations
s Characteristics
e | ots of data sources
e Unpredictable and high rates of input
e Latency expectations / deadlines
e Timely & Sophisticated processing

VLDB 2003 Berlin




Aurora from the Sky

Query | App

Query 2 App

Query

Each |Application| Provides:

« A|Query| over input data streams
A Quality-Of-Service Specification (
(specifies utility of results)

VLDB 2003 Berlin




A Look Inside
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Scheduling in Action

» App
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Traditional Thread-driven
Execution

e Thread per query or operator
e Resource management done by OS
= Easy to program

= Problems
e No Application specific QoS
e Scalability
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Basic Architecture

Run-time
Statistics Monitor

:Storage Manager

q —LITT-T]

Scheduler HEREN

Execution

N

Worker Threads

“"How to make this light-weight enough to meet QoS constraints
under heavy load”

VLDB 2003 Berlin




Aurora vs. Thread-Based
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Scheduler Specifics

s Overhead reduction
s Box execution order

= Scalability




Minimizing Per Tuple Overhead

Tuple at a time:

nmmxIIIIAc>AM/MmlIIIBmc»
>

Train = Scheduler Action

Scheduling:

_ .. [Z]y[X] A(z,Y, X) B (A(z), A(y), A(x))
Tuple Trains: >

Box & Tuple
Trains IFAM
(superbox):
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Scheduling Superboxes incurs
lowest overhead

0O Worker Thread
m Storage Manager

@ Scheduling
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Superboxes provide best
performance

TupIe-Tll'ain—.—I I I 5 Apps
-Superbox —— _ s 500 boxes

—
(72)
©
c
(o)
(&)
(4b)
)
~—
>
(&)
c
(<))
b
®
-
D
(@]
©
| .
(¢})
>
<

0.7 0.8 0.9 1

VLDB 2003 Berlin




Traversal Matters

Min-Cost Traversal
Bl — B2 — B3

Processing Cost
e Execution of Box
Call Overhead

»
>

e Context Switch

—
- =-/_ Average Latency
. e Measured as

average of above 2

Processing | Call Overhead | Avg Latency

) (0)

Min-Cost @p 30 al:Sﬂ' _3030
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Traversal Matters

Min-Latency Traversal Processing Cost
B3— Bl —B3—>B2 —B3 e Execution of Box
- »

— Call Overhead
e Context Switch

Average Latency

e Measured as
average of above 2

Processing | Call Overhead | Avg Latency

(P) (o)
Min-Cost 30 45p_|_30

Min-Latency ‘ B0 325'3-—[}-_@560
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Superbox Traversal

s Box execution order to improve
e Throughput (Min-Cost)
= Minimizes number of box calls

o | atency (Min-Latency)
= Produces tuples fastest

s |raversal selection based on

e Targeted overhead
e Achieving best QoS
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Priority Assignment

p-tuple ordering:
e Slope

i e Slack
Critical Points

’
’
"

>
Current Expected Ouput
Tuple Latency Latency
Latency
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P-tuple Ordering

s At each scheduling event

1. Compute p-tuple for each box
2. Sort

= Example:

p-tuple

Slope | Slack
2 3
T
2 2
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Priority Assignment Vatters
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Approximation for Scalability

s P-tuple method is slow
e Compute for each box
e Sort costly for large numbers of boxes
s Approximation to trade off quality for
overhead
e Bucketing
e Pre-computation
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Bucketing

Approach:

e Partition slope/slack
space into buckets

o At Scheduling event

= Assign boxes to
buckets

= traverse buckets in

p-tuple order

e # buckets controls
approximation

But we still have to

compute slope and slack
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Pre-Computing Bucket
Assignments

Given Latency,
finding bucket

Bucket 2

Bucket 1

Latency
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Average QoS

Better Approximation
with low overhead

1 »~ Approximations
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Related Work

s Operating Systems
e [HLC91],[JRR97],[L88],[RS94]

s Real-time Databases
e [AG93],[HCL-VLDB93],[KG94],[0S95],[R93]

s DSMS
e Chain [BBDM-SIGMODO03]

= Focuses on minimizing run-time memory usage

e Eddies [AH-SIGMODOO]
= Adaptability
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Conclusions

s Overhead matters
o Algorithms to reduce overhead

s Addressed QoS issues

o Approximation technique trades
scheduling quality for overhead

s EXperimental investigation of
scheduling algorithms

e Run on Aurora prototype
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