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Chapter 1

Introduction

This work is most generally in the area of multiagent learning. The basic object of inquiry is the

behavior that emerges when autonomous agents, capable of learning, interact with each other.

More specifically, we are interested in agents learning as they repeatedly play a game and how the

resulting behavior relates to the game-theoretic equilibria of the game. It turns out that a particular

measure of performance in this setting, called regret, is closely related to equilibrium concepts. The

study of learning algorithms for which we can provide certain regret guarantees and the study of

game-theoretic equilibria are mutually illuminating.

The no-regret approach to learning to play games is a particularly powerful one. Its strength

is that it allows for algorithms that do well in either competitive or cooperative situations. That

is, the algorithms take advantage of opportunities to cooperate with other players without making

themselves vulnerable to exploitation. Further, no-regret results can be obtained without any model

of the behavior of the other players.

The fundamental notion in this work is a game, in which some (finite) number of players each

choose an action. Depending on the actions chosen by the players, each player receives some reward.

Rewards are represented by real numbers and may be interpreted as monetary value or utility (in

the economic sense), or in some other domain-appropriate way. The essential properties of rewards

are that higher numbers are better (more desirable) and that taking probabilistic expectations is

appropriate.

Given a game, we are interested in the equilibria of that game. Roughly, an equilibrium of the

game is a configuration of strategies for each player such that no player has an incentive to deviate

from that configuration. The classic equilibrium concept is due to Nash [1950], but Aumann’s

correlated equilibrium (1974) is arguably a more useful approach. (Aumann [1987] argues this point

persuasively.)

Chapter 2 establishes a formalism for games of this sort (specifically, real-valued, one-shot games)

and presents a framework for defining classes of equilibria of such games. Equilibrium concepts cor-

respond to sets of transformations on the players’ action sets. One of the original goals of this line

of inquiry (particularly in [Greenwald et al., 2008]) was to discover a more powerful equilibrium

1
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concept. However, a consequence of Observation 2.4 and Proposition 2.6 is that correlated equilib-

rium is the strongest equilibrium concept achievable. Thus, the value of the general framework is

called into question. Its worth does not become evident until we turn our attention to convex games

(Chapter 5) and extensive-form games (Chapter 6).

Chapter 2 also considers the repeated game setting, in which players repeatedly play a one-shot

game with each other and thus have an opportunity to learn. We define a class of no-regret properties

of learning algorithms for this setting and show that algorithms with these properties converge to

particular sets of equilibria in self-play. In this sense, we show how to “learn” equilibria.

In order to develop a comprehensive theory of no-regret learning algorithms, we first present, in

Chapter 3, a theory of vector games, in which each player’s rewards are vectors rather than real

numbers. The work in this chapter is a development of Blackwell’s seminal paper on approachability.

We provide a variety of approachability results as well as two flavors of bounding results.

Once we have this sophisticated machinery for analyzing vector games, in Chapter 4 applies it to

develop a class of regret-matching algorithms for matrix (finite-action) games, along with no-regret

and regret bounding guarantees for these algorithms. We also demonstrate how to build a no-regret

learning algorithm for the näıve setting (in which a player learns only its own reward on each trial)

out of a learning algorithm for the informed setting (in which a player learns its opponents’ actions).

To our knowledge, this is the first general no-regret algorithm for the näıve setting.

Chapter 5 turns to convex games, in which each player’s set of actions is a convex set, and rewards

are multi-linear. We present a class of transformations for convex games, called σ transformations,

which we show to be the strongest set of transformations in the framework. We also consider

polyhedral games (convex games in which each player’s action set has a finite number of corners)

and show that we can consider only the corners of the action sets in these games without losing any

power. These two results form the groundwork for Gordon et al. [2008], which presents a class of

no-regret learning algorithms that are exponentially faster than previously known algorithms.

Finally, Chapter 6 considers extensive-form games, in which players take turns making choices

and may or may not have knowledge of each other’s choices. This framework has extremely broad

applicability and is particularly appropriate to sequential interactions such as bargaining or poker.

Extensive-form games can be represented as matrix games, but it is well known that standard

equilibrium concepts, applied to the matrix-game representation, are deficient.

We develop sets of transformations that correspond to two types of extensive-form equilibrium

(EFCE) concepts, permissive and reduced, and also present a much smaller set sufficient for reduced

EFCE. Using these transformations with the algorithms of Chapter 4 yields the first class of al-

gorithms that are theoretically capable of learning any EFCE. However, such an algorithm would

require knowledge of the complete strategy of each opponent in each round. Such knowledge is

generally not available. We solve this problem by making use of our class of general, no-regret näıve

algorithms. The end result is a class of algorithms for extensive-form games that learn EFCE with

minimal information requirements.



Chapter 2

Games and Equilibria

Here we establish a formalism for games of this sort (specifically, real-valued, one-shot games) and

present a framework for defining classes of equilibria of such games. Equilibrium concepts correspond

to sets of transformations on the players’ action sets. One of the original goals of this line of inquiry

(particularly in [Greenwald et al., 2008]) was to discover a more powerful equilibrium concept.

However, a consequence of Observation 2.4 and Proposition 2.6 is that correlated equilibrium is the

strongest equilibrium concept achievable. Thus, the value of the general framework is called into

question. Its worth does not become evident until we turn our attention to convex games (Chapter

5) and extensive-form games (Chapter 6).

We also consider the repeated game setting, in which players repeatedly play a one-shot game

with each other and thus have an opportunity to learn. We define a class of no-regret properties

of learning algorithms for this setting and show that algorithms with these properties converge to

particular sets of equilibria in self-play. In this sense, we show how to “learn” equilibria.

2.1 Games

The fundamental object of inquiry is a game, or more precisely a real-valued, one-shot game.

Definition 2.1 A real-valued, one-shot game is a triple〈
N, 〈Ai〉i∈N , 〈ri〉i∈N

〉
where

• N is finite set of players

• Ai is the set of actions available to player i, and

• ri :
∏
j Aj → R is the reward function for player i.

3
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R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

Table 2.1: Rock-paper-scissors reward matrix

The interpretation is that each player i independently selects an action from Ai and then receives a

reward (or payoff, or utility) according to its reward function. That is, if each player j plays action

aj ∈ Aj , then player i obtains reward ri
(
〈aj〉j∈N

)
.

A game in which each Ai is a finite set is called a matrix game.

The set of possible configurations of actions for the players is called the joint action space, denoted
~A and defined as ~A =

∏
iAi. This gives rise to the simpler notation that if the players play joint

action a ∈ ~A, each player i obtains reward ri(a).

Sometimes we will factor a joint action a into two components: player i’s action, ai, and the joint

action of all other players, denoted a¬i ∈ A¬i =
∏
j 6=iAj . In this case, we may write rj(ai, a¬i),

which is equivalent to r(a).

For example, consider the game of rock-paper-scissors. It can be represented in this formalism

as:

• N = {1, 2}

• A1 = A2 = {R,P, S}

• r1(R,S) = r1(S, P ) = r1(P,R) = 1,

r1(S,R) = r1(P, S) = r1(R,P ) = −1

r1(R,R) = r1(P, P ) = r1(S, S) = 0

• r2(a) = −r1(a) for all a

A two-player matrix game, such as rock-paper-scissors, can be conveniently represented in a

table, as in Figure 2.1.

The selection of an action for player 1 (the “row player”) corresponds to a row of the table, and

the selection of an action for player 2 (the “column player”) corresponds to a column of the table.

The cell in a particular row and column contains a pair indicating the rewards obtained by each

player when they play the actions corresponding to the row and column.

Observe that in this particular game,
∑
i ri(a) = 0 for all a ∈ ~A. This property defines a zero-

sum game.1 Such games represent purely competitive games—one player’s gain is exactly the other

players’ loss.

We will often be concerned with bounded games, in which the range of each ri is bounded.

Without loss of generality, we will assume each ri : A→ [0, 1] in this case. Observe that any matrix

game is necessarily a bounded game.
1Equivalently, the rewards may sum to some constant, rather than zero.
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2.1.1 Randomization

We consider players who may choose to play distributions over their action sets, rather than specific

actions. These distributions are often called mixed strategies. In order to formally define these

distributions, each action set Ai must have a σ-algebra associated with it. In this work we consider

only two kinds of action sets, finite action sets and action sets which are subsets of Rd. In the former

case, we take the σ-algebra to be the power set of the action set; in the latter case, we use the Borel

σ-algebra. Given appropriate σ-algebras, we denote the set of distributions over player i’s action set

by ∆(Ai).

We can also consider the set of joint distributions, ∆( ~A), using the product σ-algebra.2 A joint

distribution is independent if it can be expressed as the product of the marginal distributions for

each player, or equivalently as an element of
∏
i ∆(Ai).

2.1.2 Transformations

The concept of an action transformation (or just “transformation”) serves as the basis for our

definitions of both equilibria and regret. An action transformation, denoted φ, is a measurable

function from a set of actions to itself.3 Measurability is defined with respect to the σ-algebra

associated with the action set. Given player i’s action set Ai, the set of all action transformations

for Ai is called the set of swap transformations and is denoted ΦSWAP(Ai). In the case of matrix

games, all functions from the action set to itself are measurable.

There are several more limited sets of action transformations which we study, for example the set

of all constant action transformations, which are usually called external transformations. Formally,

we define the external transformation φEXT
α , for α ∈ Ai, as

φEXT
α (x) = α ∀x ∈ Ai. (2.1)

Given an action set Ai, the set of external transformations is denoted ΦEXT(Ai).

In the study of matrix games, an important class of transformations is the internal transforma-

tions, which act as the identity except on a single action. Formally, for α, β ∈ Ai,

φINT
α→β(x) =

{
β if x = α

x otherwise
(2.2)

and the set of internal transformations is denoted ΦINT(Ai).

For convex and extensive-form games, there are other important classes of transformations; see

Chapters 5 and 6.
2Given a nonempty set X, a σ-algebra for X is a nonempty collection of subsets of X that is closed under countable
unions and finite complements.

3There are other formulations of transformations in the literature. There are discussed in Section 4.8.
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2.2 Equilibria

An equilibrium of a game is a specification of how each player is to act, with the property that no

player has an incentive to unilaterally deviate from that specification. That is, no player, assuming

that all other players follow the specification, would be better off not following it.

The specification can be formalized in two ways: as a vector of mixed strategies, 〈qi〉 ∈
∏
i ∆(Ai);

or as a distribution over the joint action space, q ∈ ∆( ~A) = ∆(
∏
iAi). The latter formulation is

more general and the one we use. (A joint distribution can express any vector of mixed strategies;

to obtain a joint distribution from a vector of mixed strategies, simply take their product.)

An equilibrium that can be represented as a vector of mixed strategies is called independent. The

best-known equilibrium concept, Nash equilibrium [Nash, 1950] is an independent equilibrium. The

formal definition of a Nash equilibrium in terms of joint distributions is:

Definition 2.2 Given a game, a joint distribution q ∈
∏
i ∆(Ai) is a Nash equilibrium if (a) it

is independent, and (b) for all players i, for all actions α ∈ Ai,

E [ri(α, a¬i)] ≤ E [ri(a)] (2.3)

where the joint action a = (ai, a¬i) is distributed according to q.

In general, the ways in which a player is allowed to deviate define an equilibrium concept.

Formally, these allowable deviations are defined by a set of action transformations.

Definition 2.3 Given a game
〈
N, 〈Ai〉i∈N , 〈ri〉i∈N

〉
and a vector of sets of actions transformations

〈Φi〉i∈N , where each Φi ⊆ ΦSWAP(Ai), a joint distribution q ∈ ∆( ~A) is a 〈Φi〉 equilibrium if for all

players i, for all action transformations φ ∈ Φi,

E [ri(φ(ai), a¬i)− ri(a)] ≤ 0 (2.4)

where the joint action a = (ai, a¬i) is distributed according to q.

For convenience, we define the random variable ρi,φ = ri(φ(ai), a¬i)−ri(a). Then condition (2.4)

becomes

E [ρi,φ] ≤ 0 (2.5)

If each Φi is of the same type, then we can refer to an equilibrium accordingly, e.g., a ΦSWAP

equilibrium, or a ΦEXT equilibrium.

A common interpretation of an equilibrium is to add the presence of a moderator to the game

setting. The moderator, who is trusted by the players, uses a joint distribution to generate a joint

action. The moderator then privately gives each player a “suggestion” to play his component of that

joint action. A joint distribution is an equilibrium if it has the property that no player can benefit

by consistently deviating from the moderator’s suggestion.

The larger the set of deviations according to which the players must have no incentive to deviate,

the more restrictive the equilibrium concept.
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Observation 2.4 Given a game Γ and two vectors of sets of action transformations 〈Φi〉 and 〈Φ′i〉,
where for each i, Φ′i ⊆ Φi ⊆ ΦSWAP(Ai) a joint distribution q ∈ ∆( ~A) that is a 〈Φi〉-equilibrium must

also be a 〈Φ′i〉-equilibrium.

Thus, the strongest equilibrium concept is a ΦSWAP equilibrium. That is, every equilibrium is a

ΦSWAP equilibrium.

Each set of action transformations yields a convex set of equilibria.

Proposition 2.5 Given a game Γ and a vector of sets of actions transformations 〈Φi〉, where each

Φi ⊆ ΦSWAP(Ai), the set of 〈Φi〉-equilibria is convex.

Proof Let q and q′ be 〈Φi〉-equilibria, and let λ ∈ [0, 1]. Define q∗ = λq+ (1− λ)q′. For arbitrary i

and φ ∈ Φi,

Eq∗ [ρi,φ] =
∫
ρi,φ dq∗ (2.6)

= λ

∫
ρi,φ dq + (1− λ)

∫
ρi,φ dq′ (2.7)

= λEq [ρi,φ] + (1− λ)Eq′ [ρi,φ] (2.8)

≤ 0 (2.9)

Line (2.7) follows from the convexity of the integral with respect to the measure. Thus q∗ is also a

〈Φi〉-equilibrium.

2.2.1 Matrix Game Equilibria

The two most studied types of equilibria in matrix games are Nash equilibria and correlated equilibria

[Aumann, 1974]. A related concept, coarse correlated equilibria [Moulin and Vial, 1978], is less well

studied.

The moderator interpretation of a correlated equilibrium is that each player is given a suggested

action by the moderator, who has sampled a joint action from a joint distribution. If the player

has no incentive to deviate based on what he can infer about the suggestions received by the other

players based on the suggestion he himself received, then the moderator’s joint distribution is a

correlated equilibrium. A coarse correlated equilibrium is characterized by a weaker property: each

player must have no incentive to deviate without seeing his suggestion.

The following results are from Greenwald et al. [2008]:

Proposition 2.6 Given a matrix game, the set of ΦINT-equilibria of the game is identical to the set

of correlated equilibria of the game.

Proof A joint distribution q is a ΦINT-equilibrium if and only if for all players i, for all α, β ∈ Ai,

E
[
ri(φINT

α→β(ai), a¬i)− ri(a)
]

≤ 0 (2.10)∑
a∈A

q(a)
(
ri(φINT

α→β(ai), a¬i)− ri(a)
)

≤ 0 (2.11)∑
a¬i∈A¬i

q(α, a¬i) (ri(β, a¬i)− ri(a)) ≤ 0 (2.12)
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L M R
T 0 0 −1
B 0 0 2

Table 2.2: r1 for a Zero-Sum Game

Line (2.12) follows because φINT
α→β acts as the identity when ai 6= α, so ri(φINT

α→β(ai), a¬i)− ri(a) = 0

in those cases. Line (2.12) is the definition of correlated equilibrium [Aumann, 1974].

Proposition 2.7 Given a matrix game, the set of ΦEXT-equilibria of the game is identical to the set

of coarse correlated equilibria of the game.

Proof A joint distribution q is a ΦEXT-equilibrium if and only if for all players i, for all α ∈ Ai,

E [ri(φEXT
α (ai), a¬i)− ri(a)] ≤ 0 (2.13)∑

a∈A
q(a) (ri(φEXT

α (ai), a¬i)− ri(a)) ≤ 0 (2.14)∑
a∈A

q(a) (ri(α, a¬i)− ri(a)) ≤ 0 (2.15)

which is the definition of coarse correlated equilibrium [Moulin and Vial, 1978].

A coarse correlated equilibrium need not be a correlated equilibrium. This observation is intuitive

for general-sum games, but perhaps less so for zero-sum games.

For example, in the two-player zero-sum game represented in Table 2.2, with player 1 the row

player and player 2 the column player, the joint distribution with half its weight on (T,L) and the

other half on (B,M) is a coarse correlated equilibrium, but not a correlated equilibrium. It is a coarse

correlated equilibrium because player 1 has no incentive to deviate from its marginal distribution

(half its weight on T and half on B), and player 2 has no incentive to deviate from its marginal

distribution (half its weight on L and half on M). If player 2 were to deviate to R, it would expect

to lose 1
2 instead of 0. It is not, however, a correlated equilibrium: if player 2 is advised to play

L, then it can deduce that player 1 is playing T, in which case player 2 actually prefers to play R,

where it would win 1 instead of 0.

In the case of two-player, zero-sum games, we obtain the following result for coarse correlated

equilibria (and consequently correlated equilibria), which is related to the result in Forges [1990]:

Proposition 2.8 Given a two-player, zero-sum game with reward functions r = r1 = −r2 and value

v, if q is a coarse correlated equilibrium, then (i) r(q) = v and (ii) each player’s marginal distribution

is an optimal strategy (i.e., optimal for the maximizing player means: guarantees he wins at least v;

optimal for the minimizing player means: guarantees he loses at most v).

Proof Let q1 and q2 denote the marginal distributions of the maximizer and the minimizer in q,

respectively. First, r(q) ≥ maxα∈A1 r(α, q2) ≥ v since q is a coarse correlated equilibrium and v is

the value of the game. Symmetrically, r(q) ≤ maxβ∈A2 r(q1, β) ≤ v. Hence, r(q) = v.
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Second, applying the definition of coarse correlated equilibrium again together with the above

result, v = r(q) ≥ maxα∈A1 r(α, q2), so by playing q2, player 2 loses at most v. Symmetrically,

v = r(q) ≤ maxβ∈A2 r(q1, β), so by playing q1, player 1 wins at least v.

2.2.2 Sufficiency of ΦINT

From Observation 2.4, we know that ΦSWAP yields the strongest equilibrium concept in this system;

any such equilibrium is also a 〈Φi〉 equilibrium for all choices of Φi. In the case of matrix games,

the set of correlated equilibria is equivalent to the set of ΦSWAP equilibria, and is thus the strongest

equilibrium concept.

Proposition 2.9 Given a matrix game, a joint distribution is a correlated equilibrium if and only

if it is a ΦSWAP equilibrium.

Proof One direction follows directly from Observation 2.4. For the other direction, let q be a

correlated (equivalently, ΦINT) equilibrium. For arbitrary i and φ ∈ ΦSWAP(Ai),

E [ri(φ(ai), a¬i)− ri(a)] (2.16)

=
∑
a∈A

q(a) (ri(φ(ai), a¬i)− ri(a)) (2.17)

=
∑
α∈Ai

∑
a¬i∈A¬i

q(α, a¬i) (ri(φ(α), a¬i)− ri(α, a¬i)) (2.18)

=
∑
α∈Ai

∑
a¬i∈A¬i

q(α, a¬i)
(
ri

(
φINT
α→φ(α)(α), a¬i

)
− ri(α, a¬i)

)
(2.19)

=
∑
α∈Ai

∑
a¬i∈A¬i

∑
ai∈Ai

q(a)
(
ri

(
φINT
α→φ(α)(ai), a¬i

)
− ri(a)

)
(2.20)

=
∑
α∈Ai

∑
a∈A

q(a)
(
ri

(
φINT
α→φ(α)(ai), a¬i

)
− ri(a)

)
(2.21)

=
∑
α∈Ai

E
[
ri

(
φINT
α→φ(α)(ai), a¬i

)
− ri(a)

]
(2.22)

≤ 0 (2.23)

The final line follows because q is a ΦINT equilibrium, so each term in the summation in (2.22) is

non-positive.

Because an independent ΦSWAP equilibrium is a Nash equilibrium, the existence result for Nash

equilibria implies that the set of Φ equilibria is non-empty for any Φ.

2.3 Repeated Games

In this work we are interested in agents learning to play games by playing them repeatedly. In

the repeated game set-up, we take a game Γ (sometimes called a “one-shot” game to distinguish it

from a repeated game) and assign each agent to the role of one of the players in Γ. The agents
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then play Γ with one another on each of a potentially infinite sequence of trials. In the case of an

infinitely-repeated version of the game Γ, we use the notation Γ∞.

We mostly deal with the informed repeated game setting, which is generally characterized by

each agent having knowledge of Γ and each trial t having the following steps:

(1) Each agent i selects an action distribution q(t)i ∈ ∆(Ai)

(2) For each agent i, the action a(t)
i is sampled from q

(t)
i

(3) The agents all observe the joint action a(t) =
〈
a
(t)
j

〉
j∈N

(4) Each agent i receives reward ri(a(t))

Step (3) and knowledge of Γ are the qualities that make the setting merit the label “informed.”

However, for the algorithms that we study here we will place more lenient requirements on the

information available to the agents in the informed setting. Specifically, each agent needs only know

its own action set, and step (3) is replaced by:

(3*) Each agent i is given the function r(t)i : α 7→ ri

(
α, a

(t)
¬i

)
That is, after each trial an agent is able to calculate the rewards it would have obtained for each of

the actions available to it, given the actions of the other agents for that trial. In this formulation,

an agent is ignorant of the actions played the other agents and the rewards attained by them. We

refer to the function r(t)i as player i’s marginal reward function.

In Section 4.7 we consider the more challenging näıve setting in which step (3) is eliminated

altogether, so that the agent learns only the reward that it attained on each trial.

In these repeated game settings, a learning algorithm for an agent provides an action distribution

for the agent to play based upon the agent’s behavior and observations during past trials. The

concept of a history represents the accumulated behavior and observations of an agent. In our

formulation of the informed setting, the information available to agent i corresponding to a single

trial is an element of Ii = ∆(Ai)×Ai×{Ai 7→ R}. The information at trial t would be
(
q
(t)
i , a

(t)
i , r

(t)
i

)
:

agent i’s action distribution, action, and marginal reward function. The set of histories for agent i,

denoted Hi is then the set of all finite sequences of elements of Ii, along with a special null history,

h0, which corresponds to nothing having happened yet. Formally, Hi =
⋃
t≥0 Iti , where I0

i = {h0}.
We can now formally define a learning algorithm for the informed repeated game setting:

Definition 2.10 Given a game and a player i for that game, a learning algorithm for player i for

the informed repeated game is a mapping L : Hi → ∆(Ai).

2.4 Regret

The fundamental notion for both the design and analysis of our learning algorithms is regret. Es-

sentially, an agent calculates its regret by comparing the rewards it obtained over the course of the
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trials it has played to the rewards it would have obtained had it altered its own behavior during

those trials in a particular way. These alterations are specified by action transformations. Given

a repeated game, an agent i, and an action transformation for that agent, φ ∈ ΦSWAP(Ai), the

instantaneous φ regret on trial t is

ρ
(t)
i,φ = ri

(
φ
(
a
(t)
i

)
, a

(t)
¬i

)
− ri

(
a(t)
)
, (2.24)

or, in terms of the marginal reward function:

ρ
(t)
i,φ = r

(t)
i

(
φ
(
a
(t)
i

))
− r

(t)
i

(
a
(t)
i

)
. (2.25)

The cumulative φ regret after trial T is simply the sum
∑T
t=1 ρ

(t)
i,φ, and the average φ regret after

trial T is

ρ̄Ti,φ =
1
T

T∑
t=1

ρ
(t)
i,φ (2.26)

Given a set of transformations Φ ⊆ ΦSWAP(Ai), the instantaneous Φ regret is the vector

ρ
(t)
i,Φ =

〈
ρ
(t)
i,φ

〉
φ∈Φ

(2.27)

and the cumulative and average Φ regret vectors are analogously defined.

Each ρ(t)
i,Φ is an element of the regret-vector space RΦ, which is formally a mapping from Φ to R.

In the case of finite Φ, RΦ is equivalent to the Euclidean space R|Φ|. Regardless of the cardinality

of Φ, we write elements of the regret-vector space as vectors indexed by elements of Φ.

The three most commonly studied forms of regret are external, internal, and swap. The notion

of external regret is attributed to Hannan [1957]. Indeed, the no-external-regret property is often

called “Hannan consistency,” although it is also sometimes called “universal consistency” [Fudenberg

and Levine, 1995]. Foster and Vohra [1999] introduced the notion of internal regret, and Blum and

Mansour [2005] introduced the terminology “swap regret.”

The frameworks of Lehrer [2003], Blum and Mansour [2005], and Fudenberg and Levine [1999],

and our action-transformation framework, can all represent external, internal, and swap regret. The

frameworks of Cesa-Bianchi and Lugosi [2003], Hart and Mas-Colell [2001], and Foster and Vohra

[1999] can represent external and internal regret naturally.

Lehrer’s (2003) framework is very general. In fact, it subsumes the frameworks studied in Cesa-

Bianchi and Lugosi [2003], Herbster and Warmuth [1998], and Fudenberg and Levine [1999], as well

as our action-transformation framework. However, it also does not allow for partially awake experts

as in Blum and Mansour [2005].

2.4.1 No Regret

Intuitively, we want algorithms that minimize their regret. Formally, we define the no-regret property

as a guarantee about an agent’s average φ regret vector when playing an infinitely-repeated game.

Different researchers have given different characterizations of this guarantee. Some (e.g., Green-

wald et al. [2008]) in terms of Blackwell approachability. Others formulate the property in terms
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of almost surely (a.s.) convergence, or equivalently (by the Hoeffding-Azuma lemma) in terms of

an o(t) bound on regret (e.g., Foster and Vohra [1999]). Blackwell no-regret is the stronger form; it

implies a.s. no-regret. Regardless of the characterization, the idea is the same: the agent’s average

φ regrets are guaranteed to converge to the interval (−∞, 0].

An infinitely-repeated game, along with a learning algorithm for each agent, defines a probability

space over the universe of infinite sequences of joint actions, A∞. Each agent’s instantaneous φ regret

on trial t is then a random variable.

Definition 2.11 Given an infinitely-repeated game
〈
N, 〈Ai〉i∈N , 〈ri〉i∈N

〉
, a player i, and a set

of transformations Φ ⊆ ΦSWAP(Ai), a learning algorithm for player i is almost surely no-Φregret if

regardless of the other agents’ learning algorithms, for all φ ∈ Φ, agent i’s average φ regret converges

to the interval (−∞, 0] almost surely.

The definition of Blackwell no-regret is deferred until Section 4.2.

2.4.2 Distribution Regret

The form of regret that we focus on in this work is sometimes called “action regret,” because it is

calculated with respect to the actions that the agent actually plays, i.e., a(t)
i . However some authors

consider a form of regret sometimes called “distribution regret.” The distribution regret at time t

is calculated with respect to the agent’s mixed strategy q(t)i . It is essentially an expectation at time

t − 1 of the action regret at time t. We use the prefix δ to indicate the distribution version of a

regret quantity. Thus we define the instantaneous distribution regret as

δρ
(t)
i,φ = Et−1

[
ρ
(t)
i,φ

]
(2.28)

= E
[
ρ
(t)
i,φ | a

(t)
i ∼ q

(t)
i

]
, (2.29)

and the average distribution regret, δρ̄(T )
i,φ , accordingly.

2.5 Convergence to Equilibria

In this section, we establish a fundamental relationship between no-regret learning algorithms and

game-theoretic equilibria. We prove that learning algorithms that satisfy no-~Φ-regret converge to

the set of ~Φ-equilibria. We derive as corollaries of this theorem the following two specific results: no-

ΦEXT-regret algorithms (i.e., no-external-regret algorithms) converge to the set of ΦEXT-equilibria,

which correspond to generalized minimax equilibria in zero-sum games; and no-ΦINT-regret algo-

rithms (i.e., no-internal-regret algorithms) converge to the set of ΦINT-equilibria, which correspond

to correlated equilibria in general-sum games. This latter result is well-known Hart and Mas-Colell

[2000]. By Proposition 2.8, we arrive at another known result, namely, in two-player, zero-sum

games, if each player plays using a no-external-regret learning algorithm, then each player’s em-

pirical distribution of joint play converges to his set of minimax strategies Hart and Mas-Colell

[2001].
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In addition to giving sufficient conditions for convergence to the set of ~Φ-equilibria, we also give

necessary conditions. We show that multiagent learning converges to the set of ~Φ-equilibria only if

the time-averaged Φi-regret experienced by each player i converges to the negative orthant.

Given an infinitely-repeated n-player game Γ∞n , a run of the game is a sequence of action vectors

{~aτ}∞τ=1 with each ~aτ ∈ ~A. Given a run {~aτ}∞τ=1 of Γ∞n , the empirical distribution of joint play

through time t, denoted zt, is the element of ∆( ~A) given by:

zt(~b) =
1
t

t∑
τ=1

1~aτ=~b (2.30)

where 1x=y denotes the indicator function, which equals 1 whenever x = y, and 0 otherwise.

The results in this section rely on a technical lemma, the statement and proof of which appear in

Appendix A. We apply this lemma via the following corollary, which relates the empirical distribution

of joint play at equilibrium to the players’ rewards at equilibrium.

Corollary 2.12 Given an n-player game Γn and a vector of sets of action transformations ~Φ =

(Φi)1≤i≤n such that Φi ⊆ ΦALL(Ai) for 1 ≤ i ≤ n. If Z is the set of ~Φ-equilibria of Γn, then

d (zt, Z) → 0 as t → ∞ if and only if Ea∼zt
[
ρφ(a)

]
→ R− as t → ∞, for all players i and for all

action transformations φi ∈ Φi.

Proof For all players i and action transformations φi ∈ Φi, let fφii (q) = Ea∼q
[
ρφ(a)

]
and Zφii =

{q ∈ ∆(A1 × . . . × An) | fφii (q) ≤ 0}, for all q ∈ ∆(A1 × . . . × An). The set of ~Φ-equilibria is thus

Z = ∩1≤i≤n ∩φi∈Φi Z
φi
i . For each i and φi, apply Lemma A.1 to fφii and Zφii so that d(zt, Z

φi
i ) → 0

as t→∞ if and only if Ea∼zt
[
ρφ(a)

]
→ R− as t→∞.

In words, Corollary 2.12 states that the empirical distribution of joint play converges to the set

of ~Φ-equilibria if and only if the rewards each player i obtains exceed the rewards player i could have

expected to obtain by playing according to any of the action transformations φi ∈ Φi of component

i of the empirical distribution of joint play.

Theorem 2.13 Given an n-player game Γn and a vector of sets of action transformations ~Φ =

(Φi)1≤i≤n such that Φi ⊆ ΦALL(Ai) is finite for 1 ≤ i ≤ n. As t → ∞, the average Φi-regret

experienced by each player i through time t converges to the negative orthant if and only if the

empirical distribution of joint play converges to the set of ~Φ-equilibria of Γn.

Proof By Corollary 2.12, it suffices to show that, as t → ∞, the average Φi-regret through time t

experienced by each player i converges to the negative orthant if and only if for all players i and for

all φi ∈ Φi, Ea∼zt
[
ρφ(a)

]
→ R− as t→∞. But for arbitrary player i and for arbitrary φi ∈ Φi,

Ea∼zt
[
ρφ(a)

]
=

1
t

t∑
τ=1

ρφ(aτ ) (2.31)

From this equivalence, the conclusion follows immediately.
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By Theorem 2.13, if the time-averaged Φi-regret experienced by each player i converges to the

negative orthant with probability 1, then empirical distribution of joint play converges to the set

of ~Φ-equilibria with probability 1. But if each player i plays according to a no-Φi-regret learning

algorithm, then the time-averaged Φi-regret experienced by each player i converges to the negative

orthant with probability 1, regardless of the opposing algorithm:: i.e., on any run of the game. From

this discussion, we draw the following general conclusion:

Theorem 2.14 Given an n-player game Γn and a vector of sets of action transformations ~Φ =

(Φi)1≤i≤n such that Φi ⊆ ΦALL(Ai) is finite for 1 ≤ i ≤ n. If all players i play no-Φi-regret learning

algorithms, then the empirical distribution of joint play converges to the set of ~Φ-equilibria of Γn
with probability 1.

Thus, we see that if all players abide by no-internal-regret algorithms, then the distribution of

play converges to the set of correlated equilibria. Moreover, in two-player, zero-sum games if all

players abide by no-external-regret algorithms, then the distribution of play converges to the set

of generalized minimax equilibria, that is, the set of minimax-valued joint distributions. Again,

by Proposition 2.8, this latter result implies that each player’s empirical distribution of joint play

converges to his set of minimax strategies, under the stated assumptions.



Chapter 3

Vector Games

In this chapter we set aside our definition of a real-valued game (Definition 2.1), and develop a

theory of vector games. The framework we develop will ultimately serve the purpose of allowing us

to analyze the regret properties of repeated real-valued games.

In a vector game (also called a vector-valued game), we are only concerned with two players,

called the protagonist and the opponent. Both players select actions, but only the protagonist

obtains rewards, which are now vectors rather than real numbers. Formally:

Definition 3.1 A vector game is a tuple 〈A,A′, V, ρ〉, where

• A is the set of actions available to the protagonist,

• A′ is the set of actions available to the opponent,

• V is a real Hilbert space, and

• ρ : A×A′ → V is the protagonist’s reward function.

A real Hilbert space is a vector space over R with an inner product, denoted 〈·, ·〉; the space

must be complete with respect to the norm ‖x‖ =
√
〈x, x〉. The most accessible examples of a real

Hilbert space, and the ones that we will predominantly work with, are the Euclidean spaces Rd. In

these cases, we will refer to the vector game as a Euclidean game.

As in the case of real-valued games, we assume that we have σ-algebras for A and A′ so that we

can define probability distributions (elements of ∆(A) and ∆(A′)) over them.

We say the game is a bounded vector game if the rewards attainable by the protagonist have

bounded norm.

We consider the repeated play of a vector game just as we did with real-valued games in Chapter

2, and we similarly define the notions of a history and of a learning algorithm. In the repeated

version of a vector game 〈A,A′, V, ρ〉, each trial t has the following steps:

(1) The protagonist selects an action distribution qt ∈ ∆(A) from which action a(t) is sampled

15
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(2) The opponent selects an action distribution q′t ∈ ∆(A′) from which action a′(t) is sampled

(3) Both agents observe the joint action (at, a′t)

(4) The protagonist receives reward ρ (at, a′t) ∈ V

The set of histories, denoted H, is the set of finite (possibly zero)-length sequences of pairs (a, a′) ∈
A×A′. A learning algorithm L for the protagonist is a function H → ∆(A), and a learning algorithm

for the opponent is a function H → ∆(A′), each of which indicates the action distribution that the

agent is to play on the next trial.

Following Blackwell, we define approachability, a notion of convergence for vector games. First,

define the average reward vector at time T :

ρ̄T =
1
T

T∑
t=1

ρ(at, a′t) (3.1)

3.1 Approachability

Definition 3.2 (Approachability) Given an infinitely-repeated vector game 〈A,A′, V, ρ〉, a set

U ⊆ V , and a learning algorithm L for the protagonist, the set U is said to be approachable by L,

if for all ε > 0, there exists t0 such that for any opposing learning algorithm L′,

P [∃t ≥ t0 s.t. d (U, ρ̄T ) ≥ ε] < ε (3.2)

where the distance function d is defined by V ’s inner product in the standard manner.1

Note that the definition of approachability requires equation (3.2) hold for all opposing learning

algorithms. This stands in contrast to other characterizations (e.g., Greenwald and Jafari [2003],

Blum and Mansour [2005]) which use the phrase for all sequences of opposing actions. The former

characterizes for adaptive adversaries, while the latter only accounts for oblivious adversaries.

For example, consider the two-player zero-sum game rock-paper-scissors as a vector game with

rewards in R. The algorithm which always plays mixed strategy
〈

1
3 ,

1
3 ,

1
3

〉
approaches the set in which

it does at least as well as the minimax value of the game, 0, for all opposing learning algorithms.

However, consider the alternating algorithm which plays mixed strategy
〈

1
3 ,

1
3 ,

1
3

〉
on odd-numbered

rounds, and on even rounds t plays the same action as it played in round t− 1. This algorithm will

still approach 0 for all sequences of opposing actions, but is easily taken advantage of by an adaptive

adversary.

3.1.1 Blackwell Bounds

We introduce three bounding concepts which we will employ in deriving approachability and bound-

ing results for protagonist learning algorithms: expectation Blackwell bounds, almost-surely Blackwell

1d(x, y) = ‖x − y‖ =
√

〈x − y, x − y〉
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bounds, and absolute Blackwell bounds. An expectation Blackwell bound is a generalization of Black-

well’s [Blackwell, 1956] sufficient condition for approachability where the set being approached is

the negative orthant. An almost-surely Blackwell bound is a stronger version of an expectation

Blackwell bound—it holds with probability one, rather than in expectation. An absolute Blackwell

bound is a stronger version of an almost-surely Blackwell bound—it bounds the absolute value of

the quantity.

Definition 3.3 Let 〈A,A′, V, ρ〉 be a vector game. Let L be a protagonist learning algorithm for the

repeated game. Let g be a function, g : V → V . If there exists a function c : N → R such that for

any T , for any sequence {at, a′t}T−1
t=1 ∈ (A×A′)T−1, and for any a′ ∈ A′,

E

[〈
g

(
T−1∑
t=1

ρ(at, a′t)

)
, ρ(a, a′)

〉]
≤ c(T ) (3.3)

where the expectation is taken over the random variable a, which is distributed according to L
(
{at, a′t}T−1

t=1

)
,

then c is said to be an expectation Blackwell bound for L and g in the game.

Definition 3.4 Let 〈A,A′, V, ρ〉 be a vector game. Let L be a protagonist learning algorithm for the

repeated game. Let g be a function, g : V → V . If there exists a function c : N → R such that for

any T , for any sequence {at, a′t}T−1
t=1 ∈ (A×A′)T−1, and for any a′ ∈ A′,〈
g

(
T−1∑
t=1

ρ(at, a′t)

)
, ρ(a, a′)

〉
≤ c(T ) (3.4)

almost surely, then c is said to be an almost-surely Blackwell bound for L and g in the game.

Definition 3.5 Let 〈A,A′, V, ρ〉 be a vector game. Let g be a function, g : V → V . If there exists a

function C : N → R such that for any T , for any sequence {at, a′t}Tt=1 ∈ (A×A′)T ,∣∣∣∣∣
〈
g

(
T−1∑
t=1

ρ(at, a′t)

)
, ρ(aT , a′T )

〉∣∣∣∣∣ ≤ C(t) (3.5)

almost surely, then C is said to be an absolute Blackwell bound for g in the game.

3.2 Gordon Triples

Greenwald et al. [2006] introduced the concept of the Gordon triple and presented three specific

Gordon triples.

Definition 3.6 (Gordon Triple) Let V be an inner product space over R. A triple of functions

〈G, g, γ〉, where G : V → R, g : V → V , and γ : V → R, is a Gordon triple over V if

G(x+ y) ≤ G(x) + 〈g(x), y〉+ γ(y) (3.6)

for all x, y ∈ V .
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The function G can be thought of as a potential function, and the function g is often called a link

function. If V = Rd, G is smooth, and g is equal to the gradient of G, then γ(y) is a bound on the

higher order terms of the Taylor expansion of G(x+ y).

We now present three useful classes of Gordon triples over Rd: the “large polynomial” triples,

the “small polynomial” triples, and the exponential triples.

A large polynomial triple 〈G, g, γ〉 is parameterized by a real number p > 2 and defined by

G(x) = ‖x+‖2p (3.7)

gi(x) =

 0 if xi ≤ 0
2xp−1
i

‖x+‖p−2
p

otherwise
(3.8)

γ(x) = (p− 1)‖x‖2p (3.9)

A small polynomial triple 〈G, g, γ〉 is parameterized by a real number p ∈ [1, 2] and defined by

G(x) = ‖x+‖pp, gi(x) = p(x+
i )p−1, and γ(x) = ‖x‖pp.

An exponential triple 〈G, g, γ〉 is parameterized by a real number η > 0 and defined by G(x) =
1
η ln (

∑
i e
ηxi), gi(x) = eηxi∑

j
eηxj

, and γ(x) = η
2‖x‖

2
∞.

Proposition 3.7 A large polynomial triple (p > 2) is a Gordon triple.

Proposition 3.8 A small polynomial triple (p ∈ [1, 2]) is a Gordon triple.

Proposition 3.9 An exponential triple is a Gordon triple.

The proofs that these triples are Gordon triples appear in Appendix B.

3.3 Approachability Results

The following mathematical results allow the derivation of specific approachability results for re-

peated Euclidean games.

Proposition 3.10 Let V be an inner product space over R. Let x1, x2, . . . be a sequence of random

vectors taking values in V . Define a sequence of random vectors Xt ≡
∑t
τ=1 xt for t ≥ 0. Let

〈G, g, γ〉 be a Gordon triple over V . Further, let there be a constant k ∈ R and functions c : N → R
and C : N → R such that for all t ≥ 1

γ(xt) ≤ k a.s. (3.10)

E[〈g(Xt−1), xt〉] ≤ c(t) (3.11)

| 〈g(Xt−1), xt〉 | ≤ C(t) a.s.. (3.12)

Then

P
[
G(Xt) ≥ G(~0) + (c(t) + k)t+ 2εt(C(t) + |c(t)|+ k)

]
≤ e−ε

2t (3.13)

for any ε > 0.
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Proof Let Mt = G(Xt)− (c(t) + k)t−G(~0) for t ≥ 0. We first show that Mt is a supermartingale.

For t ≥ 1,

Et−1[Mt] ≤ Et−1[G(Xt−1) + 〈xt, g(Xt−1)〉+ k]− (c(t) + k)t−G(~0) (3.14)

≤ G(Xt−1) + c(t) + k − (c(t) + k)t−G(~0) (3.15)

= Mt−1 (3.16)

We now show that |Mt −Mt−1| ≤ C(t) + |c(t)|+ k.

• Mt −Mt−1 ≥ 0.

|Mt −Mt−1| = G(Xt)−G(Xt−1)− (c+ k) (3.17)

≤ 〈xt, g(Xt−1)〉+ k − (c(t) + k) (3.18)

≤ C(t)− c(t) (3.19)

• Mt −Mt−1 < 0.

|Mt −Mt−1| = G(Xt−1)−G(Xt) + (c(t) + k) (3.20)

≤ − · xtg(Xt−1) + (c(t) + k) (3.21)

≤ C(t) + c(t) + k (3.22)

Apply Lemma A.4 with f(t) = C(t) + |c(t)|+ k, noting that M0 = 0 a.s., to obtain the result.

Theorem 3.11 Let 〈A,A′, V, ρ〉 be a vector game. Let 〈G, g, γ〉 be a Gordon triple over V . Let L

be a protagonist learning algorithm for the repeated vector game. If γ is bounded on ρ(A,A′), C is

an absolute Blackwell bound for g, and c is an expectation Blackwell bound for L and g, then

P

[
G

(
T∑
t=1

ρ (at, a′t)

)
≥ G(~0) + (c(t) + k)t+ 2εt(C(t) + |c(t)|+ k)

]
≤ e−ε

2t (3.23)

for any ε > 0, where k is an upper bound on γ(ρ(A,A′)).

Proof Apply Proposition 3.10 with xt = ρ(at, a′t)

Lemma 3.12 (Convergence Lemma) Given a function f : R → R that maps the positive reals

onto the positive reals and a stochastic process (Xt : t ≥ 0), if for all ε > 0, there exists T such that

for all t ≥ T , P [Xt ≥ f(ε)] ≤ e−εt, then for all δ > 0, there exists t0 such that P [∃t ≥ t0 s.t. Xt ≥
δ] < δ.

Proof Given an arbitrary δ > 0, choose ε ∈ f−1(δ). By assumption, there exists T such that for all

t > T , P [Xt ≥ δ] ≤ e−εt. Now, for all t′ ≥ T ,

P [∃t ≥ t′ s.t. Xt ≥ δ] = P

⋃
t≥t′

(Xt ≥ δ)

 (3.24)
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≤
∑
t≥t′

P [Xt ≥ δ] (3.25)

≤
∑
t≥t′

e−εt (3.26)

=
e−εt

′

1− e−ε
(3.27)

Hence, for sufficiently large t0, P [∃t ≥ t0 s.t. Xt ≥ δ] < δ.

We can now derive approachability results. We do so first for large-polynomial link functions,

then for small-polynomial link functions, and finally for exponential link functions.

Theorem 3.13 For p > 2, define g : Rd → Rd+ to be

gi(x) =

 0 if xi ≤ 0
2xp−1
i

‖x+‖p−2
p

otherwise
(3.28)

Given a bounded Euclidean game
〈
A,A′,Rd, ρ

〉
, let L be a protagonist learning algorithm such that

c is an expectation Blackwell bound for L and g. such that limt→∞
c(t)
t = 0. Then the set Rd− is

approachable by L.

Proof Let ρt denote ρ(at, a′t), let Rt denote
∑t
τ=1 ρτ , and let ρ̄t denote Rt

t .

The game is bounded, so we can choose b ∈ R such that for all a ∈ A and a′ ∈ A′, ‖ρ(a, a′)‖∞ ≤ b.

If ‖Rt−1‖∞ ≤ 0, then |g(Rt−1) · ρt| = 0. Otherwise,

|g(Rt−1) · ρ| =
2

‖R+
t−1‖

p−2
p

∣∣∣∣∣∑
i

((Rt−1)+i )p−1ρi

∣∣∣∣∣ (3.29)

≤ 2
‖R+

t−1‖
p−2
p

b
∑
i

((Rt−1)+i )p−1 (3.30)

= 2b
‖R+

t−1‖
p−1
p−1

‖R+
t−1‖

p−2
p

(3.31)

≤ 2b
‖R+

t−1‖p−1
p ((2b)d)

1
p(p−1)

‖R+
t−1‖

p−2
p

(3.32)

= (2b)
(

d
p(p−1)+1

)
‖R+

t−1‖p (3.33)

= (2b)
(

d
p(p−1)+1

) (∑
i

(
(Rt−1)+i

)p) 1
p

(3.34)

≤ (2b)
(

d
p(p−1)+1

)
(d(b(t− 1))p)

1
p (3.35)

= (2b)
(

d
p(p−1)+1

)
p
√
db(t− 1) (3.36)

< (2b)(d+2)dt (3.37)

Line (3.32) follows from the theory of LP spaces (see Proposition 6.12 in Folland [1999], for example).
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Now apply Theorem 3.11 with the large polynomial Gordon triple and C(t) = (2b)(d+2)dt, yield-

ing

P
[
‖R+

t ‖2p ≥ (c(t) + k)t+ 2εt(C(t) + |c(t)|+ k)
]
≤ e−ε

2t (3.38)

for some k. Observe that d
(
ρ̄t,Rd−

)
= d

(
Rt
t ,R

d
−
)

= ‖R+
t ‖2
t . Thus,

P

[
d
(
ρ̄t,Rd−

)
≥
√

1
t
(c(t) + k) + 2ε(C(t) + |c(t)|+ k)

]
≤ e−ε

2t (3.39)

P

[
d
(
ρ̄t,Rd−

)
≥
√
c(t)
t

+
k

t
+

2ε(|c(t)|+ k)
t

+
2εC(t)
t

]
≤ e−ε

2t (3.40)

Given an ε, for large enough t,

P

[
d
(
ρ̄t,Rd−

)
≥
√

3εC(t)
t

]
≤ e−ε

2t (3.41)

P

[
d
(
ρ̄t,Rd−

)
≥
√

3ε(2b)(d+2)d

]
≤ e−ε

2t (3.42)

And now apply the Convergence Lemma with f(x) = 4
√
x
√

3(2b)(d+2)d.

Theorem 3.14 For p ∈ [1, 2], let gi(x) = p(x+
i )p−1. Given a bounded Euclidean game

〈
A,A′,Rd, ρ

〉
,

let L be a protagonist learning algorithm such that c is an expectation Blackwell bound for L and g

such that limt→∞
c(t)
t = 0. Then the set Rd− is approachable by L.

Proof Let ρt denote ρ(at, a′t), let Rt denote
∑t
τ=1 ρτ , and let ρ̄t denote Rt

t .

The game is bounded, so we can choose b ∈ R such that for all a ∈ A and a′ ∈ A′, ‖ρ(a, a′)‖∞ ≤ b.

|g(Rt−1) · ρ| = p
∑
i

((Rt−1)+i )(p−1)(ρt)i (3.43)

≤ pb
∑
i

((Rt−1)+i )(p−1) (3.44)

≤ pbd(b(T − 1))(p−1) (3.45)

≤ pd(bT )p (3.46)

Now apply Theorem 3.11 with the small polynomial Gordon triple and C(t) = pd(bT )p, yielding

P

[∥∥∥∥1
t
R+
t

∥∥∥∥p
p

≥ 1
t(p−1)

((c(t) + k) + 2ε(C(t) + |c(t)|+ k))

]
≤ e−ε

2t (3.47)

for some k. Observe that d
(
ρ̄t,Rd−

)
= ‖R+

t ‖2
t ≤

√
d‖ 1

tR
+
t ‖∞ ≤

√
d‖ 1

tR
+
t ‖p, so

P

[
d
(
ρ̄t,Rd−

)
≥
√
d
p

√
1

t(p−1)
((c(t) + k) + 2ε(C(t) + |c(t)|+ k))

]
≤ e−ε

2t (3.48)

Given an ε, for large enough t,

P
[
d
(
ρ̄t,Rd−

)
≥
√
d p
√

3εpbd)
]
≤ e−ε

2t (3.49)

And now apply the Convergence Lemma with f(x) =
√
d p
√

3
√
xpbd).
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Theorem 3.15 Let g be the exponential function

gi(x) =
eηxi∑
j e
ηxj

(3.50)

Given a bounded Euclidean game
〈
A,A′,Rd, ρ

〉
, let L be a protagonist learning algorithm. If c

is an expectation Blackwell bound for L and g such that for some t0, |c(t)| ≤ q ∀t > t0, then

the set {x ∈ Rd | xi ≤ η
2 b

2 + q ∀i} is approachable by L, where b is an upper bound such that

∀a, a′, ‖ρ(a, a′)‖∞ ≤ b.

Proof Let ρt denote ρ(at, a′t), let Rt denote
∑t
τ=1 ρτ , and let ρ̄t denote Rt

t .

Observe that η
2‖ρt‖

2
∞ ≤ η

2 b
2 almost surely for any t.

|g(Rt−1) · ρt| =
1∑
i e
ηRi

∑
i

eηRiρi (3.51)

≤ 1∑
i e
ηRi

b
∑
i

eηRi (3.52)

= b (3.53)

Now apply Theorem 3.11 with the Gordon triple from Lemma 3.9, C(t) = b, and k = η
2 b

2,

yielding

P

[
1
η

ln

(∑
i

e(Rt)i

)
≥ G(~0) + (c(t) +

η

2
b2)t+ 2εt

(
b+ |c(t)|+ η

2
b2
)]

≤ e−ε
2t (3.54)

Equivalently,

P

[
1
ηt

ln

(∑
i

e(Rt)i

)
− η

2
b2 − c(t) ≥ 1

ηt
ln d+ 2ε

(
b+ |c(t)|+ η

2
b2
)]

≤ e−ε
2t (3.55)

Which implies

P

[
max
i

1
t
(Rt)i −

η

2
b2 − q ≥ 1

ηt
ln d+ 2ε

(
b+ q +

η

2
b2
)]

≤ e−ε
2t (3.56)

For large enough t,

P

[
max
i

1
t
(Rt)i −

η

2
b2 − q ≥ ε+ 2ε

(
b+ q +

η

2
b2
)]

≤ e−ε
2t (3.57)

Applying the Convergence Lemma, we get that for all δ, there exists T such that

P

[
∃t ≥ T s.t. max

i

1
t
(Rt)i ≥ δ

]
< δ. (3.58)

The result follows.
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3.4 Bounding Results

3.4.1 Expectation Bounding Results

Our bounding theorem is a corollary of a modified version of Gordon’s Gradient Descent Theorem

(Gordon [2005]), which bounds the growth rate of any real-valued function on Rn.

Theorem 3.16 Let 〈G, g, γ〉 be a Gordon triple. Let X0 ∈ Rn, let x1, x2, . . . be a sequence of random

vectors over Rn, and define Xt = Xt−1 + xt for all times t ≥ 1.

If there is a function D : N → R such that for all t ≥ 1,

g(Xt−1) · Et−1 [xt] + Et−1 [γ(xt)] ≤ D(t) a.s. (3.59)

then, for all t ≥ 0,

E [G(Xt)] ≤ G(X0) +
t∑

τ=1

D(τ) (3.60)

Proof The proof is by induction on t. At time t = 0, E [G(Xt)] = G(X0) and
∑t
τ=1D(τ) = 0.

At time t ≥ 1, since Xt = Xt−1 + xt and 〈G, g, γ〉 is a Gordon triple,

G(Xt) = G(Xt−1 + xt) (3.61)

≤ G(Xt−1) + g(Xt−1) · xt + γ(xt) (3.62)

By Assumption 3.59, taking conditional expectations w.r.t. Xt−1 yields

Et−1 [G(Xt)] ≤ G(Xt−1) + g(Xt−1) · Et−1 [xt] + Et−1 [γ(xt)] (3.63)

≤ G(Xt−1) +D(t) a.s. (3.64)

Taking expectations and applying the law of iterated expectations yields

E [G(Xt)] = E [Et−1 [G(Xt)]] (3.65)

≤ E [G(Xt−1)] +D(t) (3.66)

Therefore, by the induction hypothesis,

E [G(Xt)] ≤ E [G(Xt−1)] +D(t) (3.67)

≤ G(X0) +
t−1∑
τ=1

D(τ) +D(t) (3.68)

= G(X0) +
t∑

τ=1

D(τ) (3.69)

Applying Theorem 3.16 to the cumulative reward vector of a real-vector games gives the following

result:
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Theorem 3.17 Let 〈G, g, γ〉 be a Gordon triple. Let
〈
A,A′,Rd, ρ

〉
be a real-vector game. Let L be

a learning algorithm for the repeated game. Let c be an expectation Blackwell bound for L and g.

Then playing according to L guarantees that for all T ,

E

[
G

(
T∑
t=1

ρ(at, a′t)

)]
≤ G(0) + T sup

a,a′
γ (ρ(a, a′)) +

T∑
t=1

c(t) (3.70)

at all times t ≥ 0 provided the supremum in question exists.

Proof Apply Theorem 3.16 with xt = ρ(at, a′t).

Theorem 3.18 For d ∈ N and p > 2, let f : Rd → Rd+ be

fi(x) =

 0 if xi ≤ 0
2xp−1
i

‖x+‖p−2
p

otherwise
(3.71)

Let
〈
A,A′,Rd, ρ

〉
be a bounded real-vector game. Let L be a learning algorithm for the repeated game.

Let c(t) = 0 be an expectation Blackwell bound for L and f . Then playing according to L guarantees

that for all T ,

E

[
1
T

max
i

T∑
t=1

ρi(at, a′t)

]
≤
√

1
T

(p− 1) sup
a,a′

‖ρ(a, a′)‖p (3.72)

at all times T ≥ 0.

Proof Let RT denote
∑T
t=1 ρ(at, a

′
t). Let G(x) = ‖x+‖2p.

E

[
1
T

max
i

T∑
t=1

ρi(at, a′t)

]2

≤ (E [‖RT ‖∞])2 (3.73)

≤ E
[∥∥∥(RT )+

∥∥∥2

p

]
(3.74)

= E [G (RT )] (3.75)

≤ G(0) + T sup
a,a′

γ (ρ(a, a′)) (3.76)

= T (p− 1)
(

sup
a,a′

‖ρ(a, a′)‖2p
)

(3.77)

The second inequality follows from Lemma A.2, with x = RΦ
t , q = 2, and p > 2. The third inequality

is an application of Corollary 3.17.

Theorem 3.19 For d ∈ N and p ∈ [1, 2], define f : Rd → Rd+ to be fi(x) = (x+
i )p−1. Let 〈G, g, γ〉

be the small polynomial (1 ≤ p ≤ 2) Gordon triple. Let 〈A,A′, V, ρ〉 be a bounded vector-valued game

with V ⊂ Rd. Let L be a learning algorithm for the repeated game. Let c(t) = 0 be an expectation

Blackwell bound for L and g. Then playing according to L guarantees that for all T ,

E

[
1
T

max
i

T∑
t=1

ρi(at, a′t)

]
≤ T ( 1

p−1) sup
a,a′

‖ρ(a, a′)‖p (3.78)

at all times t ≥ 0.
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Proof Let RT denote
∑T
t=1 ρ(at, a

′
t). Let G(x) = ‖x+‖pp.

E

[
1
T

max
i

T∑
t=1

ρi(at, a′t)

]p
≤ (E [‖RT ‖∞])p (3.79)

≤ E
[∥∥∥(RT )+

∥∥∥p
p

]
(3.80)

= E [G (RT )] (3.81)

≤ G(0) + T sup
a,a′

γ (ρ(a, a′)) (3.82)

≤ T sup
a,a′

‖ρ(a, a′)‖pp (3.83)

The second inequality follows from Lemma A.2, with x = RΦ
t , q = p, and 1 ≤ p ≤ 2. The third

inequality is an application of Corollary 3.17.

Theorem 3.20 Let 〈G, g, γ〉 be the exponential Gordon triple with parameter η. Let 〈A,A′, V, ρ〉 be

a bounded vector-valued game with V ⊂ Rd. Let L be a learning algorithm for the repeated game.

Let c(t) = 0 be an expectation Blackwell bound for L and g. Then playing according to L guarantees

that for all T ,

E

[
1
T

max
i

T∑
t=1

ρi(at, a′t)

]
≤ ln d

ηT
+
η

2
sup
a,a′

‖ρ(a, a′)‖2∞ (3.84)

at all times T ≥ 0.

Proof Let RT denote
∑T
t=1 ρ(at, a

′
t).

E
[
ηmax

i
(RT )i

]
≤ E

[
ln
∑
i

eη(RT )i

]
(3.85)

= ηE [G (RT )] (3.86)

≤ η

(
G(0) + T sup

a,a′
γ (ρ(a, a′))

)
(3.87)

= η

(
1
η

ln d+
ηT

2
sup
a,a′

‖ρ(a, a′)‖2∞
)

(3.88)

= ln d+
η2T

2
sup
a,a′

‖ρ(a, a′)‖2∞ (3.89)

The first inequality follows from the following observation: for all x ∈ Rn,

max
i

xi = max
i

ln exi = ln max
i

exi ≤ ln
∑
i

exi (3.90)

The second inequality is an application of Corollary 3.17.

3.4.2 Almost-Surely Bounding Results

We also present a bounding theorem for the case when inequality (3.59) holds without the expecta-

tions. This is essentially a simplified version of Theorem 3.16.
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Theorem 3.21 Let 〈G, g, γ〉 be a Gordon triple. Let X0 ∈ Rn, let x1, x2, . . . be a sequence of random

vectors over Rn, and define Xt = Xt−1 + xt for all times t ≥ 1.

If there is a function D : N → R such that for all t ≥ 1,

g(Xt−1) · xt + γ(xt) ≤ D(t) a.s. (3.91)

then, for all t ≥ 0,

G(Xt) ≤ G(X0) +
t∑

τ=1

D(τ) (3.92)

Proof The proof is by induction on t. For t = 0, the result is immediate. For t ≥ 1,

G(Xt) = G(Xt−1 + xt) (3.93)

≤ G(Xt−1) + g(Xt−1) · xt + γ(xt) (3.94)

≤ G(Xt−1) +D(t) (3.95)

≤ G(X0) +
t−1∑
τ=1

D(τ) +D(t) (3.96)

= G(X0) +
t∑

τ=1

D(τ) (3.97)

with all inequalities holding almost surely.

Applying this result to real-vector games yields:

Theorem 3.22 Let 〈G, g, γ〉 be a Gordon triple. Let
〈
A,A′,Rd, ρ

〉
be a real-vector game. Let L be

a learning algorithm for the repeated game. Let c be an almost-surely Blackwell bound for L and g.

Then playing according to L guarantees that for all T ,

G

(
T∑
t=1

ρ(at, a′t)

)
≤ G(0) + T sup

a,a′
γ (ρ(a, a′)) +

T∑
t=1

c(t) (3.98)

almost surely, at all times t ≥ 0 provided the supremum in question exists.

Proof Apply Theorem 3.21 with xt = ρ(at, a′t).

We can now obtain analogues of Theorems 3.18, 3.19, and 3.20. (The proofs are identical except

for the absence of expectations.)

Theorem 3.23 For d ∈ N and p > 2, let f : Rd → Rd+ be

fi(x) =

 0 if xi ≤ 0
2xp−1
i

‖x+‖p−2
p

otherwise
(3.99)

Let
〈
A,A′,Rd, ρ

〉
be a bounded real-vector game. Let L be a learning algorithm for the repeated

game. Let c(t) = 0 be an almost-surely Blackwell bound for L and f . Then playing according to L

guarantees that for all T ,

1
T

max
i

T∑
t=1

ρi(at, a′t) ≤
√

1
T

(p− 1) sup
a,a′

‖ρ(a, a′)‖p (3.100)
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at all times T ≥ 0.

Theorem 3.24 For d ∈ N and p ∈ [1, 2], define f : Rd → Rd+ to be fi(x) = (x+
i )p−1. Let 〈G, g, γ〉

be the small polynomial (1 ≤ p ≤ 2) Gordon triple. Let 〈A,A′, V, ρ〉 be a bounded vector-valued game

with V ⊂ Rd. Let L be a learning algorithm for the repeated game. Let c(t) = 0 be an almost-surely

Blackwell bound for L and g. Then playing according to L guarantees that for all T ,

1
T

max
i

T∑
t=1

ρi(at, a′t) ≤ T ( 1
p−1) sup

a,a′
‖ρ(a, a′)‖p (3.101)

at all times t ≥ 0.

Theorem 3.25 Let 〈G, g, γ〉 be the exponential Gordon triple with parameter η. Let 〈A,A′, V, ρ〉 be

a bounded vector-valued game with V ⊂ Rd. Let L be a learning algorithm for the repeated game. Let

c(t) = 0 be an almost-surely Blackwell bound for L and g. Then playing according to L guarantees

that for all T ,
1
T

max
i

T∑
t=1

ρi(at, a′t) ≤
ln d
ηT

+
η

2
sup
a,a′

‖ρ(a, a′)‖2∞ (3.102)

at all times T ≥ 0.

Finally, we show how to obtain a convergence result from an almost-surely bounding result.

Theorem 3.26 Let 〈A,A′, V, ρ〉 be a bounded vector-valued game with V ⊂ Rd. Let L be a learning

algorithm for the repeated game. If there exists a convergent bounding function B : N → R such that

for any sequence of opponent actions and for any t,

max
i

1
t

t∑
τ=1

Eτ−1 [ρi(at, a′t)] ≤ B(t) a.s. (3.103)

and limt→∞B(t) = b then the set Sb = {x ∈ Rn | ∀i xi ≤ b} is approachable by A.

Proof It is sufficient to show that the set is approachable in each individual dimension. Choose an

arbitrary dimension i and let rτ denote ρi(aτ , a′τ ). Let Rt denote
∑t
τ=1 rτ .

The proof uses Lemma A.7 from Cesa-Bianchi and Lugosi [2006]. Define Vt = rt − Et−1 [rt] so

that V1, V2, . . . is a martingale difference sequence. The game is bounded, so WLOG rt ∈ [0, 1] and

Vt ∈ [−1, 1]. Applying the lemma, we get that for any t and any δ > 0

P

{
1
t

t∑
τ=1

Vτ >
√

2δ

}
≤ e−δt (3.104)

or equivalently

P

{
1
t
Rt >

1
t

t∑
τ=1

Eτ−1 [(ρτ )i] +
√

2δ

}
≤ e−δt (3.105)

Given an ε > 0, choose t0 s.t. for t ≥ t0, B(t) < b+ ε
2 . Thus for t ≥ t0,

P

{
1
t
Rt > b+

ε

2
+
√

2δ
}
≤ e−δt (3.106)
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Setting δ = ε2

8 ,

P

{
1
t
Rt > b+ ε

}
≤ e−δt (3.107)

Finally, for t′ ≥ t0,

P

{
∃t ≥ t0 s.t.

1
t
Rt > b+ ε

}
≤

∑
t≥t′

P

{
1
t
Rt > b+ ε

}
(3.108)

≤
∑
t≥t′

e−δt (3.109)

=
e−δt

′

1− e−δ
(3.110)

which, for large enough t′, is smaller than ε.



Chapter 4

Regret Matching

4.1 Regret Games

In order to analyze the regret properties of algorithms in the repeated game setting (from Section

2.3), we construct a vector game such that the “rewards” obtained in the vector game correspond

to the regret experienced in the repeated game.

Definition 4.1 Given a one-shot game Γ =
〈
N, 〈Ai〉i∈N , 〈ri〉i∈N

〉
, a player i, and a set of action

transformations Φ ⊆ ΦSWAP(Ai), the Φ-regret game for player i is the vector game〈
Ai, A¬i,RΦ, ρΦ

i

〉
(4.1)

where ρΦ
i : Ai ×A¬i → RΦ is defined as

ρΦ
i (ai, a¬i) = 〈ri (φ (ai) , a¬i)− ri(ai, a¬i)〉φ∈Φ (4.2)

For example, let Γ be the game of rock-paper-scissors presented in Section 2.1. The ΦEXT regret

game for player 1 would be
〈
{R,P, S}, {R,P, S},RΦEXT

, ρ
〉

where ρ is given by the matrix in Table

4.1. (The protagonist is the row player; the opponent is the column player. Reward vectors are

written with respect to the basis 〈φEXT
R , φEXT

P , φEXT
S 〉.)

In the case of finite sets Φ we can treat RΦ as the Euclidean space R|Φ|. For infinite sets of

transformations, we must treat regret vectors as functions.1 For this reason, the Blackwell no-regret
1If we were to equip Φ with a σ-algebra and a measure such that RΦ were an L2 space then we would have a
satisfactory Hilbert space.

R P S
R 〈0, 1,−1〉 〈0, 1, 2〉 〈0,−2,−1〉
P 〈−1, 0,−2〉 〈−1, 0, 1〉 〈2, 0, 1〉
S 〈1, 2, 0〉 〈−2,−1, 0〉 〈1,−1, 0〉

Table 4.1: Rock-paper-scissors ΦEXT Regret Game

29
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concept has only been studied in the context of matrix games, where all sets of transformations are

necessarily finite. However, the results we will be using from Chapter 3 are all in terms of Euclidean

games, and so we restrict our attention here to the case of finite Φ.

4.2 Blackwell No-Regret

We can now define Blackwell no-Φ-regret.

Definition 4.2 Given an infinitely-repeated game, a learning algorithm for agent i is Blackwell

no-Φ-regret for a set of transformations Φ ⊆ ΦSWAP(Ai) if in player i’s Φ-regret game, the set{
x ∈ RΦ | xφ ≤ 0 ∀φ

}
(the “negative orthant”) is approachable by the algorithm.

In the case of finite Φ, Blackwell no-regret is the strongest no-regret concept, implying a.s.

no-regret.

We also define the more general property of Blackwell ε-no-regret, which requires only that a

neighborhood of the negative orthant is approachable. For finite Φ, each component of the Φ-regret

vector must approach the interval (∞, ε].

Definition 4.3 Given an infinitely-repeated game, a learning algorithm for agent i is Blackwell

ε-no-Φ-regret for a set of transformations Φ ⊆ ΦSWAP(Ai) if in player i’s Φ-regret game, the set{
x ∈ RΦ | xφ ∈ (∞, ε] ∀φ

}
is approachable by the algorithm.

4.3 Regret-Matching Algorithms

In this section, we define a general class of learning algorithms, called regret-matching algorithms,2

for the repeated game setting. These algorithms are parameterized by a set of action transformations

Φ and a link function f . We also prove the regret-matching theorem, which states that. . .

In the definition of regret-matching algorithms, we will consider action transformations on Ai

as linear transformations on ∆(Ai). The linearization of a transformation φ is denote with square

brackets, [φ], and formally defined as

[φ](q)(s) = q
(
φ−1(s)

)
(4.3)

for s a measurable subset of Ai.

Given a game, we can choose a finite set Φ ⊆ ΦSWAP(Ai) of action transformations and a link

function f : RΦ → RΦ
+. These parameters define the class of (Φ, f)-regret-matching algorithms for

the game.
2We appropriate this terminology from Hart and Mas-Colell [2001], whose regret-matching algorithms based on
ΦEXT and the polynomial link functions are instances of this class.
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Recall the definition of the cumulative regret vector from Section 2.4, which we will now denote

RTi,Φ, or just RT where i and Φ are understood.

RTi,Φ =
T∑
t=1

〈
ρ
(t)
i,φ

〉
φ∈Φ

(4.4)

If RT ∈ RΦ
−, so that each element of the regret vector is non-positive, then the agent does not

regret its past actions. In this case, a (Φ, f)-regret-matching algorithm leaves the agent’s next

play unspecified. But if RT 6∈ RΦ
−, so that the agent “feels” regret in at least one dimension,

we apply the link function f to this quantity, yielding a non-negative vector, call it Y T ∈ RΦ
+.

Normalizing this vector, we compute the linear transformation MT as a convex combination of the

linear transformations [φ] as follows:

MT =

∑
φ∈Φ Y

T−1
φ [φ]∑

φ∈Φ Y
T−1
φ

(4.5)

=

∑
φ∈Φ fφ(R

T−1)[φ]∑
φ∈Φ fφ(RT−1)

(4.6)

A (Φ, f)-regret-matching algorithm uses a fixed point ofMT as its mixed strategy at time T whenever

RTi,Φ 6∈ RΦ
−.

Definition 4.4 (Regret-Matching Algorithm) Given a game
〈
N, 〈Ai〉i∈N , 〈ri〉i∈N

〉
, a player i,

a finite Φ ∈ ΦSWAP, and a link function f : RΦ → RΦ
+, an algorithm for agent i in playing the repeated

game is a (Φ, f)-regret-matching algorithm if the mixed strategy it plays on trial T , q(T )
i , is a

fixed point of MT (defined in Equation 4.5), whenever RTi,Φ 6∈ RΦ
−.

If we take f to be fi(x) = (x+
i )p−1, for p > 1, then we refer to a polynomial Φ-regret-matching

algorithm. If we take f to be fi(x) = eηxi , for η > 0, then we refer to an exponential Φ-regret-

matching algorithm.

We prove an equivalence result for matching algorithms:

Lemma 4.5 Given a game
〈
N, 〈Ai〉i∈N , 〈ri〉i∈N

〉
, a player i, a finite Φ ∈ ΦSWAP, let f, f ′ be two

link functions, both mapping RΦ to RΦ
+. If there exists a strictly positive function ψ : RΦ → R such

that ψ(x)f(x) = f ′(x) for all x ∈ RΦ, then a (Φ, f)-regret-matching algorithm is also a (Φ, f ′)-

regret-matching algorithm.

Proof At an arbitrary trial T , let MT and M ′T be defined according to Equation 4.5 for f and f ′,

respectively. Since ψ is strictly positive, Mt = M ′
t so that a (Φ, f)-regret-matching algorithm plays

a fixed point of M ′
t , whenever RΦ

t−1(h) 6∈ RΦ
−.

Many well-known online learning algorithms arise as instances of (Φ, f)-regret matching, or the

closely related class of (Φ, f)-distribution-regret matching. (Distribution regret matching is defined

in Section 2.4.2.) The no-external-regret algorithm of Hart and Mas-Colell [2000] is the special case

of (Φ, f)-regret matching in which Φ = ΦEXT and f is the polynomial link function with p = 2. The
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no-internal-regret algorithm of Foster and Vohra [1999] is equivalent to (Φ, f)-distribution-regret

matching with Φ = ΦINT and the polynomial link function with p = 2. If f is the exponential link

function, then (Φ, f)-distribution-regret reduces to Freund and Schapire’s Hedge algorithm (1997)

when Φ = ΦEXT and a variant of an algorithm discussed by Cesa-Bianchi and Lugosi (2003) when

Φ = ΦINT. For a more thorough comparison of these and related algorithms, see Section 4.8.

4.4 Implementation and Complexity

For finite A3, the linear transformation MT maps ∆(A), a nonempty compact convex set, into itself.

Moreover, MT is continuous, since all [φ] are linear functions in finite-dimensional Euclidean space,

and hence continuous. Therefore, by Brouwer’s fixed point theorem, MT is guaranteed to have a

fixed point. Therefore, for finite A, for all choices of f and Φ, a (Φ, f)-regret-matching algorithm

exists.

Finite A also means that each linear transformation [φ] can be represented as an |A| × |A|
stochastic matrix, as can MT . Thus, a (Φ, f)-regret-matching algorithm can be easily implemented.

The pseudocode for the class of (Φ, f)-regret-matching algorithms is shown in Algorithm 1. The

cumulative regret vector is initialized to zero. For all times t = 1, . . . , T , the agent samples a pure

action a(t) according to the distribution q(t), after which it observes its marginal reward function

r
(t)
i . Given a(t) and ri(t), the agent computes its instantaneous regret with respect to each φ ∈ Φ,

and updates the cumulative Φ-regret vector accordingly. A subroutine is then called to compute the

mixed strategy that the agent learns to play at time t + 1. In this subroutine, the link function f

is applied to the cumulative Φ-regret vector. (Recall that the co-domain of a link function is the

positive orthant.) If this quantity is zero, then the subroutine returns an arbitrary mixed strategy.

Otherwise, the subroutine returns a fixed point of the stochastic matrix MT .

Algorithm 1 (Φ, f)-RegretMatchingAlgorithm()
1: initialize cumulative regret vector X0 = 0
2: for t = 1, 2, . . . do
3: play mixed strategy q(t) = (Φ, f)-ComputeMixedStrategy(Xt−1)
4: observe sampled pure action a(t) ∼ q(t)

5: observe marginal reward function r(t)i
6: for all φ ∈ Φ do
7: compute instantaneous regret ρi,Φ
8: update cumulative regret vector Xt = Xt−1 + ρi,Φ
9: end for

10: end for

Each iteration of Algorithm 1 has time complexity O(max{|Φ||A|2, |A|3}), assuming the time

complexity of f is linear in Φ (as it is for the polynomial and exponential link functions). Updating

the cumulative regret vector in steps 5–8 of Algorithm 1 takes time O(|Φ||A|), since computing

instantaneous regret for each φ ∈ Φ (step 6) is an O(|A|) operation. In Subroutine 2, step 1
3We use A to denote the action set of an arbitrary player.
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Algorithm 2 (Φ, f)-ComputeMixedStrategy(regret vector Xt)
1: let Y = f(Xt)
2: if Y = 0 then
3: return arbitrary q ∈ ∆(A)
4: else
5: let M =

∑
φ∈Φ Yφ[φ]/

∑
φ∈Φ Yφ

6: solve for a fixed point q of M
7: return q
8: end if

takes time O(|Φ|), by assumption. If we view the mixed strategy transformations [φ] as |A| × |A|
stochastic matrices, then we can also view Mt as an |A| × |A| stochastic matrix, as it is a convex

combination of the elements of Φ. Computing Mt in step 5 takes time O(|Φ||A|2), since each matrix

[φ] has dimensions |A| × |A|. Finding the fixed point of an n × n stochastic matrix, which can be

accomplished, for example, via Gaussian elimination, is an O(n3) operation.

If, however, Φ ⊆ ΦSWAP(A), then this time complexity reduces to O(max{|Φ||A|, |A|3}), since in

this special case, (i) computing instantaneous regret for each φ ∈ Φ (step 6 of Algorithm 1) takes

constant time so that updating the cumulative regret vector takes time O(|Φ|); and (ii) computing

the stochastic matrix Mt in step 5 of Subroutine 2 is only an O(|Φ||A|) operation, since there are only

|A| nonzero entries in each φ ∈ Φ. In particular, if Φ = ΦINT(A), then the time complexity reduces

to O(|A|3), because |ΦINT(A)| = O(|A|2). Moreover, if Φ = ΦEXT(A), then the time complexity

reduces even further to O(|A|), because matrix manipulation is not required in the special case of

ΦEXT-regret matching. The rows of M are constant: each is a copy of the (normalized) cumulative

regret vector, which is precisely the fixed point of M . In particular, for all q ∈ ∆(A),

Mt(q) : a 7→
∑
φ∈ΦEXT Y

φ
t [φ]∑

φ∈ΦEXT Y
φ
t

(q) (4.7)

=

∑
a′∈A Y

a′

t

{
1 if a = a′

0 otherwise∑
a′∈A Y

a′
t

(4.8)

=
Y at∑

a′∈A Y
a′
t

(4.9)

Observe that Mt(q) is independent of q, so that

q : a 7→ Y at∑
a′∈A Y

a′
t

(4.10)

is the unique fixed point of Mt. Subroutine 3 computes the mixed strategy for an external regret-

matching algorithm: at time t+ 1, play action a with probability proportional to Y at .

The space complexity of Algorithm 1 (and Subroutine 2) is O(|Φ||A|2) = O(max{|Φ||A|2, |A|2})
because it is necessary to store the |Φ| matrices, each with dimensions |A| × |A|, and computing

the fixed point of an |A| × |A| stochastic matrix (via Gaussian elimination) requires O(|A|2) space.

If, however, Φ ⊆ ΦSWAP(A), then the space complexity reduces to O(max{|Φ||A|, |A|2}), since, in
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Algorithm 3 (ΦEXT, f)-ComputeMixedStrategy(regret vector XA
t )

1: let Y At = f(XA
t )

2: if Y At = 0 then
3: set q ∈ ∆(A) arbitrarily
4: else
5: for all a ∈ A do
6: set qa = Y at /

∑
a∈A Y

a
t

7: end for
8: end if
9: return q

this case, there are only |A| nonzero entries in each φ ∈ Φ. In particular, if Φ = ΦINT(A) then the

space complexity reduces to O(|A|2), since it suffices to store cumulative regrets in a matrix of size

|A| × |A|. Similarly, if Φ = ΦEXT(A) (Subroutine 3), then the space complexity reduces to O(|A|),
since it suffices to store cumulative regrets in a vector of size |A|. Our discussion of the time and

space complexity of Algorithm 1 and its subroutines is summarized in Table 4.2.

Table 4.2: Complexity of (Φ, f)-Regret Matching

Time Space
Φ ⊆ ΦALL O(max{|Φ||A|2, |A|3}) O(|Φ||A|2)
Φ ⊆ ΦSWAP O(max{|Φ||A|, |A|3}) O(max{|Φ||A|, |A|2})
Φ = ΦINT O(|A|3) O(|A|2)
Φ = ΦEXT O(|A|) O(|A|)

4.5 Regret-Matching Theorem

We now prove the regret matching theorem, which states that regret-matching algorithms have an

expectation Blackwell bound on their regret games.

Theorem 4.6 (Regret-Matching Theorem) Given a game Γ, an agent i for the repeated game

Γ∞, a set of action transformations Φ ⊆ ΦSWAP(Ai), a link function f : RΦ → RΦ
+, and a learning

algorithm L for i, if L is a (Φ, f)-regret-matching algorithm, then the constant zero function is an

expectation Blackwell bound for L and f in agent i’s Φ-regret game.

Proof We must show that for all T ,

ET−1

[〈
Y T−1, ρTi,Φ

〉]
≤ 0 (4.11)

When Y T−1 is the zero vector (i.e., Y T−1
φ = 0 for all φ), the bound is trivial. Otherwise, let q∗ is a

fixed point of MT . Given some a¬i, let r∗ : Ai → R be defined as r∗(x) = ri(x, a¬i) Let S denote∑
φ∈Φ Y

T−1
φ . The inner product can be written:

ET−1

[〈
Y T−1, ρTi,Φ

〉]
(4.12)
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= E
[〈
Y T−1, 〈r∗(φ(ai))− r∗(ai)〉

〉
φ∈Φ

| ai ∼ q∗
]

(4.13)

= E

∑
φ∈Φ

Y T−1
φ r∗(φ(ai))− r∗a | ai ∼ q∗

 (4.14)

=
∑
φ∈Φ

Y T−1
φ

(∫
r∗(φ(·) d)q∗ −

∫
r∗ dq∗

)
(4.15)

=
∑
φ∈Φ

Y T−1
φ

(∫
r∗ d[φ](q∗)−

∫
r∗ dq∗

)
(4.16)

=

∫ r∗ d
∑
φ∈Φ

Y T−1
φ [φ](q∗)

− S

∫
r∗ dq∗ (4.17)

= S

∫
r∗ dMT (q∗)− S

∫
r∗ dq∗ (4.18)

= S

∫
r∗ dq∗ − S

∫
r∗ dq∗ (4.19)

= 0 (4.20)

Line (4.19) follows because q∗ is the fixed point of MT .

We can now apply Theorems 3.13, 3.14, and 3.15 in the context of Φ-regret games to get ap-

proachability results for regret-matching algorithms.

Proposition 4.7 Given a bounded repeated game, for finite Φ any polynomial Φ-regret-matching

algorithm (p > 1) is no-Φ-regret.

Proof For small polynomials (p ∈ [1, 2]), the result follows directly from Theorem 3.14 and the

Regret Matching Theorem. For large polynomials (p > 2), the result follows from Lemma 4.5,

Theorem 3.13, and the Regret Matching Theorem.

Proposition 4.8 Given a bounded repeated game, for finite Φ any exponential Φ-regret-matching

algorithm for agent i, η > 0, is ε-no-Φ-regret, where ε = η
2 .

Proof The result follows from Lemma 4.5, Theorem 3.15, the Regret Matching Theorem, and the

observation that for rewards in [0, 1], the maximal entry in an instantaneous regret vector is 1.

4.6 Bounds

We can also apply the Regret Matching Theorem to get bounds on the average regret that an

agent will experience at any time t. First, we define the maximal activation of a set of action

transformations.

Given a finite set of action transformations Φ ⊆ ΦSWAP(Ai), the maximal activation, denoted

µ(Φ), is computed by maximizing, over all actions a ∈ Ai, the number of transformations φ that

alter action a: i.e.,

µ(Φ) = max
a∈Ai

|{φ ∈ Φ : φ(a) 6= a}| (4.21)
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Clearly, µ(Φ) ≤ |Φ|. In addition, observe that for finite Ai, µ(ΦEXT(Ai)) = µ(ΦINT(Ai)) = |Ai| − 1.

Lemma 4.9 Given a bounded game and a player i, any finite set of action transformations for

player i, Φ ⊆ ΦSWAP(Ai), has the property that

‖ρi,Φ(a)‖p ≤ (µ(Φ))1/p (4.22)

for any a ∈ A.

Proof Since rewards are bounded in [0, 1], regrets are bounded in [−1, 1], so that

‖ρi,Φ(a)‖p = p

√∑
φ∈Φ

(ρi,φ(a))p ≤ p

√∑
φ∈Φ

1φ(a) 6=a ≤ p
√
µ(Φ) (4.23)

Proposition 4.10 If an agent plays a repeated bounded game according to a polynomial Φ-regret-

matching algorithm with parameter p > 2, then the maximal entry in its average Φ regret vector is

bounded as follows:

E
[
max
φ∈Φ

ρ̄
(T )
i,φ

]
≤ (µ(Φ))

1
p

√
1
T

(p− 1) (4.24)

at all times T ≥ 0.

Proof The result follows from Theorem 3.18, the Regret-Matching Theorem, and Lemma 4.9.

Proposition 4.11 If an agent plays a repeated bounded game according to a polynomial Φ-regret-

matching algorithm with parameter p ∈ [1, 2], then the maximal entry in its average Φ regret vector

is bounded as follows:

E
[
max
φ∈Φ

ρ̄
(T )
i,φ

]
≤ (µ(Φ))

1
p T ( 1

p−1) (4.25)

at all times T ≥ 0.

Proof The result follows from Theorem 3.19, the Regret-Matching Theorem, and Lemma 4.9.

Proposition 4.12 If an agent plays a repeated bounded game according to an exponential Φ-regret-

matching algorithm, for finite Φ, then the maximal entry in its average Φ regret vector is bounded

as follows:

E
[
max
φ∈Φ

ρ̄
(T )
i,φ

]
≤ ln |Φ|

ηT
+
η

2
(4.26)

at all times T ≥ 0.

Proof The result follows directly from Theorem 3.20, the Regret-Matching Theorem, and the ob-

servation that for rewards in [0, 1],

sup
a∈A

‖ρi,Φ(a)‖2∞ ≤ 1 (4.27)
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4.6.1 Distribution Regret

Here we consider regret-matching algorithms which use distribution regret instead of action regret.

A distribution regret-matching algorithm is identical to the regret-matching algorithm of Definition

4.4, except that the cumulative distribution regret vector,

δRTi,Φ =
T∑
t=1

〈
δρ

(t)
i,φ

〉
φ∈Φ

(4.28)

is used to define the linear transformation MT . That is,

MT =

∑
φ∈Φ fφ(δR

T−1)[φ]∑
φ∈Φ fφ(δRT−1)

. (4.29)

So that we may reason about distribution regret-matching algorithms, we provide a version of

the Regret-Matching Theorem.

Theorem 4.13 Given a game Γ, an agent i for the repeated game Γ∞, a set of action transfor-

mations Φ ⊆ ΦSWAP(Ai), a link function f : RΦ → RΦ
+, and a learning algorithm L for i, if L is

a (Φ, f)-distribution-regret-matching algorithm, then the constant zero function is an almost-surely

Blackwell bound for L and f in agent i’s Φ-distribution-regret game.

The proof is a simplified version of the proof of the Regret-Matching Theorem.

We can now provide bounds on the average distribution regret of distribution-regret-matching

algorithms, analogous to Propositions 4.10, 4.11, and 4.12.

Proposition 4.14 If an agent plays a repeated bounded game according to a polynomial Φ-distribution-

regret-matching algorithm with parameter p > 2, then the maximal entry in its Φ regret vector is

bounded as follows:

max
φ∈Φ

δρ̄
(T )
i,φ ≤ (µ(Φ))

1
p

√
1
T

(p− 1) (4.30)

at all times T ≥ 0.

Proof The result follows from Theorem 3.23, the Distribution-Regret-Matching Theorem, and

Lemma 4.9.

Proposition 4.15 If an agent plays a repeated bounded game according to a polynomial Φ-distribution-

regret-matching algorithm with parameter p ∈ [1, 2], then the maximal entry in its average Φ regret

vector is bounded as follows:

max
φ∈Φ

δρ̄
(T )
i,φ ≤ (µ(Φ))

1
p T ( 1

p−1) (4.31)

at all times T ≥ 0.

Proof The result follows from Theorem 3.24, the Distribution-Regret-Matching Theorem, and

Lemma 4.9.
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Proposition 4.16 If an agent plays a repeated bounded game according to an exponential Φ-distribution-

regret-matching algorithm, for finite Φ, then the maximal entry in its average Φ distribution-regret

vector is bounded as follows:

max
φ∈Φ

δρ̄
(T )
i,φ ≤ ln |Φ|

ηT
+
η

2
(4.32)

at all times T ≥ 0.

Proof The result follows directly from Theorem 3.25, the Distribution-Regret-Matching Theorem,

and the observation that for rewards in [0, 1],

sup
a∈A

‖ρi,Φ(a)‖2∞ ≤ 1 (4.33)

We can also apply Theorem 3.26 to obtain approachability results from distribution-regret

bounds.

Proposition 4.17 Given a bounded repeated game, a learning algorithm that guarantees

max
φ∈Φ

δρ̄
(T )
i,φ ≤ B(T ) (4.34)

at all times T ≥ 0, where limT→∞B(T ) = ε, is ε-no-regret.

4.6.2 Summary of Bounds

Table 4.3 summarizes the bounds we derived on E
[
maxφ∈Φ

1
tR

φ
t

]
(for action regret-matching) and

maxφ∈Φ
1
t R̂

φ
t (for distribution-regret-matching). Our two analyses of polynomial regret matching

(Theorems 4.10 and 4.11) agree when p = 2. In general, our bounds on polynomial distribution-

regret matching for 2 ≤ p < ∞ agree with those of Cesa-Bianchi and Lugosi [2003], although

their bounds are computed in terms of the number of experts rather than the number of action

transformations (see Section 4.8 for details). For external and internal polynomial distribution-

regret matching, in particular, we improve upon the bounds that can be derived immediately from

their results. Though the improvement is small for external regret (from a bound proportional to
p
√
|A| to a bound proportional to p

√
|A| − 1), it is more significant for internal regret (from |A|2/p to

(|A| − 1)1/p).

Table 4.3: Bounds for polynomial and exponential regret-matching algorithms.

fi(x) Condition Bound for finite Φ ⊆ ΦALL Bound for ΦEXT,ΦINT

(x+
i )p−1 2 < p <∞

√
p−1
t

p
√
µ(Φ)

√
p−1
t

p
√
|A| − 1

(x+
i )p−1 1 ≤ p ≤ 2 t(

1
p−1) p

√
µ(Φ) t(

1
p−1) p

√
|A| − 1

eηxi η > 0 ln |Φ|
ηt + η

2
ln |Φ|
ηt + η

2
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Finally, observe that for p > 1 polynomial regret matching has the property that

lim
t→∞

E
[
max
φ∈Φ

1
t
Rφt

]
≤ 0 (4.35)

while exponential regret matching has the property that

lim
t→∞

E
[
max
φ∈Φ

1
t
Rφt

]
≤ η

2
(4.36)

In particular, the bound on the time-averaged action-regret of any polynomial algorithm is eventually

better than that of any exponential algorithm. An analogous result holds for distribution regret.

4.7 Näıve Algorithms

Here we construct a näıve learning algorithm for finite Ai with bounded distribution regret. The

bound is derived from a bound on the distribution regret of an (informed) learning algorithm L

which is run as a subroutine.

The algorithm L∗, parameterized by real number λ ∈ (0, 1), proceeds as follows for each round

t:

1. L generates a mixed strategy q(t)i

2. the mixed strategy q̂(t)i is calculated as:

q̂
(t)
i = (1− λ)q(t)i + λU (4.37)

where U is the uniform distribution over Ai

3. the action a(t)
i is sampled from q̂

(t)
i and played

4. the algorithm observes the reward r(t)i
(
a
(t)
i

)
5. the marginal reward function r̂(t)i is calculated and reported to L

r̂
(t)
i (a) =

 λ
r
(t)
i

(
a
(t)
i

)
q̂
(t)
i

(a
(t)
i

)
if α = a

(t)
i

0 otherwise
(4.38)

Theorem 4.18 Let B : N → R a bound on the time-averaged distribution regret of L when its

rewards are bounded in [0, 1], i.e., Then if L∗ is faced with rewards in [0, 1] it will guarantee for any

φ,
1
T

T∑
t=1

ρ̂
(t)
i,φ ≤

1− λ

λ
B(T ) + λ (4.39)

Proof First note that for any ai, because r(t)i (ai) ∈ [0, 1] and q̂(t)i (ai) ≥ λ, we know that r̂(t)i (ai) ∈
[0, 1].
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Observe that for any t and any α ∈ Ai,

q
(t)
i (α)

q̂
(t)
i (α)

<
1

1− λ
(4.40)

For each t, let a(t)
∗ be a random variable distributed according to q(t)i .

We show that

E
[
r̂
(t)
i

(
a
(t)
∗

)
| q(t)i

]
= λE

[
r
(t)
i

(
a
(t)
∗

)
| q(t)i

]
. (4.41)

Derivation:

E
[
r̂
(t)
i

(
a
(t)
∗

)
| q(t)i

]
=

∑
α,β∈Ai

q
(t)
i (α) q̂(t)i (β) r̂(t)i (α)

∣∣∣
a
(t)
i

=β
(4.42)

=
∑

α,β∈Ai

q
(t)
i (α) q̂(t)i (β)λ

r
(t)
i (β)

q̂
(t)
i (β)

1α=β (4.43)

=
∑
α∈Ai

q
(t)
i (α)λr(t)i (α) (4.44)

= λE
[
r
(t)
i

(
a
(t)
∗

)
| q(t)i

]
(4.45)

Now we show that

E
[
r̂
(t)
i

(
a
(t)
∗

)
| q(t)i

]
<

λ

1− λ
E
[
r
(t)
i

(
a
(t)
i

)
| q(t)i

]
. (4.46)

Derivation:

E
[
r̂
(t)
i

(
a
(t)
∗

)
| q(t)i

]
=

∑
α∈Ai

q
(t)
i (α)λr(t)i (α) (4.47)

=
∑
α∈Ai

q̂
(t)
i (α)

q
(t)
i (α)

q̂
(t)
i (α)

r
(t)
i (α) (4.48)

<
λ

1− λ

∑
α∈Ai

q̂
(t)
i (α) r(t)i (α) (4.49)

=
λ

1− λ
E
[
r
(t)
i

(
a
(t)
i

)
| q(t)i

]
(4.50)

Line (4.47) is the same as Line (4.44). Line (4.48) is a multiplication of each term by 1. Line (4.49)

follows because of Equation (4.40). Line (4.50) follows because a(t)
i is sampled from q̂

(t)
i .

Now we show that

λ

1− λ
E
[
r
(t)
i

(
φ
(
a
(t)
i

))
| q(t)i

]
− λ2

1− λ
≤ E

[
r̂
(t)
i

(
φ
(
a
(t)
∗

))
| q(t)i

]
. (4.51)

Derivation:

E
[
r
(t)
i

(
φ
(
a
(t)
i

))
| q(t)i

]
(4.52)

=
∑
α∈Ai

q̂
(t)
i (α) r(t)i

(
φ
(
a
(t)
i

))
(4.53)
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=
∑
α∈Ai

(
(1− λ)q(t)i (α) +

λ

Ai

)
r
(t)
i

(
φ
(
a
(t)
i

))
(4.54)

= (1− λ)E
[
r
(t)
i

(
φ
(
a
(t)
∗

))
| q(t)i

]
+

λ

Ai
r
(t)
i

(
φ
(
a
(t)
i

))
(4.55)

≤ (1− λ)E
[
r
(t)
i

(
φ
(
a
(t)
∗

))
| q(t)i

]
+ λ (4.56)

=
1− λ

λ
E
[
r̂
(t)
i

(
φ
(
a
(t)
∗

))
| q(t)i

]
+ λ (4.57)

Line (4.57) follows because of Equation (4.41).

From the distribution regret bound on L, we have

1
T

T∑
t=1

E
[
r̂
(t)
i

(
φ
(
a
(t)
∗

))
− r̂

(t)
i

(
a
(t)
∗

)
| q(t)i

]
≤ B(T ) (4.58)

Applying Equations (4.46) and (4.51) yields

λ

1− λ

(
1
T

T∑
t=1

E
[
r
(t)
i

(
φ
(
a
(t)
i

))
− r

(t)
i

(
a
(t)
i

)
| q(t)i

]
− λ

)
< B(T ) (4.59)

Rearranging gives the desired result.

This näıve algorithm has the property that even if it uses a subroutine with B(T ) = 0, the

resulting distribution bound will be λ > 0, and therefore not provably no-regret. However, by using

the standard doubling trick, which involves regularly restarting the algorithm with a smaller λ, we

can obtain a distribution bound that goes to 0 as T → ∞. Applying Proposition 4.17 shows that

this is a no-regret algorithm. Thus we have presented the first no-regret algorithm for general Φ.

4.8 Related Work

The literature is rife with analyses of regret-minimization algorithms defined within a variety of

frameworks. There are at least four dimensions on which these analyses vary. First, regret may

be computed relative to actions or distributions. Second, different frameworks incorporate different

kinds of transformations (e.g., ΦINT and ΦEXT), and consequently feature different kinds of regret.

Third, there are two broad classes of results about online learning algorithms. Bounding results,

derived primarily by computer scientists, provide functions that bound the time-averaged (or cumu-

lative) regret vector at a particular time t. Convergence results, derived primarily by game theorists,

establish guarantees on the behavior of the time-averaged regret vector as t → ∞. Fourth is the

algorithm itself. In the case of regret matching, this amounts to choosing, along with the variant of

regret, a link function (or equivalently a potential function).

4.8.1 Convergence Results

Foster and Vohra [1999] focus their investigations on internal polynomial distribution-regret match-

ing with p = 2 and derive an o(t) bound on its cumulative internal distribution regret, which, by

the Hoeffding-Azuma lemma, is sufficient for no internal regret.
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Hart and Mas-Colell [2001] analyze external and internal action regret, the latter of which they

call “conditional regret.” They exhibit a class of no-regret algorithms parameterized by potential

functions, which includes the polynomial action-regret-matching algorithm studied here.

Lehrer [2003] combines “replacing schemes,” which are functions from H × A to A, with “ac-

tiveness functions” from H×A to {0, 1}. Given a replacing scheme g and an activeness function I,

Lehrer’s framework compares the agent’s rewards to the rewards that could have been obtained by

playing action g(ht, at), but only if I(ht, at) = 1, yielding a general form of action regret. Lehrer

establishes the existence of (no-regret) algorithms whose action regret with respect to any countable

set of pairs of replacing schemes and activeness functions, averaged over the number of times each

pair is “active,” approaches the negative orthant.

Fudenberg and Levine [1999] suppose the existence of a countable set of categories Ψ and consider

“classification rules,” functions from H × A to Ψ. They then compare the agent’s rewards to the

rewards that could have been obtained under sequences of actions that are measurable with respect to

each classification rule. Their framework, which is a special case of Lehrer’s, also yields action regret.

In it, they derive a variant of fictitious play, “categorical smooth fictitious play,” with parameter

ε that guarantees that the lim sup of the maximal entry in the time-averaged action-regret vector

converges to (−∞, ε] a.s., a property they call “ε-universal conditional consistency.”

Young [2004] presents an “incremental” conditional regret-matching algorithm, a variant of in-

ternal polynomial action-regret matching with p = 2. Rather than playing the fixed point of an

|A| × |A| stochastic matrix, the computation of which is an O(|A|3) operation, Young incrementally

updates the agent’s mixed strategy based on the internal action-regret vector, whose maintenance

is only an O(|A|2) operation. Young argues that his approach yields an algorithm that exhibits

no internal regret. Presumably, this result can be generalized to yield an entire class of no-regret

algorithms parameterized by action transformations Φ and link functions f .

4.8.2 Bounding Results

Most bounding results can be found in the computer science learning theory literature. Freund and

Schapire [1997] introduce the Hedge algorithm, which in our framework arises as external exponential

distribution-regret matching. Inspired by the method of Littlestone and Warmuth [1994], they derive

a bound on its external distribution regret.

Herbster and Warmuth [1998] consider a finite set of “experts,” which they define as functions

from N to A. In the context of a prediction problem, they compare the agent’s rewards to the

rewards that could have been obtained had the agent played according to each such expert at each

time t. They present an algorithm and bound its distribution regret with respect to alternatives

constructed by dividing its history into finite-length segments and choosing the best expert for each

segment. Bounds on external distribution regret can be obtained by specializing their framework.

Cesa-Bianchi and Lugosi [2003] develop a framework of “generalized” regret. They rely on the

same notion of experts as Herbster and Warmuth [1998], but they pair experts f1, . . . , fN with

activation functions Ii : A × N → {0, 1}. At time t, for each i, if Ii(at, t) = 1, they compare the
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Convergence Action Regret Distribution Regret

SWAP
Lehrer [2003]
Greenwald et al. [2008]
Fudenberg and Levine [1999]

INT
Hart and Mas-Colell [2001]
Young [2004]

Foster and Vohra [1999]

EXT

Bounding Action Regret Distribution Regret

SWAP Greenwald et al. [2006]
Greenwald et al. [2006]
Blum and Mansour [2005]

INT Cesa-Bianchi and Lugosi [2003]

EXT Hannan [1957]
Freund and Schapire [1997]
Herbster and Warmuth [1998]

Table 4.4: Related Work organized along three dimensions.

agent’s rewards to the rewards the agent could have obtained by playing fi(t). This approach is

more general than our action-transformation framework in that alternatives may depend on time.

At the same time, it is more limited in that it does not naturally represent swap regret. Their

calculations yield bounds on generalized distribution regret.

Blum and Mansour [2005]’s framework is similar to Lehrer’s, but is applied to distribution rather

than action regret. Their “modification rules” are the same as Lehrer’s replacing schemes, but in-

stead of activeness functions, they pair modification rules with “time selection functions,” which

are functions from N to the interval [0, 1]. The rewards an agent could have obtained under each

modification rule are weighted according to how “awake” the rule is, as indicated by the correspond-

ing time selection function. They present a method that, given a collection of algorithms whose

external distribution regret is bounded above by f(t) at time t, generates an algorithm whose swap

distribution regret (and hence, internal distribution regret) is bounded above by |A|f(t).

Table 4.4 summarizes related work. Note that SWAP results subsume INT results, which in

turn subsume EXT results. However, many of these results are more general than their entry in

this table suggests. For example, the framework of Herbster and Warmuth [1998] deals with time-

varying experts as well as external regret. Also, an appropriate bound on distribution-regret can

imply no-regret: i.e., convergence to zero of action regrets.



Chapter 5

Convex Games

Thus far we have focused on matrix games (in which each Ai is finite). Now we consider infinite

action sets. In particular, we turn our attention to the case of convex games.

Definition 5.1 A convex game is a (real-valued) game
〈
N, 〈Ai〉i∈N , 〈ri〉i∈N

〉
such that

• each Ai is a convex, compact subset of Euclidean space, and

• each ri is multi-linear.

For such games we will use the Borel σ-algebras for each Ai to define ∆(Ai).

5.1 Equilibria

In the case of matrix games, ΦINT was an important set of action transformations. We showed that

the set of ΦINT equilibria is equivalent to the set of correlated equilibria (Proposition 2.6), as well

as the set of ΦSWAP equilibria (Proposition 2.9). However, once we have infinite action sets, ΦINT no

longer yields an interesting equilibrium concept.

Consider, as a simple example, each Ai = [0, 1]. Suppose each player uses the uniform distribution

as its mixed strategy. Then for any player i, for any φ = φINT
α→β ∈ ΦINT(Ai), the random variable ρi,φ

has value zero except (potentially) on α. However, under the uniform distribution every singleton

set has measure 0, so E [ρi,φ] = 0. Thus, every player playing the uniform distribution (or any

distribution that assigns singleton sets measure 0) is a ΦINT equilibrium, regardless of the game’s

rewards. Clearly the internal transformation are not a useful concept in this realm.

Whereas in the case of matrix games we could take ΦINT as defining the set of correlated equilibria,

for the case of general (possibly non-finite) games, we will take the set of ΦSWAP equilibria as the

definition of correlated equilibria. This is consistent with our idea of what a correlated equilibrium

means—given a suggestion from the moderator, there is no transformation of it from which the

player would benefit.

Note that ΦEXT is still applicable and has the same interpretation as it did in the finite case.
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5.1.1 σ Transformations

However, we will find it useful to have a set of transformations that serve the role that internal

transformations did for matrix games. That is, we want a set of transformations that is as powerful

as ΦSWAP, but significantly smaller. We introduce the σ transformations. Given a measurable set

S ⊂ Ai and an action α ∈ Ai, we define the σ transformation φσS→α as

φσS→α(x) =

{
α if x ∈ S
x otherwise

(5.1)

Clearly ΦINT(Ai) ⊆ Φσ(Ai) for any Ai, as we can take S to be a singleton set.1

The set of σ transformations is indeed as powerful as ΦSWAP. This follows from the measure theory

result that any measurable non-negative function is the limit of a sequence of simple functions.

Proposition 5.2 Given a convex game, for any joint distribution, player i, and transformation

φ∗ : Ai → Ai, if

sup
φ∈Φσ

E [ρi,φ] ≤ 0, (5.2)

then

E [ρi,φ∗ ] ≤ 0. (5.3)

where the expectations are taken over the joint distribution as usual.

Proof Because φ∗ is measurable, there is a sequence of “simple” transformations {φn} such that

limn→∞ φn φ
∗. A simple transformation is one whose range is finite. Given a set E, let χE be the

indicator function of E. Each φn can be written:

φn =
Jn∑
j=1

αn,jχEn,j (5.4)

where Jn is a natural number, each αn,j ∈ Ai, and En,j are mutually disjoint measurable subsets of

Ai. Equivalently, each φn is the sum of σ transformations. Let φn,j be the σ transformation which

maps En,j to αn,j , and otherwise acts as the identity.

φn =
Jn∑
j=1

φn,j (5.5)

First observe:

E [ri(φ∗(ai), a¬i)] (5.6)

= E
[
ri

(
lim
n→∞

φn(ai), a¬i
)]

(5.7)

= lim
n→∞

E [ri(φn(ai), a¬i)] (5.8)

= lim
n→∞

E

ri
 Jn∑
j=1

φn,j(ai), a¬i

 (5.9)

1Assuming the singleton sets are measurable, as they are in the Borel σ-algebra.
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= lim
n→∞

Jn∑
j=1

E [ri(φn,j(ai), a¬i)] (5.10)

= lim
n→∞

Jn∑
j=1

∫
A

ri(φn,j(ai), a¬i) dq (5.11)

Then,

E [ri(φ∗(ai), a¬i)− ri(ai, a¬i)] (5.12)

= lim
n→∞

Jn∑
j=1

∫
A

ri(φn,j(ai), a¬i)− ri(ai, a¬i) dq (5.13)

≤ lim
n→∞

Jn sup
1≤j≤Jn

∫
A

ri(φn,j(ai), a¬i)− ri(ai, a¬i) dq (5.14)

≤ lim
n→∞

Jn sup
φ∈Φσ

∫
A

ri(φ(ai), a¬i)− ri(ai, a¬i) dq (5.15)

= lim
n→∞

Jn sup
φ∈Φσ

E [ri(φ(ai), a¬i)− ri(ai, a¬i)] (5.16)

≤ 0 (5.17)

From this result it follows that the set of correlated (ΦSWAP) equilibria of the game is identical

to the set of Φσ equilibria.

5.2 Corner and Polyhedral Games

The two properties of convex games (convex action sets and multi-linear rewards) allow us to treat

them as if they were much simpler without losing any expressive power. We do this by only con-

sidering corners of the action sets. This approach is particularly effective in the case of polyhedral

action sets, as it allows us to treat a convex game as a matrix game.

A corner set of a convex set is a minimal subset whose convex hull is the subset itself. When Ai
is a polyhedron, it has a finite set of corners, denoted κ(Ai). We refer to such a game as a polyhedral

game.

Given a polyhedral game Γ, we can construct the corresponding corner game, denoted Γκ, in

which the set of players N and the reward functions ri are the same, but the action sets are replaced

by their corner sets, κ(Ai). We can think of this as a version of the game in which only corners may

be played.2

Due to the multi-linearity of the reward functions, a convex game game and the corresponding

corner game have equivalent sets of correlated equilibria—a correlated equilibrium of Γκ is also a
2We could in fact apply the corner restriction to only certain players, leaving the other players with their original
action sets, and the analysis that follows would still hold. For simplicity, however, we assume that all players are
limited to corner actions.
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correlated equilibrium of Γ,3 and for every correlated equilibrium of Γ, there is a payoff-equivalent

correlated equilibrium of Γκ.4

Proposition 5.3 Let Γ be a polyhedral game, and let q∗ be a correlated equilibrium of the corner

game Γκ. If q̄∗ is an extension of q∗ to the original joint action space A, then it is a correlated

equilibrium of Γ.

Proof Let ~K be the joint corner space (i.e., the joint action space of Γκ).5 The extension q̄∗ is

defined, for measurable B ⊂ ~A, as

q̄∗(B) = q∗(B ∩ ~K). (5.18)

Thus q̄∗( ~K) = 1; only corners have non-zero probability under q̄∗. No player is better off transforming

any set of its corners to any other corner. Because only corners are player, no player is better off

transforming any measurable set of its actions to any corner. Because each players conditional

rewards are linear, no corner being better implies that no interior point is better. Thus q̄∗ is a Φσ

equilibrium, and therefore a correlated equilibrium, of Γ.

Proposition 5.4 Let q∗ be a correlated equilibrium of a polyhedral game Γ. There exists a correlated

equilibrium for the corner game Γκ that has the same expected payoffs as q∗ for each player.

Proof For each Ai, let Ki denote the (finite) set of corners of Ai. Also, let Bi : Ai → Rni be a

barycentric coordinate mapping.6 Each Bi has the property that

∀ai ∈ Ai Bi(a) ·
〈
ji1, . . . , j

i
ni

〉
= ai, (5.19)

where jik is the corner of Ai corresponding to coordinate k of Rni ,
Let K = ×iKi be the joint corner space. Define the joint barycentric coordinate mapping

B : ~A→ ∆(K) by

B(a1, . . . , aN )(j1, . . . , jN ) =
∏
i

Biji(ai). (5.20)

Define the mapping κ : ∆(A) → ∆(K), which will transform joint distributions for the convex

game into joint distributions for the corner game, as

κ(q)(~j) =
∫
A

B(·)(~j) dq. (5.21)

We make two claims: κ preserves rewards, and κ preserves equilibria. First, we show that for

all joint distributions q, and for all players i, Eκ(q) [ri] = Eq [ri]. Let ~j denote a joint action in the

3Consequently, the existence result for matrix games implies an existence result for polyhedral games.

4Some of the results in this section could be extended to non-polyhedral convex games, but we see no benefit to
doing so.

5Because we are use the Borel σ-algebra, ~K is a measurable subset of ~A.

6See Gordon et al. [2008] for an explanation of barycentric coordinates.
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corner game:
〈
ji
〉
1≤i≤N . The result follows from the multi-linearity of ri:

E [ri | κ(q)] =
∑
~j∈K

ri(~j)κ(q)(~j) (5.22)

=
∑
~j∈K

ri(~j)
∫
A

B(·)(~j) dq (5.23)

=
∫
A

∑
~j∈K

B(·)(~j)ri(~j) dq (5.24)

=
∫
A

∑
~j∈K

∏
i

Biji(ai)ri(~j) dq(a) (5.25)

=
∫
A

∑
~j∈K

ri

(〈
Biji(ai) j

i
〉

1≤i≤N

)
dq(a) (5.26)

=
∫
A

∑
j1∈K1

· · ·
∑

jN∈KN

ri

(〈
Biji(ai) j

i
〉

1≤i≤N

)
dq(a) (5.27)

=
∫
A

ri

〈 ∑
ji∈Ki

Biji(ai) j
i

〉
1≤i≤N

 dq(a) (5.28)

=
∫
A

ri

(〈
Bi(a) ·

〈
ji1, . . . , j

i
ni

〉〉
1≤i≤N

)
dq(a) (5.29)

=
∫
A

ri

(
〈ai〉1≤i≤N

)
dq(a) (5.30)

=
∫
A

ri dq (5.31)

= Eq [ri] (5.32)

Now, assume that q is a correlated equilibrium for the convex game. We prove that κ(q) must

also be a correlated equilibrium for the convex game by contradiction. Assume that κ(q) is not a

correlated equilibria. Then there exists a player i, a set S ⊆ Ai, and an action α ∈ Ai such that

player i would benefit by deviating from κ(q) according to φσS→α. That is,

Eκ(q) [ri(φσS→α(ai), a¬i)] > Eκ(q) [ri(a)] = Eq [ri(a)] . (5.33)

We can rewrite the left-hand side using the same reasoning as the previous derivation:

Eκ(q) [ri(φσS→α(ai), a¬i)] (5.34)

=
∫
A

∑
~j∈K

∏
1≤k≤N

Bkjk(ak)ri(φ
σ
S→α(ai), a¬i) dq(a) (5.35)

=
∫
A

∑
ji∈Ki

Biji(ai)ri(φ
σ
S→α(ji), a¬i) dq(a) (5.36)

=
∫
A

ri

 ∑
ji∈Ki

Biji(ai)φ
σ
S→α(ji), a¬i

 dq(a) (5.37)
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Define a swap transformation φ∗ : Ai → Ai as φ∗(ai) =
∑
ji∈Ki B

i
ji(ai)φ

σ
S→α(ji). Thus, we have

Eq [ri(a)] < Eκ(q) [ri(φσS→α(ai), a¬i)] (5.38)

=
∫
A

ri (φ∗(ai), a¬i) dq(a) (5.39)

= Eq [ri (φ∗(ai), a¬i)] (5.40)

But q is a correlated equilibrium, so no player prefers any swap transformation, so this is a contra-

diction.

We can think of Propositions 5.3 and 5.4 as soundness and completeness results, respectively, for

the corner game reduction. Proposition 5.3 is particularly powerful. It provides the justification for

the class of no-regret convex-game algorithms presented in Gordon et al. [2008], some of which are

exponentially more efficient than previously known algorithms.



Chapter 6

Extensive-Form Games

Here we turn our attention to extensive-form games, in which players take turns making decisions

and may or may not learn about the the decisions of others. This framework can represent not only

a deterministic turn-taking game with complete (i.e., public) information, like tic-tac-toe, but also

a game with incomplete (i.e., private) information and an element of chance, like poker. We present

a formalism for describing extensive-form games. We discuss representing these games as matrix

games, and we consider two classes of equilibria: permissive extensive-form equilibria and reduced

extensive-form equilibria.

6.1 Formalism

To avoid confusion with the sequential properties of repeated games, we refer to each decision point

in an extensive-form game as turn, and each possible decision at a turn as a choice.

As always, let N be a finite set of players. We allow for probabilistic events, represented as

choices made by an additional player called the chance player. We represent the structure of the

extensive-form game as a game tree. Each interior node of the tree represents a decision point

and belongs to a player (possibly the chance player). Each non-chance player’s interior nodes are

partitioned into information sets, which represent collections of situations that are indistinguishable

to the player. At each information set, a player has a finite number of choices available to it, and

every node in that set has one child for each of those choices, with the edges labeled accordingly.

The leaf nodes of the tree are the outcomes of the game; each outcome has a real-valued reward for

each player.

Let Ii denote the set of all information sets for player i ∈ N . Given an information set h, let

Ch denote the set of choices available at h. Thus, each node in h has |Ch| children. Without loss

of generality, each set of choices Ch is disjoint. We assume that each player i has the property of

perfect recall: for any information set, h ∈ Ii, the path from the root to each node in h defines the
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Figure 6.1: Hiring Game

same sequence of choices for i. We denote the set of all choices available to player i by

C∗i =
⋃
h∈Ii

Ch. (6.1)

Observe that each play of an extensive-form game corresponds to a path through the game tree.

An individual player’s view of that path is a sequence of information sets (elements of Ii). Every time

a player makes a choice, he is at an information set which, by the perfect recall property, uniquely

defines the sequence of information sets which he previously observed, as well as the sequence of

choices he made at those information sets.

The example we give here is due to von Stengel and Forges [2006]. Figure 6.1 is a graphical

representation of the Hiring Game, which represents a situation in which a student is applying for

a research job with a professor. The players in this game are the chance player, the student, and

a professor. First, the student receives either a good education (G) or a bad education (B) with

equal probability (represented as a choice made by the chance player). Then, the student applies

for a job with the professor by sending one of two signals, X or Y , represented by choices XG and

YG when chance chose G, and XB and YB when chance chose B. Finally, the professor receives the

signal sent by the student and decides to hire him (HX or HY , depending on the signal) or reject

him (RX or RY ). The professor knows only the signal he receives, not the education received by the

student. Thus the professor has two information sets: one corresponds to receiving X and contains

the children of XG and XB ; the other corresponds to receiving Y and contains the children of YG
and YB .
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HXHY HXRY RXHY RXRY
XGXB 5,5 5,5 0,6 0,6
XGYB 5,5 2,8 3,3 0,6
YGXB 5,5 3,3 2,8 0,6
YGYB 5,5 0,6 5,5 0,6

Table 6.1: Hiring Game in strategic form

The rewards for the outcomes are assigned as follows. The best outcome for the student is to

receive a bad education, which presumably requires less work, but be hired nevertheless. In this

case his reward is 6. If he receives a good education and is hired, his reward is 4. If he is not hired,

his reward is 0 regardless of his education. For the professor, the best outcome is to have hired

a student who received a good education, in which case his reward is 10. If he does not hire the

student, the professor can spend his grant money some other way and obtain reward 6. Hiring a

bad student is the worst outcome for the professor—in this case he gets reward 0. Thus, with equal

probability the players’ preferences with respect to hiring or rejecting the student are aligned or in

conflict.

We can represent an extensive-form game as a matrix game by converting it to strategic form. In

this reduction, we consider each non-chance player’s action set to be the set of strategies for playing

the extensive-form game. A strategy for player i is an element of

Σi =
∏
h∈Ii

Ch (6.2)

specifying which choice the player is to make at each of its information sets. ~Σ denotes the set of

joint strategies, i.e.,
~Σ =

∏
i∈N

Σi. (6.3)

Rewards are calculated by taking an expectation over the choices of the chance player.

The matrix game representation of the Hiring Game is given in Table 6.1.

6.2 Permissive EFCE

Now that we can represent extensive-form games as matrix games, the framework developed in

Chapter 2 can be applied to extensive-form games. In particular, the definitions of correlated and

coarse correlated equilibria can be applied to yield equilibrium concepts for extensive-form games.

However, these equilibria may not be appropriate to the setting of the game. Here, we consider

alternative equilibrium concepts specific to extensive-form games.

Applying the moderator interpretation of correlated equilibria to an extensive-form game yields

a story in which the moderator makes suggestions for strategies to the players before the game

is played, and the players must decide whether to follow their suggestions before beginning game

play. This set-up may result in a player getting “too much” information. In the Hiring Game, for
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example, if the student is told what signal to send if he gets a good education, then he will know

that information even if he has the bad education, so he can always switch to a strategy in which

he simulates having seen G even when he saw B.

von Stengel and Forges [2006] analyze the strategic form of the Hiring Game to show that in any

correlated equilibrium, there can only be non-zero weights on joint strategies in which the professor

plays RXRY . Thus, the professor will never hire the student, and they always get reward vector

〈0, 6〉. Observe that this outcome is not Pareto efficient; rewards of 〈2, 8〉 are possible.

Forges and von Stengel [2002] introduced an alternative equilibrium concept for extensive-form

games, called extensive-form correlated equilibrium (EFCE). The moderator interpretation for an

EFCE is this: The moderator gives each player a collection of envelopes, one for each of the player’s

information sets. Inside each envelope is a suggestion of a choice to be made at the information

set. The player is allowed to open an envelope and see the suggestion only when it reaches the

corresponding information set, at which point she can choose to accept or reject the suggestion.

Whether or not a player is able to open an envelope after having chosen not to follow an earlier

suggestion distinguishes between the two types of EFCE which we name here permissive EFCE

(pEFCE), and reduced EFCE (rEFCE). In a pEFCE, the player continues to have access to envelopes

even after choosing not to follow a suggestion; this is not the case in a rEFCE. Because the player

has access to more information in a pEFCE and can therefore make finer-grained deviations, it is a

tighter equilibrium concept. Though a game may have a rEFCE that is not a pEFCE, von Stengel

and Forges [2006] show that pEFCE and rEFCE are payoff-equivalent (i.e., both concepts result in

identical sets of achievable payoff vectors). In a game like the Hiring Game, in which each player

makes only one decision, the two equilibrium concepts are equivalent, and we can refer to both

simply as EFCE.

In the Hiring Game, a student with a bad education does not get to see the signal that the

student with a good education is supposed to play. This prevents a student with a bad education

from impersonating a student with a good education, the possibility of which prevents the professor

from ever hiring in a correlated equilibrium. Both players can in fact do better with an EFCE

than with a correlated equilibrium. For example, a distribution which puts weight of 1
4 on each of

the following joint strategies is an EFCE: 〈XGXB ,HXRY 〉, 〈XGYB ,HXRY 〉, 〈YGXB , RXHY 〉, and

〈YGYB , RXHY 〉. (Note that the student with a bad education is given the “correct” signal half the

time; otherwise he would always do the opposite of his suggestion.) The expected reward vector

for this equilibrium is
〈
3 1

2 , 5
1
2

〉
—both players are better off than they would be at any correlated

equilibria.

von Stengel and Forges [2006] give a formal definition of pEFCE in terms of an extended game,

which, given a joint distribution q ∈ ∆(~Σ), is constructed from the original extensive-form game. We

add a chance player (the moderator) who first picks a joint strategy s∗ according to q. The original

game is then played, except that each player is informed before making a choice of a “recommended”

choice, which is the corresponding component of s∗. A pEFCE is a q such that always following the

recommendation is a Nash equilibrium of the extended game constructed using q.
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Given a information set h ∈ Ii, let H(h) denote the set of informations sets observed by player i

up to and including h. In the extended game, each information set h is replaced with
∏
h′∈H(h) |Ch′ |

versions of it, one for each sequence of suggestions that the player could have received upon reaching

h. Each of these versions has its own version of Ch as its choices.

Thus, the set of strategies Σ′i for player i in the extended game is equivalent1 to the set of vectors

of functions: ∏
h∈Ii

 ∏
h′∈H(h)

Ch′

 7→ Ch

 . (6.4)

That is, a strategy for the extended game must specify for each information set h, for every sequence

of choices corresponding to the information sets leading up to h, a choice in Ch.

One member of each player’s strategy set corresponds to always choosing the recommended

choice; we denote it obeyi, and define it by the property that (obeyi)h(~c) = ~ch for all h ∈ Ii and

all ~c ∈
∏
h′∈H(h) Ch′ . If each player playing the pure strategy obeyi is a Nash equilibrium of the

strategic form of the extended game (i.e., with respect to expectation over the added chance player),

then q is an pEFCE.

Definition 6.1 Given an extensive-form game, a joint distribution q is a pEFCE if and only if for

all players i, for all s′i ∈ Σ′i,

r′i(obeyi,obey¬i) ≥ r′i(s
′
i,obey¬i), (6.5)

where r′i is player i’s reward in the (strategic form of the) extended game built using q.

We now give a set of action transformations corresponding to pEFCE. Each element of Σ′i can

be thought of as an action transformation for the strategic form of the original game. Given s′i ∈ Σ′i,

we can define φs′
i
∈ ΦSWAP(Σi).

φs′
i
(s)(h) = s′i

(
〈sh′〉h′∈H(h)

)
(6.6)

Given an extensive-form game, we can then define a set of transformations for each player i, denoted

ΦpEFCE
i , to be the set of all φs′

i
.

Proposition 6.2 Given an extensive-form game, the set of pEFCE is identical to the set of ΦpEFCE

equilibria.

Proof Recall the definition of a pEFCE—for all players i, for all s′i ∈ Σ′i,

r′i(obeyi,obey¬i) ≥ r′i(s
′
i,obey¬i). (6.7)

Observe that

r′i(obeyi,obey¬i) = Es∼q [ri(s)] (6.8)

1Technically, we need each of the new information sets to have distinct sets of choices.
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and for any s′i ∈ Σ′i,

r′i(s
′
i,obey¬i) = Es∼q

[
ri

(
φs′

i
(si), s¬i

)]
. (6.9)

Thus, q is a pEFCE if and only if for all players i, for all φ ∈ ΦpEFCE
i ,

Es∼q [ri(s)] ≥ Es∼q
[
ri

(
φs′

i
(si), s¬i

)]
, (6.10)

which is the definition of a ΦpEFCE equilibrium.

6.3 Reduced EFCE

The pEFCE concept has the undesirable property that the equilibrium is defined in terms of an

extended game which is exponentially bigger than the original game. Consequently, ΦpEFCE is an

extremely large set. Consider an extensive-form game in which player i makes a sequence of binary

decisions at n consecutive information sets and hence has 2n strategies. In the extended game, the

ith information set is replaced by 2i information sets, so that player i has 2n+1 information sets and

22n+1
strategies in the extended game. Thus ΦpEFCE for player i contains 22n+1

transformations.

In this section we present a more compact representation of game trees, reduced strategic form,

and consider reduced EFCE, also due to von Stengel and Forges [2006].

6.3.1 Reduced Strategic Form

Thus far, we have overlooked the fact that the strategic-form representation of an extensive-form

game can be grossly inefficient. This will be the case when a player may make a choice which renders

some of his information sets unreachable, so that an element of Σi contains useless information. The

Hiring Game does not have this structure, so to illustrate we consider the two-player game tree in

Figure 6.2. Player 1 makes two decisions in each play of the game, first between choices A and B,

and then between a pair of choices which depend on the choice it made previously and the choice

made by player 2.

In the strategic-form representation of this game, Player 1 has 25 = 32 strategies, because a

strategy must indicate a choice for each Player 1’s five information sets. However, many of these

strategies are essentially identical. For example, the strategies 〈A, a, c, e, g〉 and 〈A, a, c, e, h〉 can be

considered equivalent; they only disagree at an information set that neither can reach (because both

specify choice A).

This inefficiency is the motivation for reduced strategic form, which collapses strategies that differ

only at unreachable information sets. In this example, Player 1 only has eight strategies in reduced

strategic form. Writing them without the superfluous choices, they are:

• 〈A, a, c〉

• 〈A, b, c〉

• 〈A, a, d〉
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Figure 6.2: Another game tree

• 〈A, b, d〉

• 〈B, e, g〉

• 〈B, f, g〉

• 〈B, e, h〉

• 〈B, f, h〉

6.3.2 Reduced EFCE

The same reasoning that motivated reduced strategic form as an alternative to strategic form also

motivates reduced EFCE (rEFCE) as an alternative to pEFCE. The moderator interpretation of an

rEFCE is very similar to an that of a pEFCE, with the sole distinction being that once a player

disregards the suggestion found in an envelope, the player is no longer allowed to open envelopes.

We can thus think of the moderator as choosing reduced strategies for each player and putting the

components of the reduced strategies in envelopes corresponding to the appropriate information

set. However, information sets belonging to player i that are unreachable given player i’s suggested

strategy have empty envelopes.

Here we present a formalization of rEFCE in the Φ transformation framework by constructing a

set of transformations, ΦrEFCE, for the strategic form of an extensive-form game. We also present a

subset of ΦrEFCE that has equivalent power (i.e., the resulting sets of equilibria are identical).

In the moderator interpretation of coarse correlated equilibria, the player must choose whether

to depart from his suggested move before he sees it. This limitation is implemented in ΦEXT by
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requiring that the transformation give the same output regardless of its input (i.e., that it be a

constant function). In order to correctly construct ΦrEFCE, we must represent the inability of the

player to know the contents of its unopened envelopes. We require that a transformation act the

same on all parts of the strategy corresponding to the information sets that it has not reached at

the point at which the agent departs from the moderator’s suggestion.

We can think of a transformation in ΦrEFCE as having three components. One component is

the set of points at which the agent chooses to defect from the moderator’s suggestion. These

points are represented by information sets. Another component is the set of suggestions that will

trigger a defection. These suggestions are choices in C∗i , and because the sets of choices are disjoint,

designating such a “trigger” choice also indicates the information set at which the defection occurs.

The third component of a transformation in ΦrEFCE is the player’s behavior after defecting.

We denote the set of partial strategies providing choices sufficient to play the rest of the game

starting in information set h by Σ|h. A partial strategy σ must be consistent. That is, σ must not

contain choices for information sets that are unreachable from h using the choices in σ. It must also

be complete. That is, σ must contain choices for all information sets that are reachable from h using

the choices in σ. Let Σ?
i =

∏
h∈Ii Σ|h be the set of all such partial strategies.

Given c ∈ C∗i , let h|c ∈ Ii be the information set at which choice c is available, i.e., h such that

c ∈ Ch. Let Σ|c be shorthand for Σ|h|c . Given an information set h ∈ Ii, let δ(h) ⊂ Ii denote

player i’s information sets which contain nodes that are descendents of nodes in h. Similarly. let

α(h) denote the set of ancestor information sets of h. Let yes represent not altering a suggestion.

We can thus identify the set ΦrEFCE(Σi) with the set of functions

ψ : C∗i → {yes} ∪ Σ?
i (6.11)

satisfying two conditions:

• for all c, ψ(c) ∈ {yes} ∪ Σ|c, and

• for all c, ψ(c) 6= yes implies ψ(c′) = yes for all c′ ∈ Ch′ , where h′ ∈ α(h|c) ∪ δ(h|c).

Once the player defects, he no longer gets to open envelopes, so a transformation can’t be triggered

more than once.

Just as the much smaller set ΦINT proved to be as expressive as ΦSWAP in the case of matrix

games, we present the smaller set ΦrEFCE-INT, which is as expressive as ΦrEFCE. Transformations in

ΦINT only change a single input, otherwise they act as the identity. Similarly, transformations in

ΦrEFCE-INT have only a single trigger choice; if the trigger choice is not in their input, they do not

alter it.

The set ΦrEFCE-INT ⊂ ΦrEFCE for player i can be identified with the set{
(c, σ) ∈ C∗i × Σ?

i s.t. σ ∈ Σ|c
}
. (6.12)

Each such element (c, σ) ∈ C∗i ×Σ?
i corresponds to a φrEFCE

c,σ : Σi → Σi defined, if h is reachable using
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σ, (
φrEFCE
c,σ (s)

)
(h) =

{
σ(h) if s (h|c) = c

s(h) otherwise
(6.13)

and if h is not reachable using σ, (
φrEFCE
c,σ (s)

)
(h) = s(h). (6.14)

Proposition 6.3 Given an extensive-form game in strategic form, a joint strategy distribution q is

a ΦrEFCE equilibrium if and only if it is a ΦrEFCE-INT equilibrium.

Proof One direction follows from Observation 2.4 and the fact that ΦrEFCE-INT ⊂ ΦrEFCE. For the

other direction, assume that q is a ΦrEFCE-INT equilibrium. Given a player i, let φ∗ ∈ ΦrEFCE(Σi) be

a transformation corresponding to a function ψ : C∗i → {yes} ∪ Σ?
i . Given a strategy si ∈ Σi and

a partial strategy σi ∈ Σ?
i , let si \ σi ∈ Σi denote the strategy which is equivalent to σi where σi is

defined, and equivalent to si elsewhere.

Given a joint strategy s ∈ ~Σ, let c∗(s) be the first choice reached by s such that ψ(c∗(s)) 6= i. If

there is such a c∗, let φs be φrEFCE
c∗,ψ(c∗). Otherwise, let φs be the identity.

Given a choice c, let Σ|c ⊆ ~Σ be the set of joint strategies that lead to choice c being made.

Now we have

E [ρi,φ∗ ] =
∑
s∈~Σ

q(s) (ri (φ∗(si), s¬i)− ri (s)) (6.15)

=
∑
s∈~Σ

q(s) (ri (φs(si), s¬i)− ri (s)) (6.16)

=
∑
s∈~Σ

q(s)
∑

c:ψ(c) 6=i

(
ri

(
φrEFCE
c,ψ(c)(si), s¬i

)
− ri (s)

)
(6.17)

=
∑

c:ψ(c) 6=i

∑
s∈~Σ

q(s)
(
ri

(
φrEFCE
c,ψ(c)(si), s¬i

)
− ri (s)

)
(6.18)

=
∑

c:ψ(c) 6=i

E
[
ρi,φrEFCE

c,ψ(c)

]
(6.19)

≤ 0 (6.20)

Line (6.17) follows because the only c for which the difference in rewards will be non-zero is c∗ (if

such a c∗ exists). Line (6.20) follows because q is a ΦrEFCE-INT equilibrium.

Because each player in the Hiring Game takes only one turn has only two information sets, the

ΦrEFCE-INT sets are quite small for this game. For the student, there are four possible triggers (XG,

YG, XB , and YB) and two choices for each trigger. There are thus eight transformations for the

student, but four of them are the identity, so |ΦrEFCE-INT (Σstudent) | = 5. Similar reasoning shows

that ΦrEFCE-INT (Σprofessor) also has cardinality 5.
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6.4 Learning

Now that we have a representation of an extensive-form game as a matrix game, along with repre-

sentations of both types of EFCE in terms of sets of transformations for that matrix game, Theorem

2.14 implies that any of the no-Φ-regret algorithms in Chapter 4 can learn either EFCE concept.

However, while the informed setting often makes sense for ordinary matrix games, it generally is in-

appropriate for an extensive-form game. Unless the players reveal (honestly) their entire strategies to

each other at the end of each trial, there is no way for a player to calculate his own regret. However,

applying the class of näıve no-regret algorithms presented in Section 4.7 solves this problem.

One may also take a very different approach to learning EFCE. An extensive-form game can also

be represented as a convex game using the sequence form. Gordon et al. [2008], building on the

framework presented in Chapter 5, explain how to learn EFCE in this setting. It remains to be seen

how the sequence form approach and the approach taken in this work compare in terms of efficiency.

In general, one could construct any number of equilibrium concepts for extensive-form games by

conceiving of a moderator interpretation with particular rules. For example, a player could have some

limited ability to preview the contents of envelopes. Given such a moderator, the extended game

formalism used here to define pEFCE provides a method for formally defining the corresponding

equilibrium concept. More specifically, given a joint distribution, q, construct an extended game that

represents the rules of the moderator interpretation. If 〈obeyi〉 is a pure Nash equilibrium, then

q is an equilibrium of this new type. One can then define a set of transformations corresponding

to the ability of the players to deviate from the moderator’s suggestions. Plugging this set of

transformations into a regret-matching algorithm yields an algorithm which learns the equilibrium

concept. Thus, the work here can be generalized to a variety of equilibrium concepts.



Appendix A

Technical Lemmas

A.1 Point-Set Topology Lemma

Lemma A.1 Let (X, dX) be a compact metric space and let (Y, dY ) be a metric space. Let {xt} be

an X-valued sequence, and let S be a nonempty, closed subset of Y . If f : X → Y is continuous

and if f−1(S) is nonempty, then dX(xt, f−1(S)) → 0 as t → ∞ if and only if dY (f(xt), S) → 0 as

t→∞.

Proof We write d = dX and d = dY , since the appropriate choice of distance metric is always clear

from the context. To prove the forward implication, assume d(xt, f−1(S))) → 0 as t→∞. Choose

t0 s.t. for all t ≥ t0, d(xt, f−1(S)) < δ
2 . Observe that for all xt and for all γ > 0, there exists

q
(γ)
t ∈ f−1(S) s.t. d(xt, q

(γ)
t ) < d(xt, f−1(S)) + γ. Now, since d(xt, q

( δ2 )
t ) < δ

2 + δ
2 = δ, by the

continuity of f , d(f(xt), f(q(
δ
2 )
t )) < ε, for all ε > 0. Therefore, d(f(xt), S) < ε, since f(q(

δ
2 )
t ) ∈ S.

To prove the reverse implication, assume d(f(xt), S) → 0 as t→∞. We must show that for all

ε > 0, there exists a t0 s.t. for all t ≥ t0, d(xt, f−1(S)) < ε. Define T = {x ∈ X | d(x, f−1(S)) ≥ ε}.
If T = ∅, the claim holds. Otherwise, observe that T can be expressed as the complement of the

union of open balls, so that T is closed and thus compact. Define g : X → R as g(x) = d(f(x), S).

By assumption S is closed; hence, g(x) > 0, for all x. Because T is compact, g achieves some

minimum value, say L > 0, on T . Choose t0 s.t. d(f(xt), S) < L for all t ≥ t0. Thus, for all t ≥ t0,

g(xt) < L⇒ xt /∈ T ⇒ d(xt, f−1(S)) < ε.

A.2 Probability Lemmas

Lemma A.2 If x is a random vector taking values in Rn, then(
E
[
max
i
xi

])q
≤ E

[∥∥x+
∥∥q
p

]
(A.1)

for all p > 0 and q ≥ 1.

Proof Apply Jensen’s inequality and the fact that ‖x‖∞ ≤ ‖x+‖p for any p > 0.

60
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Let (Ω,F , P ) be a probability space with a filtration (Ft : t ≥ 0): that is, a sequence of σ-algebras

with Ft ⊆ F for all t and Fs ⊆ Ft for all s < t. A stochastic process (Zt : t ≥ 0) is said to be

adapted to a filtration (Ft : t ≥ 0) if Zt is Ft-measurable, for all times t: i.e., if the value of Zt is

determined by Ft, the information available at time t.

We denote by Et the conditional expectation with respect to Ft: i.e., Et[·] = E[· | Ft].

Lemma A.3 (Product Lemma) Assume the following:

1. (Zt : t ≥ 0) is an adapted process such that ∀t, 0 ≤ Zt < k a.s., for some k ∈ R;

2. Et−1[Zt] ≤ ct a.s., for t ≥ 1, and E[Z0] ≤ c0, where ct ∈ R, for all t.

For fixed T ,

E

[
T∏
t=0

Zt

]
≤

T∏
t=0

ct (A.2)

Proof The proof is by induction. The claim holds for T = 0 by assumption. We assume it also

holds for T and show it holds for T + 1:

E

[
T+1∏
t=0

Zt

]
= E

[
ET

[
T+1∏
t=0

Zt

]]
(A.3)

= E

[
ET

[(
T∏
t=0

Zt

)
ZT+1

]]
(A.4)

= E

[(
T∏
t=0

Zt

)
ET [ZT+1]

]
(A.5)

≤ E

[(
T∏
t=0

Zt

)
cT+1

]
(A.6)

= cT+1E

[
T∏
t=0

Zt

]
(A.7)

≤
T+1∏
t=0

ct (A.8)

Line (A.3) follows from the tower property, also known as the law of iterated expectations: If a

random variable X satisfies E [|X|] < ∞ and H is a sub-σ-algebra of G, which in turn is a sub-

σ-algebra of F , then E[E[X | G] | H] = E[X | H] almost surely [Williams, 1991]. Note that

E
[∏T+1

t=0 Zt

]
< ∞. Line (A.5) follows because

∏T
t=0 Zt is FT -measurable and E

[∏T
t=0 Zt

]
< ∞.

Line (A.6) follows by assumption, since Zt, for t ≥ 0, is nonnegative with probability 1. Line (A.8)

follows from the induction hypothesis.

Lemma A.4 (Supermartingale Lemma) Assume the following:

1. (Mt : t ≥ 0) is a supermartingale, i.e. (Mt : t ≥ 0) is an adapted process s.t. for all t,

E[|Mt|] <∞ and for t ≥ 1, Et−1[Mt] ≤Mt−1 a.s.;
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2. f is a nondecreasing positive function s.t. for t ≥ 1, |Mt −Mt−1| ≤ f(t) a.s..

If M0 = m ∈ R a.s., then for fixed T ,

P [MT ≥ 2εTf(T )] ≤ eεm/f(0)−ε2T , (A.9)

for all ε ∈ [0, 1].

Proof For t ≥ 0, let

Yt =
Mt

f(T )
(A.10)

and for t ≥ 1, let Xt = Yt − Yt−1, so that

Yt =
t∑

τ=0

Xτ . (A.11)

Note that X0 = Y0 = m/f(0) a.s..

Because Mt is supermartingale and f(t) is positive, for t ≥ 1,

Et−1[Xt] = Et−1[Yt]− Yt−1 =
Et−1[Mt]−Mt−1

f(T )
≤ 0 a.s. (A.12)

Because f is nondecreasing, f(t) ≤ f(T ) for all t; hence, for 1 ≤ t ≤ T ,

|Xt| = |Yt − Yt−1| =
∣∣∣∣ Mt

f(T )
− Mt−1

f(T )

∣∣∣∣ ≤ |Mt −Mt−1|
f(t)

≤ 1 a.s. (A.13)

Thus, for t ≥ 1,

Et−1

[
eεXt

]
≤ 1 + εEt−1[Xt] + ε2Et−1[X2

t ] ≤ 1 + ε2 a.s. (A.14)

The first inequality follows from the fact that ey ≤ 1 + y + y2 for y ≤ 1, and εXt ≤ 1 a.s., since

ε ∈ [0, 1] and |Xt| ≤ 1 a.s. by Line (A.13). The second inequality follows from Line (A.12).

Therefore,

P [MT ≥ 2εTf(T )] = P [YT ≥ 2εT ] (A.15)

= P
[
eεYT ≥ e2ε

2T
]

(A.16)

≤
E
[
eεYT

]
e2ε2T

(A.17)

=
E
[
eε
∑T

t=0
Xt

]
e2ε2T

(A.18)

=
E
[∏T

t=0 e
εXt
]

e2ε2T
(A.19)

≤ eεm/f(0)(1 + ε2)T

e2ε2T
(A.20)

≤ eεm/f(0)eε
2T

e2ε2T
(A.21)

= eεm/f(0)−ε2T (A.22)
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Line (A.17) follows from Markov’s inequality. Line (A.20) follows from the Product Lemma (since

(Xt : t ≥ 0) is an adapted process), Line (A.14), and the assumption that M0 = m a.s.. Line (A.21)

follows from the fact that (1 + x) ≤ ex.



Appendix B

Gordon Triple Proofs

In this appendix, we prove Lemmas 3.7, 3.8, and 3.9. Of particular interest is the proof of Lemma 3.7,

because in this proof we identify a set of points (namely, the boundary of the negative orthant; see

Lemma B.3) on which the polynomial link function for p ≥ 2 is not differentiable.

Cesa-Bianchi and Lugosi [2003] apply Taylor’s theorem to the polynomial (potential) function

G(x) = ‖x+‖2p for p ≥ 2, whose gradient is the polynomial link function. In this application, the

authors implicitly assume that G is twice differentiable everywhere; however, it is not.

B.1 Proof of Proposition 3.7

In Lemmas B.1, B.2, and B.3, we let i and j range over the set {1, . . . , n}.

In addition, we rely on the following functions:

• for p ≥ 1, G : Rn → R, defined by:

G(x) = ‖x+‖2p (B.1)

• for p ≥ 2, g : Rn → Rn, where for all i,

gi(x) =

 0 if xi ≤ 0
2xp−1
i

‖x+‖p−2
p

otherwise
(B.2)

• for p > 2, h : Rn → R2n, where

hii(x) =

 0 if xi ≤ 0

2(2− p)
(

xi
‖x+‖p

)2p−2

+ 2(p− 1)
(

xi
‖x+‖p

)p−2

otherwise
(B.3)

and for i 6= j

hij(x) =

 0 if xi ≤ 0 or xj ≤ 0

2(2− p)
(
xixj
‖x+‖2p

)p−1

otherwise
(B.4)
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Lemma B.1 For p ≥ 2, G is C1 (i.e., continuously differentiable) with gradient g.

Proof We consider the negative orthant and its complement separately.

• G is differentiable with gradient g on the complement of the negative orthant.

We (de)construct G as follows:

ai(x) = (x+
i )p (B.5)

b(y) =
∑
i

ai(y) (B.6)

c(z) = z
2
p (B.7)

G = c ◦ b (B.8)

Because the ai are differentiable everywhere, b is C1. Also, c is differentiable on (0,∞), so G

is C1 on the complement of the negative orthant. By straightforward calculus, for u in the

complement of the negative orthant, ∂G
∂xi

∣∣∣
u

= gi(u).

• G is differentiable with gradient g on the negative orthant.

Let u ∈ Rn−. We show the following:

lim
δ→0

G(u+ δei)−G(u)
δ

= gi(u) (B.9)

Since ui ≤ 0, gi(u) = 0 and G(u) = 0. If ui < 0, then G(u + δei) = 0 for sufficiently small δ.

If ui = 0, then

lim
δ→0

G(u+ δei)−G(u)
δ

= lim
δ→0

G(u+ δei)
δ

= lim
δ→0

(δ+)2

δ
= 0 (B.10)

Hence, for u in the negative orthant, ∂G
∂xi

∣∣∣
u

= gi(u).

• gi is continuous, for all i.

Let u ∈ Rn. If ui > 0, then gi(x) = 2(xi)
p−1

‖x+‖p−2
p

on a neighborhood of u, so gi is continuous at u.

Otherwise, for all x ∈ Rn such that xi > 0, since, by assumption, p > 2, it follows that

0 <
2(xi)p−1

‖x+‖p−2
p

≤ 2(xi)p−1

|xi|p−2
= 2xi, (B.11)

Hence, for all x ∈ Rn, 0 ≤ gi(x) ≤ 2x+
i . Now, if {x(τ)} is a sequence such that limx(τ) = u,

then ui ≤ 0 ⇒ u+
i = 0 ⇒ lim

(
x

(τ)
i

)+

= 0 ⇒ lim gi
(
x(τ)

)
= 0 ⇒ lim gi

(
x(τ)

)
= gi(u).

Lemma B.2 For p ≥ 1, G is smooth on the complement of the axes: i.e., on the set {x ∈ Rn | xi 6=
0, for all i}. Further, on the set where G is smooth, ∂G

∂xi∂xj

∣∣∣
u

= hij(u), for all i, j.
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Proof For a point u not on an axis, we define an (everywhere) smooth function G̃u by replacing

the + operator for each component of the argument of G with either the identity, if u is positive in

that component, or zero, if it is not. Specifically, given u ∈ Rn such that ui 6= 0 for all i, let

G̃u(x) =

( ∑
i:ui>0

xpi

) 2
p

(B.12)

Observe that G = G̃u on a neighborhood of u, and for v in this neighborhood, ∂G̃u
∂xi∂xj

∣∣∣
v

= hij(v).

Lemma B.3 Assume p > 2. All second-order partial derivatives of G exist and are continuous at

a point u if and only if u is not on the boundary of the negative orthant. Furthermore, on the set

where G is twice-differentiable, ∂G
∂xi∂xj

∣∣∣
u

= hij(u), for all i, j.

Proof By Lemma B.1, G is differentiable with gradient g on this set. By Lemma B.2, the result

holds for u not on an axis. For u on an axis, we show that for all i, j,

lim
δ→0

gi(u+ δej)− gi(u)
δ

= hij(u) (B.13)

if and only if u is not on the boundary of the negative orthant.

• Case 1: ui = 0.

In this case, for all j, hij(u) = 0. For i 6= j, the limit in Equation B.13 is equal to 0. For i = j,

the limit from the left:

lim
δ→0−

gi(u+ δei)− gi(u)
δ

=
0
δ

= 0 (B.14)

and from the right:

lim
δ→0+

gi(u+ δei)− gi(u)
δ

(B.15)

= lim
δ→0+

2δp−1

‖(u+ δei)+‖p−2
p

1
δ

(B.16)

= lim
δ→0+

2δp−2

‖(u+ δei)+‖p−2
p

(B.17)

= lim
δ→0+

2δp−2

(C + δp)1−
2
p

(B.18)

where C =
∑
k 6=i(u

+
k )p. If u is not in the negative orthant (and thus not on the boundary of

the negative orthant), then C > 0 and the limit in Equation B.18 is equal to 0.1

If u is in the negative orthant (and thus on the boundary of the negative orthant), then C = 0

and the limit in Equation B.18 is not equal to 0. On the contrary,

lim
δ→0+

2δp−2

(δp)1−
2
p

= lim
δ→0+

2δp−2

δp−2
= 2 (B.19)

In particular, gi is not differentiable on the boundary of the negative orthant.
1Note that Equation B.18 simplifies to 2, if p = 2; hence, we assume that p > 2.
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• Case 2: ui 6= 0, uj = 0.

In this case, for all i, hij(u) = 0. Because ui 6= uj , it cannot be the case that i = j. If ui < 0,

then the limit in Equation B.13 is equal to 0. If ui > 0, then (u+ δej)+ = u+ for δ < 0 (since

uj = 0), so the left hand limit of Equation B.13 is also equal to 0. Now, for the right-hand

limit:

lim
δ→0+

1
δ

(
2up−1

i

‖(u+ δej)+‖p−2
p

− 2up−1
i

‖u+‖p−2
p

)
(B.20)

= lim
δ→0+

2up−1
i

δ

(
1

(C + δp)1−
2
p

− 1

C1− 2
p

)
(B.21)

= lim
δ→0+

2up−1
i

δ

C1− 2
p − (C + δp)1−

2
p

C1− 2
p (C + δp)1−

2
p

(B.22)

=
2up−1

i

C1− 2
p

lim
δ→0+

C1− 2
p − (C + δp)1−

2
p

δ (C + δp)1−
2
p

(B.23)

=
2up−1

i

C1− 2
p

lim
δ→0+

(p− 2)δp−1 (C + δp)
2
p

(C + δp)1−
2
p + (p− 2)δp (C + δp)

2
p

(B.24)

= 0 (B.25)

where C =
∑
k 6=j(u

+
k )p > 0 since ui > 0. Line B.24 follows from L’Hôpital’s rule.

• Case 3: ui 6= 0, uj 6= 0.

To take partial derivatives in the ith and jth coordinates, we can project onto R2, holding all

other coordinates constant. We then apply the technique of Lemma B.2 to this projection.

Finally, we must show that all hij are continuous on the complement of the boundary of the

negative orthant. First, consider hii, for an arbitrary i. Clearly, hii is continuous on the (open) sets

{x ∈ Rn | xi < 0} and {x ∈ Rn | xi > 0}. It remains to show hii is continuous on the complement

of these sets, namely {x ∈ Rn | xi = 0}, except where it intersects the boundary of the negative

orthant. At each point u in the set {x | xi = 0 and ∃j xj > 0}, xi = 0, so hii(u) = 0. Moreover,

as x approaches each such point u, xi
‖x+‖p approaches 0 so that hii(x) does too. Thus, all hii are

continuous on the complement of the boundary of the negative orthant.

Now consider hij , for arbitrary i 6= j. Clearly, hij is continuous on the (open) sets {x ∈ Rn |
xi < 0 or xj < 0} and {x ∈ Rn | xi > 0 and xj > 0}. It remains to show hij is continuous on

the complement of these sets, except where it intersects the boundary of the negative orthant. At

each point u in the relevant set, either xi = 0 or xj = 0, so hij(u) = 0. Moreover, as x approaches

each such point u, xixj
‖x+‖2p

approaches 0 so that hij(x) does too. Thus, all hij are continuous on the

complement of the boundary of the negative orthant.

Lemma B.4 If p > 2, then the functions

G(x) = ‖x+‖2p (B.26)
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gi(x) =

 0 if xi ≤ 0
2xp−1
i

‖x+‖p−2
p

otherwise
(B.27)

γ(x) = (p− 1)‖x‖2p (B.28)

satisfy the condition G(x+ y) ≤ G(x) + g(x) · y + γ(y), for x, y ∈ Rn such that the boundary of the

negative orthant does not intersect the line segment between them (inclusive).

Proof Let U be an open convex set containing x and x + y but no points on the boundary of the

negative orthant. By Lemma B.1, G is C1 and the gradient of G is g. By Lemma B.3, G is C2 on

U ,

∂2G

∂x2
i

∣∣∣∣
u

=

 0 if ui ≤ 0

2(2− p)
(

ui
‖u+‖p

)2p−2

+ 2(p− 1)
(

ui
‖u+‖p

)p−2

otherwise
(B.29)

and for i 6= j,

∂2G

∂xi∂xj

∣∣∣∣
u

=

 0 if ui ≤ 0 or uj ≤ 0

2(2− p)
(
uiuj
‖u+‖2p

)p−1

otherwise
(B.30)

By Taylor’s theorem, for some u ∈ U ,

G(x+ y) = G(x) + g(x) · y +
1
2

∑
i,j

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj (B.31)

If u ≤ 0 so that u+ = 0, then

1
2

∑
i,j

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj = 0 ≤ (p− 1)‖y‖2p (B.32)

Otherwise,

1
2

∑
i,j

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj (B.33)

=
∑
i,j

(2− p)

(
u+
i u

+
j

‖u+‖2p

)p−1

yiyj +
∑
i

(p− 1)
(

u+
i

‖u+‖p

)p−2

y2
i (B.34)

= (2− p)‖u+‖2−2p
p

(∑
i

(u+
i )p−1yi

)2

+ (p− 1)‖u+‖2−pp

∑
i

(u+
i )p−2y2

i (B.35)

≤ (p− 1)‖u+‖2−pp

∑
i

(u+
i )p−2y2

i (B.36)

≤ (p− 1)‖u+‖2−pp

(∑
i

((
u+
i

)p−2
) p
p−2

) p−2
p
(∑

i

|yi|p
) 2
p

(B.37)

= (p− 1)‖y‖2p (B.38)

Line (B.36) follows from the fact that p ≥ 2 (by assumption, p > 2). Line (B.37) is an application

of Hölder’s inequality.
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Proposition 3.7 If p > 2, then the functions G, g, and γ defined in Lemma B.4 form a Gordon

triple.

Proof Define z = x + y. If the line segment between x and z (inclusive) does not intersect the

boundary of the negative orthant. then apply Lemma B.4. Otherwise, three cases arise.

• Case 1: x ∈ Rn−
If x is in the negative orthant, then G(x) = 0 and g(x) = 0. Hence, it suffices to show that

G(x+ y) = ‖(x+ y)+‖2p ≤ ‖y+‖2p ≤ ‖y‖2p ≤ (p− 1)‖y‖2p = γ(y) (B.39)

• Case 2: x /∈ Rn−, z ∈ Rn−
If z is in the negative orthant, but x is not, then G(z) = 0. Hence, it suffices to show that

||x+||2p +
(

2(x+)p−1

||x+||p−2
p

)
· y + (p− 1)||y||2p ≥ 0 (B.40)

which reduces to

||x+||pp + 2(x+)p−1 · y + (p− 1)||y||2p||x||p−2
p ≥ 0 (B.41)

By Hölder’s inequality,

||y||2p||x||p−2
p ≥

∑
i

|yi|2 · |xi|p−2 (B.42)

So in fact, it suffices to show that for any a, b ∈ R,

(a+)p + 2(a+)p−1b+ (p− 1)b2|a|p−2 ≥ 0 (B.43)

Indeed,

(a+)p + 2(a+)p−1b+ (p− 1)b2|a|p−2 (B.44)

≥ (a+)p + 2(a+)p−1b+ (p− 1)b2(a+)p−2 (B.45)

= (a+)p−2((a+)2 + 2a+b+ (p− 1)b2) (B.46)

≥ (a+)p−2((a+)2 + 2a+b+ b2) (B.47)

= (a+)p−2(a+ + b)2 (B.48)

≥ 0 (B.49)

Line (B.46) follows from the fact that p ≥ 2.

• Case 3: x /∈ Rn−, z /∈ Rn−
Neither x nor z is in the negative orthant, but, by assumption, the line segment between x

and z intersects the boundary of the negative orthant. We claim the line segment between x+

and z does not intersect this boundary. We prove this claim by contradiction.

Assume, for the sake of contradiction, that there exists λ ∈ (0, 1) such that λx++(1−λ)z ∈ Rn−.

Define I = {i | zi > 0}. Since z /∈ Rn−, the set I is non-empty. Moreover, for all i ∈ I, xi < 0.
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For all i ∈ I, zi > 0 and x+
i = 0, so λ = 1 (because λx+ + (1 − λ)z ∈ Rn−). Consequently, it

must be the case that x+ ∈ Rn−. This is a contradiction, since x /∈ Rn−, by assumption.

Therefore, we can apply Lemma B.4 to x+ and z − x+, which yields

G(x+ y) = G(z) ≤ G(x+) + g(x+) · (z − x+) + γ(z − x+). (B.50)

First, observe that G(x+) = G(x). Second, for all i = 1, . . . , n, gi(x+) = gi(x) ≥ 0 and

yi = zi − xi ≥ zi − x+
i . Hence, g(x+) · (z − x+) ≤ g(x) · (z − x) = g(x) · y. Third, for all

i = 1, . . . , n, |zi − x+
i | ≤ |zi − xi| Thus, ‖z − x+‖2p ≤ ‖z − x‖2p = ‖y‖2p. Therefore,

G(x+) + g(x+) · (z − x+) + γ(z − x+) ≤ G(x) + g(x) · y + γ(y) (B.51)

Together, Equations B.50 and B.51 imply the desired conclusion.

B.2 Proof of Proposition 3.8

Proposition 3.8 If 1 ≤ p ≤ 2, then the following is a Gordon triple: G(x) = ‖x+‖pp, gi(x) =

p(x+
i )p−1, and γ(x) = ‖x‖pp.

Proof Because ‖x+‖pp =
∑
i

(
x+
i

)p
, it suffices to show that for any a, b ∈ R,

((a+ b)+)p ≤ (a+)p + p(a+)p−1b+ |b|p (B.52)

after which the result follows from a component-wise proof.

If p = 1, then Line (B.52) follows immediately because (a + b)+ ≤ a+ + b+. Otherwise, we use

the basic inequality xα + yα ≥ (x+ y)α, for all x, y ≥ 0 and α ∈ [0, 1]. Two cases arise.

• Case 1: b ≥ 0. Define the function hc(z) = zp + p(c+)p−1z − ((c + z)+)p for c ∈ R for z ≥ 0.

Taking its derivative yields h′c(z) = p
(
zp−1 + (c+)p−1 − ((c+ z)+)p−1

)
. Applying the basic

inequality with x = z, y = c+, and α = p− 1 yields

zp−1 + (c+)p−1 ≥ (z + c+)p−1 (B.53)

≥ ((c+ z)+)p−1 (B.54)

Thus, h′c(z) ≥ 0, i.e., hc is non-decreasing on [0,∞). In particular,

ha(0) ≤ ha(b) (B.55)

−(a+)p ≤ bp + p(a+)p−1b− ((a+ b)+)p (B.56)

((a+ b)+)p ≤ (a+)p + p(a+)p−1b+ bp (B.57)

≤ (a+)p + p(a+)p−1b+ |b|p (B.58)
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• Case 2: b < 0. Define the function hc(z) = zp − p(c+)p−1z − ((c − z)+)p for c ∈ R for z ≥ 0.

Taking its derivative yields h′c(z) = p
(
zp−1 − (c+)p−1 + ((c− z)+)p−1

)
. Applying the basic

inequality with x = z, y = (c− z)+, and α = p− 1 yields

zp−1 + ((c− z)+)p−1 ≥ (z + (c− z)+)p−1 (B.59)

≥ (c+)p−1 (B.60)

Thus, h′c(z) ≥ 0, i.e., hc is non-decreasing on [0,∞). In particular,

ha(0) ≤ ha(−b) (B.61)

−(a+)p ≤ (−b)p + p(a+)p−1b− ((a+ b)+)p (B.62)

((a+ b)+)p ≤ (a+)p + p(a+)p−1b+ (−b)p (B.63)

≤ (a+)p + p(a+)p−1b+ |b|p (B.64)

B.3 Proof of Proposition 3.9

Proposition 3.9 If δ > 0, then the following is a Gordon triple:

G(x) =
1
δ

ln

(∑
i

eδxi

)
(B.65)

gi(x) =
eδxi∑
j e
δxj

(B.66)

γ(x) =
δ

2
‖x‖2∞ (B.67)

Proof We use the same technique as in the proof of Lemma B.4.

Observe that G is smooth and that the gradient of G is g. Moreover, for i 6= j,

∂2G

∂xi∂xj

∣∣∣∣
u

= − δeδuieδuj

(
∑
i e
δui)2

(B.68)

and otherwise,
∂2G

∂x2
i

∣∣∣∣
u

= − δeδuieδui

(
∑
i e
δui)2

+
δeδui∑
i e
δui

(B.69)

By Taylor’s theorem, for some u ∈ U ,

G(x+ y) = G(x) + g(x) · y +
1
2

∑
ij

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj (B.70)
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Finally,

∑
ij

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj =
∑
ij

− δeδuieδuj

(
∑
i e
δui)2

yiyj +
∑
i

δeδui∑
i e
δui

y2
i (B.71)

= −δ
(∑

i e
δuiyi∑

i e
δui

)2

+
∑
i

δeδui∑
i e
δui

y2
i (B.72)

≤
∑
i

δeδui∑
i e
δui

y2
i (B.73)

≤
∑
i

δeδui∑
i e
δui

‖y‖2∞ (B.74)

= δ‖y‖2∞ (B.75)
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